Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.194
Filter
1.
J Chem Ecol ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958678

ABSTRACT

Characteristics such as calcareous morphology and life cycle are used to understand the ecology of calcified rhodophytes. However, there is limited information regarding their chemical profiles and biological activities. Therefore, a systematic review (PRISMA) was conducted to assess the influence of the chemistry of calcareous rhodophytes on ecological interactions in the marine environment. The keywords used were: ["Chemical AND [Ecology OR Interaction OR Response OR Defense OR Effect OR Cue OR Mediated OR Induce]"] AND ["Red Seaweed" OR "Red Macroalgae" OR Rhodophy?] AND [Calcified OR Calcareous] in Science Direct, Scielo, PUBMED, Springer, Web of Science, and Scopus. Only English articles within the proposed theme were considered. Due to the low number of articles, another search was conducted with three classes and 16 genera. Finally, 67 articles were considered valid. Their titles, abstracts, and keywords were analyzed using IRaMuTeQ through factorial, hierarchical and similarity classification. Most of the studies used macroalgae thallus to evaluate chemical mediation while few tested crude extracts. Some substances were noted as sesquiterpene (6-hydroxy-isololiolide), fatty acid (heptadeca5,8,11-triene) and dibromomethane. The articles were divided into four classes: Herbivory, Competition, Settlement/Metamorphosis, and Epiphytism. Crustose calcareous algae were associated with studies of Settlement/Metamorphosis, while calcified algae were linked to herbivory. Thus, the importance of chemistry in the ecology of these algae is evident,and additional studies are needed to identify the substances responsible for ecological interactions. This study collected essential information on calcified red algae, whose diversity appears to be highly vulnerable to the harmful impacts of ongoing climate change.

2.
Meat Sci ; 216: 109584, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38970931

ABSTRACT

The addition of macroalgae to livestock diets has demonstrated to enhance the quality of meat by improving the muscle stability, antioxidant capacity and fatty acid profile. However, information regarding rabbit meat is scarce. This study evaluated the effect of adding 1.025% of different macroalgae, dehydrated and as extracts (Saccharina latissima, Himanthalia elongata and Ulva spp.) to the diet of growing rabbits. Dietary supplementation with the Ulva spp. extract increased the fat content (0.96% vs 0.33% in control group) and the proportion of monounsaturated fatty acids (by 22%; P ≤ 0.022), but did not affect the moisture, protein or ash contents or the physicochemical properties of the rabbit longissiumus lumborum muscle. The antioxidant status of the meat was adequate and was not affected by the dietary supplements. The sensorial properties of the meat were also not affected, and dietary supplementation with both S. latissima and H. elongata actually enhanced the flavour and juiciness of the meat (P ≤ 0.01). Altogether, the study findings indicate that the addition of these sustainable ingredients to rabbit feed did not negatively affect meat quality, and some of them may potentially improve specific characteristics, which could make this meat more attractive to consumers.

3.
Foods ; 13(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38890859

ABSTRACT

Ulva rigida green macroalgae contain a variety of polysaccharides. A recent study investigated the optimum concentration and yield of polysaccharide extraction from oven-dried U. rigida biomass using a water-soluble polysaccharide extraction method that adhered to safety standards. This study utilised complete factorial experiments to examine the effects of varying factors on polysaccharide extraction. Results showed a positive correlation between increased levels of all factors and higher polysaccharide extraction yield. This study also found that the main factors and their interaction had a significant impact on the extracted polysaccharides from U. rigida. The highest polysaccharide content and yield were 9.5 mg/mL and 189 mg/g, respectively. Water-soluble polysaccharides demonstrated the presence of reducing sugar (8 mg/g), phenolics (0.69 mg/g) and flavonoids (1.42 mg/g) and exhibited antioxidant properties. Results revealed that freeze-dried polysaccharide powders were primarily composed of the monosaccharide rhamnose. Preliminary results on the effect of these powders on probiotics demonstrated that supplementation of polysaccharides from U. rigida promoted viable Lactobacillus rhamnosus ATCC 53103 growth during cultivation. This discovery has the potential to revolutionise the human food industry and promote the development of functional ingredients for novel and future food products, with numerous applications in the nutraceutical and pharmaceutical industries.

