ABSTRACT
BACKGROUND/AIMS: Although several studies have demonstrated that mesenchymal stromal cells (MSCs) exhibit beneficial immunomodulatory properties in preclinical models of allergic asthma, effects on airway remodeling have been controversial. Recent evidence has shown that MSCs modify their in vivo immunomodulatory actions depending on the specific inflammatory environment encountered. Accordingly, we assessed whether the therapeutic properties of human mesenchymal stromal cells (hMSCs) could be potentiated by conditioning these cells with serum (hMSC-serum) obtained from patients with asthma and then transplanted in an experimental model of house dust mite (HDM)-induced allergic asthma. METHODS: hMSC and hMSC-serum were administered intratracheally 24 h after the final HDM challenge. hMSC viability and inflammatory mediator production, lung mechanics and histology, bronchoalveolar lavage fluid (BALF) cellularity and biomarker levels, mitochondrial structure and function as well as macrophage polarization and phagocytic capacity were assessed. RESULTS: Serum preconditioning led to: (i) increased hMSC apoptosis and expression of transforming growth factor-ß, interleukin (IL)-10, tumor necrosis factor-α-stimulated gene 6 protein and indoleamine 2,3-dioxygenase-1; (ii) fission and reduction of the intrinsic respiratory capacity of mitochondria; and (iii) polarization of macrophages to M2 phenotype, which may be associated with a greater percentage of hMSCs phagocytosed by macrophages. Compared with mice receiving hMSCs, administration of hMSC-serum led to further reduction of collagen fiber content, eotaxin levels, total and differential cellularity and increased IL-10 levels in BALF, improving lung mechanics. hMSC-serum promoted greater M2 macrophage polarization as well as macrophage phagocytosis, mainly of apoptotic hMSCs. CONCLUSIONS: Serum from patients with asthma led to a greater percentage of hMSCs phagocytosed by macrophages and triggered immunomodulatory responses, resulting in further reductions in both inflammation and remodeling compared with non-preconditioned hMSCs.
Subject(s)
Asthma , Mesenchymal Stem Cells , Humans , Asthma/therapy , Lung/pathology , Macrophages/metabolism , Mesenchymal Stem Cells/metabolism , PhagocytosisABSTRACT
The role of protease-activated receptor (PAR)4 in thrombin-induced platelet aggregation has been studied, and PAR4 blockade is thought to be useful as a new and promising approach in antiplatelet therapy in humans. In recent years, studies have been conducted to clarify the role of PAR4 in the host defense against invading microorganisms and pathogen-induced inflammation; however, to date, the role of PAR4 in mediating the LPS-induced inflammatory repertoire in macrophages remains to be elucidated. Here, we investigated the effects of the synthetic PAR4 agonist peptide (PAR4-AP) AYPGKF-NH2 on the phagocytosis of zymosan-FITC particles; NO, ROS, and iNOS expression; and cytokine production in C57/BL6 macrophages cocultured with PAR4-AP/LPS. The PAR4-AP impaired LPS-induced and basal phagocytosis, which was restored by pharmacological PAR4 blockade. Coincubation with the PAR4-AP/LPS enhanced NO and ROS production and iNOS expression; decreased IL-10, but not TNF-α, in the culture supernatant; and increased translocation of the p65 subunit of the proinflammatory gene transcription factor NF-κ-B. Our results provide evidence for a complex mechanism and new approach by which PAR4 mediates the macrophage response triggered by LPS through counter-regulating the phagocytic activity of macrophages and innate response mechanisms implicated in the killing of invading pathogens.