4.
Chemphyschem ; : e202400173, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38845571

ABSTRACT

Raman spectroscopy was used to study the complex interactions and morphogenesis of the green seaweed Ulva (Chlorophyta) and its associated bacteria under controlled conditions in a reductionist model system. Integrating multiple imaging techniques contributes to a more comprehensive understanding of these biological processes. Therefore, Raman spectroscopy was introduced as a non-invasive, label-free tool for examining chemical information of the tripartite community Ulva mutabilis-Roseovarius sp.-Maribacter sp. The study explored cell differentiation, cell wall protrusion, and bacterial-macroalgae interactions of intact algal thalli. Using Raman spectroscopy, the analysis of the CHx-stretching wavenumber region distinguished spatial regions in Ulva germination and cellular malformations under axenic conditions and upon inoculation with a specific bacterium in bipartite communities. The spectral information was used to guide in-depth analyses within the fingerprint region and to identify substance classes such as proteins, lipids, and polysaccharides, including evidence for ulvan found in cell wall protrusions.

5.
Mar Environ Res ; 199: 106597, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38875898

ABSTRACT

Macroalgae play crucial roles as major habitat-forming organisms in marine ecosystems, having significant impacts on coral recruitment and reef recovery. However, the interactions between marine macroalgae and coral larvae remain poorly understood. Furthermore, little is known whether differences in bacterial assemblages associated with macroalgae may play roles in this process. Here, we comprehensively investigated the impacts of different macroalgae and their associated microbiomes on larval settlement and survival of coral Pocillopora damicornis. The results revealed significant variations in larval settlement and survival rates when exposed to different macroalgal species. The highest settlement rate, reaching 90%, was observed in the presence of the red alga Hypnea pannosa, followed by green algae Caulerpa serrulata, C. racemosa, and brown algae Turbinaria gracilis, Sargassum polycystum. Correspondingly, similarities in bacterial compositions were observed between H. pannosa and C. racemosa, as well as between T. gracilis and S. polycystum, implying associated bacterial may be related with the algal functions. Furthermore, macroalgae that facilitate larval settlement exhibited higher abundances of amplicon sequence variants (ASVs) associated with the metabolism of dimethylsulfoniopropionate or the antagonism of known coral pathogens. However, the brown alga Padina boryana failed to induce larval settlement with survival rate of zero after 120 h. The algal species harbored more abundances of ASVs related to Rhizobiaceae. These findings highlight the significant impact of macroalgae and their associated microbiomes on coral recruitment, as they influence both larval settlement and survival rates.

6.
Harmful Algae ; 136: 102650, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38876526

ABSTRACT

Harmful Algal Blooms (HABs) are increasing in temperate areas, and the growth rates of benthic harmful dinoflagellates may be favoured in the context of global climate change. Benthic dinoflagellates, including species belonging to the Ostreopsis Schmidt genus, are known to develop on the surface of macroalgae and different macroalgal morphotypes and communities could host higher or lower cell abundances. The physical structure of the macroalgal substrate at the small scale (cm, microhabitat scale) and the structural complexity of the macroalgal community at the medium scale (few m, mesohabitat scale) could play a relevant role in bloom facilitation: the hypothesis that Ostreopsis species could be associated with macroalgal turfs and shrubs, structurally less complex communities than canopy-forming macroalgae, is especially under discussion and, if confirmed, could link bloom occurrence to regime shifts in temperate ecosystems. The present study, performed in two locations of the Ligurian Sea (Rochambeau, France and Vernazzola, Italy) aimed at understanding marine vegetation's role at the micro and mesohabitat scales in controlling the distribution and abundance of Ostreopsis. The abundance of the microalgal cells was quantified at different spatial scales, from cm to a few m, on different macroalgal species and communities, including artificial substrates, to tease apart the micro and mesohabitat effects. The results obtained show a high spatio-temporal variability, potentially hiding habitat-related patterns. The substrate's preferences diminish when cell abundances are very high, as in the case of Rochambeau, while in presence of moderate cell abundances as in Vernazzola or the first phases of blooms, it is possible to appreciate differences in abundances among substrates (in our study, Dictyota fasciola (Roth) Lamouroux supporting higher abundances). Our results open new research topics such as the study of blooms at a larger scale (macrohabitat) and testing different sampling methods to standardise the cells' abundances independently on the substrate.


Subject(s)
Dinoflagellida , Harmful Algal Bloom , Seaweed , Dinoflagellida/physiology , Dinoflagellida/growth & development , Seaweed/physiology , Seaweed/growth & development , Italy , France , Ecosystem
7.
Ecol Evol ; 14(6): e11606, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38919650

ABSTRACT

The Arctic archipelago of Svalbard is a hotspot of global warming and many fjords experience a continuous increase in seawater temperature and glacial melt while sea-ice cover declines. In 1996/1998, 2012-2014, and 2021 macroalgal biomass and species diversity were quantified at the study site Hansneset, Kongsfjorden (W-Spitsbergen) in order to identify potential changes over time. In 2021, we repeated the earlier studies by stratified random sampling (1 × 1 m2, n = 3) along a sublittoral depth transect (0, 2.5, 5, 10, and 15 m) and investigated the lower depth limits of dominant brown algae between 3 and 19 m. The maximum fresh weight (FW) of all seaweeds was 11.5 kg m-2 at 2.5 m and to 99.9% constituted of kelp. Although biomass distribution along the depth transect in 2021 was not significantly different compared to 2012/2013, the digitate kelp community (Laminaria digitata/Hedophyllum nigripes) had transformed into an Alaria esculenta-dominated kelp forest. Consequently, a pronounced shift in kelp forest structure occurred over time as we demonstrate that biomass allocation to thallus parts is kelp species-specific. Over the past decade, kelp demography changed and in 2021 a balanced age structure of kelps (juveniles plus many older kelp individuals) was only apparent at 2.5 m. In addition, the abundances and lower depth limits of all dominant brown algae declined noticeably over the last 25 years while the red algal flora abundance remained unchanged at depth. We propose that the major factor driving the observed changes in the macroalgal community are alterations in underwater light climate, as in situ data showed increasing turbidity and decreasing irradiance since 2012 and 2017, respectively. As a consequence, the interplay between kelp forest retreat to lower depth levels caused by coastal darkening and potential macroalgal biomass gain with increasing temperatures will possibly intensify in the future with unforeseen consequences for melting Arctic coasts and fjord ecosystem services.

8.
9.
Biology (Basel) ; 13(6)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38927339

ABSTRACT

Seaweed farming has made outstanding contributions to food supply and the restoration of the ecological environment despite the limitations in production and ecological effects due to the current intensive farming of single algae species. These limitations can be overcome by selecting suitable algal species based on their physiological characteristics and by constructing a large-scale seaweed rotation model. This study carried out a trial culture in aquaculture sea areas, and performed in situ monitoring of the environmental conditions and physiological characteristics of Saccharina japonica, Hizikia fusiformis, and Gracilariopsis lemaneiformis. Additionally, a comparative analysis of the three macroalgae at different times was conducted to determine their response characteristics to environmental factors. The results showed that: (1) The three macroalgae had varying light tolerance. The effective quantum yield of Hizikia fusiformis and Gracilariopsis lemaneiformis remained unchanged during the changes in light environment, while that of Saccharina japonica first decreased and then recovered. (2) The relative electron transport rates of the three macroalgae were significantly different under different temperature conditions. Hizikia fusiformis and Saccharina japonica exhibited the highest relative electron transport rates (70.45 and 106.75, respectively) in May (20.3 °C). Notably, Gracilariopsis lemaneiformis demonstrated good growth and exhibited the highest relative electron transport rate (93.07) in September (27.5 °C). These findings collectively support the feasibility of establishing a macroalgae rotation model. Based on the combined environmental conditions of the seas in Shandong, Zhejiang, and Fujian, a macroalgae rotation model was proposed. The application of this model in the construction of artificial seaweed farms in marine ranches can provide a stable output of large-scale seaweed production and ecological benefits.

10.
Carbohydr Polym ; 340: 122317, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38858030

ABSTRACT

Brown macroalgae synthesize large amounts of fucoidans, sulfated fucose-containing polysaccharides, in the ocean. Fucoidans are of importance for their recently discovered contribution to marine carbon dioxide sequestration and due to their potential applications in biotechnology and biomedicine. However, fucoidans have high intra- and intermolecular diversity that challenges assignment of structure to biological function and the development of applications. Fucoidan-active enzymes may be used to simplify this diversity by producing defined oligosaccharides more applicable for structural refinement, characterization, and structure to function assignment for example via bioassays. In this study, we combined MALDI mass spectrometry with biocatalysis to show that the endo-fucoidanases P5AFcnA and Wv323 can produce defined oligosaccharide structures directly from unrefined macroalgal biomass. P5AFcnA released oligosaccharides from seven commercial fucoidan extracts in addition to unrefined biomass of three macroalgae species indicating a broadly applicable approach reproducible across 10 species. Both MALDI-TOF/TOF and AP-MALDI-Orbitrap systems were used, demonstrating that the approach is not instrument-specific and exploiting their combined high-throughput and high-resolution capabilities. Overall, the combination of MALDI-MS and endo-fucoidanase assays offers high-throughput evaluation of fucoidan samples and also enables extraction of defined oligosaccharides of known structure from unrefined seaweed biomass.


Subject(s)
Glycoside Hydrolases , Polysaccharides , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Polysaccharides/chemistry , Glycoside Hydrolases/metabolism , Glycoside Hydrolases/chemistry , Hydrolysis , Seaweed/chemistry , Phaeophyceae/chemistry , Phaeophyceae/enzymology , Oligosaccharides/chemistry , Biomass
11.
Environ Res ; : 119487, 2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38917932

ABSTRACT

The nutraceutical value, and physicochemical profile as well as anti-inflammatory activity potential of Odonthalia floccose and Odonthalia dentata (red macroalgae) dry biomass were investigated in this study. Proximate composition study results revealed that the dry biomass of O. floccose and O. dentae were found to be as ash: 9.11 & 8.7 g 100 g-1, moisture: 8.24 & 8.1 g 100 g-1, total fat: 6.9 & 7.2 g 100 g-1, protein: 24.52 & 25.6 g 100 g-1, and total carbohydrate/polysaccharides: 53.84 & 48.85 g 100 g-1 of dry weight biomass respectively. Both algae biomass contain considerable quantity of minerals (Fe, Cu, Mg, and Zn). Furthermore, the major saturated fatty acids (6.24 & 5.82 g FAME 100 g-1 of total fat of O. floccose and O. dentate) (ΣFAs) present in the test algae were stearic acid, palmitic acid, and margaric acids. O. floccose and O. dentata also contain remarkable protein composition profile that compiled with considerable quantity of essential and non-essential amino acids. The vitamins such as vitamin A, B1, B2, B3, B6, B9, C, and E of O. floccose and O. dentate biomass were also identified at sufficient quantity level. The swelling capacity (SWC), water holding capacity (WHC), and oil holding capacity (OHC) properties of O. floccose and O. dentate at various temperature conditions (25 and 37 ᵒC) were found to be 8.11 & 7.02 mL g-1 and 8.95 & 7.55 mL g-1, 5.1 & 4.87 and 4.8 & 4.1 mL g-1, as well as 2.11 & 1.81 and 1.96 & 1.89 mL g-1 respectively. Among these two marine red macroalgae samples, the O. dentate showed better anti-inflammatory activity than O. floccose at 150 µg mL-1 dosage. Thus, this O. floccose and O. dentate biomass can be considerable as nutritional supplement and pharmaceutical product development related research.

12.
Mar Drugs ; 22(6)2024 May 27.
Article in English | MEDLINE | ID: mdl-38921555

ABSTRACT

Brown seaweeds of the Fucus genus represent a rich source of natural antiviral products. In this study, a Fucus ceranoides hydroalcoholic extract (FCHE) was found to inhibit 74.2 ± 1.3% of the proteolytic activity of the free SARS-CoV-2 3CL protease (3CLpro), an enzyme that plays a pivotal role in polyprotein processing during coronavirus replication and has been identified as a relevant drug discovery target for SARS- and MERS-CoVs infections. To purify and identify 3CLpro ligands with potential inhibitory activity using a one-step approach, we immobilized the enzyme onto magnetic microbeads (3CLpro-MPs), checked that the enzymatic activity was maintained after grafting, and used this bait for a ligand-fishing strategy followed by a high-resolution mass spectrometry analysis of the fished-out molecules. Proof of concept for the ligand-fishing capacity of the 3CLpro-MPs was demonstrated by doping the FCHE extract with the substrate peptide TSAVLQ-pNA, resulting in the preferential capture of this high-affinity peptide within the macroalgal complex matrix. Ligand fishing in the FCHE alone led to the purification and identification via high-resolution mass spectrometry (HRMS) of seven hepta-, octa-, and decapeptides in an eluate mix that significantly inhibited the free 3CLpro more than the starting FCHE (82.7 ± 2.2% inhibition). Molecular docking simulations of the interaction between each of the seven peptides and the 3CLpro demonstrated a high affinity for the enzyme's proteolytic active site surpassing that of the most affine peptide ligand identified so far (a co-crystallographic peptide). Testing of the corresponding synthetic peptides demonstrated that four out of seven significantly inhibited the free 3CLpro (from 46.9 ± 6.4 to 76.8 ± 3.6% inhibition at 10 µM). This study is the first report identifying peptides from Fucus ceranoides with high inhibitory activity against the SARS-CoV-2 3CLprotease which bind with high affinity to the protease's active site. It also confirms the effectiveness of the ligand-fishing strategy for the single-step purification of enzyme inhibitors from complex seaweed matrices.


Subject(s)
Antiviral Agents , Coronavirus 3C Proteases , Fucus , Protease Inhibitors , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/isolation & purification , Ligands , Fucus/chemistry , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Protease Inhibitors/isolation & purification , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Peptides/pharmacology , Peptides/chemistry , Molecular Docking Simulation , Humans , Seaweed/chemistry
13.
Mar Drugs ; 22(6)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38921574

ABSTRACT

The addition of marine macroalgae to animal feed has garnered interest due to the demonstrated benefits of gut health in many livestock species. Most macroalgae have a higher mineral content than terrestrial vegetables, making them an attractive, sustainable source of minerals. However, some macroalgae contain elevated concentrations of iodine and arsenic, which may be transferred to the meat of livestock fed with macroalgae. This study evaluated the mineral profile of rabbit serum, muscle, liver, and kidney of rabbits fed diets supplemented with different marine macroalgae, with the goal of improving post-weaning gut health and reducing reliance on antibiotics. We found increased deposition of iodine in muscle, liver, and kidney due to macroalgae supplementation, which is particularly promising for regions with low iodine endemicity. Higher, though relatively low arsenic concentrations, compared to those in other animal meats and food sources, were also detected in the muscle, liver, and kidney of macroalgae-fed rabbits. The absence of apparent interactions with other micronutrients, particularly selenium, suggests that the inclusion of macroalgae in rabbit diets will not affect the overall mineral content. Enhanced bioavailability of elements such as phosphorus and iron may provide additional benefits, potentially reducing the need for mineral supplementation.


Subject(s)
Animal Feed , Dietary Supplements , Kidney , Liver , Seaweed , Animals , Rabbits , Seaweed/chemistry , Kidney/metabolism , Kidney/drug effects , Liver/metabolism , Animal Feed/analysis , Muscles/metabolism , Minerals , Iodine/administration & dosage , Male , Arsenic/blood , Diet/veterinary
14.
Mar Drugs ; 22(6)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38921579

ABSTRACT

Bioprospecting the secondary metabolism of underexplored Actinomycetota taxa is a prolific route to uncover novel chemistry. In this work, we report the isolation, structure elucidation, and bioactivity screening of cellulamides A and B (1 and 2), two novel linear peptides obtained from the culture of the macroalga-associated Cellulosimicrobium funkei CT-R177. The host of this microorganism, the Chlorophyta Codium tomentosum, was collected in the northern Portuguese coast and, in the scope of a bioprospecting study focused on its associated actinobacterial community, strain CT-R177 was isolated, taxonomically identified, and screened for the production of antimicrobial and anticancer compounds. Dereplication of a crude extract of this strain using LC-HRMS(/MS) analysis unveiled a putative novel natural product, cellulamide A (1), that was isolated following mass spectrometry-guided fractionation. An additional analog, cellulamide B (2) was obtained during the chromatographic process and chemically characterized. The chemical structures of the novel linear peptides, including their absolute configurations, were elucidated using a combination of HRMS, 1D/2D NMR spectroscopy, and Marfey's analysis. Cellulamide A (1) was subjected to a set of bioactivity screenings, but no significant biological activity was observed. The cellulamides represent the first family of natural products reported from the Actinomycetota genus Cellulosimicrobium, showcasing not only the potential of less-explored taxa but also of host-associated marine strains for novel chemistry discovery.


Subject(s)
Peptides , Humans , Peptides/chemistry , Peptides/pharmacology , Peptides/isolation & purification , Actinobacteria/chemistry , Actinobacteria/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Aquatic Organisms , Biological Products/pharmacology , Biological Products/chemistry , Biological Products/isolation & purification , Cell Line, Tumor , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification
15.
Mar Drugs ; 22(6)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38921590

ABSTRACT

Ichthyotoxic red tide is a problem that the world is facing and needs to solve. The use of antialgal compounds from marine macroalgae to suppress ichthyotoxic red tide is considered a promising biological control method. Antialgal substances were screened and isolated from Bangia fusco-purpurea, Gelidium amansii, Gloiopeltis furcate, Hizikia fusifarme, Laminaria japonica, Palmaria palmata, and Sargassum sp. to obtain new materials for the development of algaecides against ichthyotoxic red tide microalgae using bioactivity-guided isolation methods. The fractions of seven macroalgae exhibited selective inhibitory activities against Amphidinium carterae and Karenia mikimotoi, of which the ethyl acetate fractions had the strongest and broadest antialgal activities for the two tested red tide microalgae. Their inhibitory effects on A. carterae and K. mikimotoi were even stronger than that of potassium dichromate, such as ethyl acetate fractions of B. purpurea, H. fusifarme, and Sargassum sp. Thin-layer chromatography and ultraviolet spectroscopy were further carried out to screen the ethyl acetate fraction of Sargassum sp. Finally, a new glycolipid derivative, 2-O-eicosanoyl-3-O-(6-amino-6-deoxy)-ß-D-glucopyranosyl-glycerol, was isolated and identified from Sargassum sp., and it was isolated for the first time from marine macroalgae. The significant antialgal effects of 2-O-eicosanoyl-3-O-(6-amino-6-deoxy)-ß-D-glucopyranosyl-glycerol on A. carterae and K. mikimotoi were determined.


Subject(s)
Glycolipids , Harmful Algal Bloom , Microalgae , Seaweed , Seaweed/chemistry , Glycolipids/pharmacology , Glycolipids/isolation & purification , Glycolipids/chemistry , Harmful Algal Bloom/drug effects , Microalgae/chemistry , Dinoflagellida/chemistry
16.
Sci Total Environ ; 945: 173917, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38880155

ABSTRACT

Due to ongoing ocean warming, subtropical environments are becoming accessible to tropical species. Among these environments are the vermetid reefs of the Southeastern Mediterranean (SEM). In the last decades, these valuable coastal habitats witnessed the proliferation of numerous alien species of tropical origin. Among the meiofauna thriving on these reefs are benthic foraminifera, single cell marine organisms that make a significant contribution to global carbonate production. It has been widely recognized that benthic foraminifera, among other invasive species, thrive in the macroalgal cover, and it has been suggested that their populations are becoming a significant new source of sediment substrate. Here, we report on the first systematic assessment of the population size of the benthic foraminifera, allowing a comparison with data from the native tropical habitat of these species. Our study is based on a seasonal sampling of benthic foraminifera from confined sampling areas at four sites along the vermetid reef platforms of the Israeli SEM coast. Our survey reveals a patchy distribution of each species with peak population densities exceeding 100,000 specimens per m2, making the SEM a hotspot of benthic foraminifera, with population densities comparable to tropical coral reef environments. The assemblages of the SEM hotspot are dominated by cosmopolitan foraminiferal taxa and tropical invaders from the Indo-Pacific (e.g., Amphistegina lobifera, Pararotalia calcariformata, soritids, and Hauerina diversa). In contrast to foraminiferal hotspots in the tropics, which are completely dominated by larger symbiont-bearing taxa, the SEM hotspot stands out due to high abundances of non-symbiont-bearing species Textularia agglutinans and small miliolids. An intriguing observation is the significant heterogeneity in composition and density of foraminiferal assemblages between the vermetid reefs' southern and northern areas (Israel), indicating that the productivity of the dominant species are also modulated by local yet unknown environmental factors.


Subject(s)
Coral Reefs , Environmental Monitoring , Foraminifera , Mediterranean Sea , Tropical Climate , Ecosystem , Israel
17.
Sci Total Environ ; 945: 174006, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38889822

ABSTRACT

Seaweeds are important components of coastal benthic ecosystems along the Western Antarctic Peninsula (WAP), providing refuge, food, and habitat for numerous associated species. Despite their crucial role, the WAP is among the regions most affected by global climate change, potentially impacting the ecology and physiology of seaweeds. Elevated atmospheric CO2 concentrations have led to increased dissolved inorganic carbon (Ci) with consequent declines in oceanic pH and alterations in seawater carbonate chemistry, known as Ocean Acidification (OA). Seaweeds possess diverse strategies for Ci uptake, including CO2 concentrating mechanisms (CCMs), which may distinctly respond to changes in Ci concentrations. Conversely, some seaweeds do not operate CCMs (non-CCM species) and rely solely on CO2. Nevertheless, our understanding of the status and functionality of Ci uptake strategies in Antarctic seaweeds remains limited. Here, we investigated the Ci uptake strategies of seaweeds along a depth gradient in the WAP. Carbon isotope signatures (δ13C) and pH drift assays were used as indicators of the presence or absence of CCMs. Our results reveal variability in CCM occurrence among algal phyla and depths ranging from 0 to 20 m. However, this response was species specific. Among red seaweeds, the majority relied solely on CO2 as an exogenous Ci source, with a high percentage of non-CCM species. Green seaweeds exhibited depth-dependent variations in CCM status, with the proportion of non-CCM species increasing at greater depths. Conversely, brown seaweeds exhibited a higher prevalence of CCM species, even in deep waters, indicating the use of CO2 and HCO3-. Our results are similar to those observed in temperate and tropical regions, indicating that the potential impacts of OA on Antarctic seaweeds will be species specific. Additionally, OA may potentially increase the abundance of non-CCM species relative to those with CCMs.


Subject(s)
Carbon , Climate Change , Seawater , Seaweed , Seaweed/metabolism , Antarctic Regions , Seawater/chemistry , Hydrogen-Ion Concentration , Carbon Dioxide/analysis , Species Specificity , Ecosystem , Oceans and Seas , Ocean Acidification
18.
Oecologia ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836933

ABSTRACT

Surface temperature of the oceans has increased globally over the past decades. In coastal areas influenced by eastern boundary upwelling systems (EBUS), winds push seawater offshore and deep, cold and nutrient-rich seawater rise towards the surface, partially buffering global warming. On the North coast of Portugal, the NW Iberian upwelling system allows extensive kelp forests to thrive in these "boreal-like" conditions, fostering highly diverse and productive communities. However, the warming of the upper layer of the ocean may weaken this upwelling, leading to higher sea surface temperature and lower nutrient input in the coastal areas. The effects of these changes on the structure and function of coastal ecosystems remain unexplored. The present study aimed to examine the combined effects of elevated temperature and nutrient depletion on semi-naturally structured assemblages. The eco-physiological responses investigated included growth, chlorophyll fluorescence and metabolic rates at the levels of individual species and whole assemblages. Our findings showed interactive effects of the combination of elevated temperature with nutrient depletion on the large canopy-forming species (i.e., kelp). As main contributor to community response, those effects drove the whole assemblage responses to significant losses in productivity levels. We also found an additive effect of elevated temperature and reduced nutrients on sub-canopy species (i.e., Chondrus crispus), while turfs were only affected by temperature. Our results suggest that under weakening upwelling scenarios, the ability of the macroalgal assemblages to maintain high productivity rates could be seriously affected and predict a shift in community composition with the loss of marine forests.

19.
Sci Rep ; 14(1): 14206, 2024 06 20.
Article in English | MEDLINE | ID: mdl-38902310

ABSTRACT

Record mean sea surface temperatures (SST) during the past decades and marine heatwaves have been identified as responsible for severe impacts on marine ecosystems, but the role of changes in the patterns of temporal variability under global warming has been much less studied. We compare descriptors of two time series of SST, encompassing extirpations (i.e. local extinctions) of six cold-temperate macroalgae species at their trailing range edge. We decompose the effects of gradual warming, extreme events and intrinsic variability (e.g. seasonality). We also relate the main factors determining macroalgae range shifts with their life cycles characteristics and thermal tolerance. We found extirpations of macroalgae were related to stretches of coast where autumn SST underwent warming, increased temperature seasonality, and decreased skewness over time. Regardless of the species, the persisting populations shared a common environmental domain, which was clearly differentiated from those experiencing local extinction. However, macroalgae species responded to temperature components in different ways, showing dissimilar resilience. Consideration of multiple thermal manifestations of climate change is needed to better understand local extinctions of habitat-forming species. Our study provides a framework for the incorporation of unused measures of environmental variability while analyzing the distributions of coastal species.


Subject(s)
Ecosystem , Global Warming , Seaweed , Temperature , Seaweed/physiology , Climate Change , Seasons , Oceans and Seas , Aquatic Organisms/physiology
20.
Mar Environ Res ; 199: 106607, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38879902

ABSTRACT

The extent to which juvenile abundance can predict future populations of lethrinids at Ningaloo Reef was assessed using size frequency data collected over 13 consecutive years. Annual abundance of juvenile lethrinids (<5 cm TL) was highest in northern Ningaloo during La Niña years, when seawater is warmer and oceanic currents stronger. Juvenile lethrinid abundance explained 35% of the variance in 1-2 year-old Lethrinus nebulosus abundance the following year, a steeper relationship in the north suggesting greater survival of juveniles. Juvenile lethrinid abundance was also positively correlated to abundance of 1-2 year-old L. atkinsoni in the southern region of Ningaloo. Abundance of juvenile lethrinids were however poor predictors of L. nebulosus and L. atkinsoni older than 2 years of age. Post settlement processes likely weaken the link between juvenile supply and abundance of lethrinids >2 years old making it difficult to accurately quantify the overall size of future lethrinid populations.

SELECTION OF CITATIONS
SEARCH DETAIL
...