Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20.987
Filter
1.
J Reprod Immunol ; 164: 104272, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38838578

ABSTRACT

The testicular consequences of acute epididymo-orchitis remain largely unelucidated in long-term damage, which might be a neglected factor for male infertility. In this study, the differential phenotype of testicular immune cell subpopulations in lipopolysaccharide (LPS)-induced mouse epididymo-orchitis were analyzed by flow cytometry on day 1, day 7, and day 28. The number of macrophages, neutrophils, and myeloid-derived suppressor cells (MDSCs) steadily decreased in the testes with inoculation. Total F4/80-CD11c+ dendritic cells (DCs) maintained a relatively stable level, whereas conventional type 1 dendritic cells (cDC1) increased gradually from day 1 to day 28. There was a lower number of CD4+ and CD8+ T cells at day 1 and day 7, and they had similar results with a ceiling level at day 28. The testes displayed a higher level of CD3+ T cells but a lower frequency of macrophages, cDC2, and neutrophils at 28 days post-inoculation compared with the epididymis. In summary, our data indicates acute epididymo-orchitis could lead to long-term damage in the testes, which is characterized by CD3+ T cell (including CD4+ and CD8+ T cells)-mediated immune responses.

2.
J Invest Dermatol ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38838771

ABSTRACT

Macrophages undertake pivotal yet dichotomous functions during skin wound healing, mediating both early pro-inflammatory immune activation and late anti-inflammatory tissue remodeling processes. The timely phenotypic transition of macrophages from inflammatory M1 to pro-resolving M2 activation states is essential for efficient healing. However, the endogenous mechanisms calibrating macrophage polarization in accordance with the evolving tissue milieu remain undefined. Here, we reveal an indispensable immunomodulatory role for fibroblast-secreted exosomes in directing macrophage activation dynamics. Fibroblast exosomes permitted spatiotemporal coordination of macrophage phenotypes independent of direct intercellular contact. Exosomes enhanced macrophage sensitivity to both M1 and M2 polarizing stimuli, yet also accelerated timely switching from M1 to M2 phenotypes. Exosomes inhibition dysregulated macrophage responses resulting in aberrant inflammation and impaired healing, while provision of exogenous fibroblast exosomes corrected defects. Topical application of fibroblast exosomes onto chronic diabetic wounds normalized dysregulated macrophage activation to resolve inflammation and restore productive healing. Our findings elucidate fibroblast-secreted exosomes as remote programmers of macrophage polarization that calibrate immunological transitions essential for tissue repair. Harnessing exosomes represents a previously unreported approach to steer productive macrophage activation states with immense therapeutic potential for promoting healing in chronic inflammatory disorders.

3.
Immunol Res ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842647

ABSTRACT

The NLRP3 receptor can assemble inflammasome platforms to trigger inflammatory responses; however, accumulating evidence suggests that it can also display anti-inflammatory properties. Here, we explored the role of nucleotide-binding oligomerization domain pyrin-containing protein 3 (NLRP3) in Taenia crassiceps experimental infection, which requires immune polarization into a Th2-type profile and peritoneal influx of suppressive macrophages for successful colonization. NLRP3 deficient mice (NLRP3-/-) were highly resistant against T. crassiceps, relative to wild-type (WT) mice. Resistance in NLRP3-/- mice was associated with a diminished IL-4 output, high levels of IL-15, growth factor for both innate and adaptive lymphocytes, and a dramatic decrease in peritoneum-infiltrating suppressive macrophages. Also, a transcriptional analysis on bone marrow-derived macrophages exposed to Taenia-secreted antigens and IL-4 revealed that NLRP3-/- macrophages express reduced transcripts of relm-α and PD-1 ligands, markers of alternative activation and suppressive ability, respectively. Finally, we found that the resistance displayed by NLRP3-/- mice is transferred through intestinal microbiota exchange, since WT mice co-housed with NLRP3-/- mice were significantly more resistant than WT animals preserving their native microbiota. Altogether, these data demonstrate that NLRP3 is a component of innate immunity required for T. crassiceps to establish, most likely contributing to macrophage recruitment, and controlling lymphocyte-stimulating cytokines such as IL-15.

4.
Angiogenesis ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842752

ABSTRACT

Conjunctival melanoma (CoM) is a rare but potentially lethal cancer of the eye, with limited therapeutic option for metastases. A better understanding how primary CoM disseminate to form metastases is urgently needed in order to develop novel therapies. Previous studies indicated that primary CoM tumors express Vascular Endothelial Growth Factor (VEGF) and may recruit pro-tumorigenic M2-like macrophages. However, due to a lack of proper models, the expected role of angiogenesis in the metastatic dissemination of CoM is still unknown. We show that cells derived from two CoM cell lines induce a strong angiogenic response when xenografted in zebrafish larvae. CoM cells are highly glycolytic and secrete lactate, which recruits and polarizes human and zebrafish macrophages towards a M2-like phenotype. These macrophages elevate the levels of proangiogenic factors such as VEGF, TGF-ß, and IL-10 in the tumor microenvironment to induce an angiogenic response towards the engrafted CoM cells in vivo. Chemical ablation of zebrafish macrophages or inhibition of glycolysis in CoM cells terminates this response, suggesting that attraction of lactate-dependent macrophages into engrafted CoM cells drives angiogenesis and serves as a possible dissemination mechanism for glycolytic CoM cells.

5.
Front Pharmacol ; 15: 1392328, 2024.
Article in English | MEDLINE | ID: mdl-38835669

ABSTRACT

During the past half-century, although numerous interventions for obesity have arisen, the condition's prevalence has relentlessly escalated annually. Obesity represents a substantial public health challenge, especially due to its robust correlation with co-morbidities, such as colorectal cancer (CRC), which often thrives in an inflammatory tumor milieu. Of note, individuals with obesity commonly present with calcium and vitamin D insufficiencies. Transient receptor potential canonical (TRPC) channels, a subclass within the broader TRP family, function as critical calcium transporters in calcium-mediated signaling pathways. However, the exact role of TRPC channels in both obesity and CRC pathogenesis remains poorly understood. This study set out to elucidate the part played by TRPC channels in obesity and CRC development using a mouse model lacking all seven TRPC proteins (TRPC HeptaKO mice). Relative to wild-type counterparts, TRPC HeptaKO mice manifested severe obesity, evidenced by significantly heightened body weights, augmented weights of epididymal white adipose tissue (eWAT) and inguinal white adipose tissue (iWAT), increased hepatic lipid deposition, and raised serum levels of total cholesterol (T-CHO) and low-density lipoprotein cholesterol (LDL-C). Moreover, TRPC deficiency was accompanied by an decrease in thermogenic molecules like PGC1-α and UCP1, alongside a upsurge in inflammatory factors within adipose tissue. Mechanistically, it was revealed that pro-inflammatory factors originating from inflammatory macrophages in adipose tissue triggered lipid accumulation and exacerbated obesity-related phenotypes. Intriguingly, considering the well-established connection between obesity and disrupted gut microbiota balance, substantial changes in the gut microbiota composition were detected in TRPC HeptaKO mice, contributing to CRC development. This study provides valuable insights into the role and underlying mechanisms of TRPC deficiency in obesity and its related complication, CRC. Our findings offer a theoretical foundation for the prevention of adverse effects associated with TRPC inhibitors, potentially leading to new therapeutic strategies for obesity and CRC prevention.

6.
Clin Transl Immunology ; 13(6): e1516, 2024.
Article in English | MEDLINE | ID: mdl-38835954

ABSTRACT

Objectives: Globally, non-small cell lung cancer (NSCLC) is the most prevalent form of lung cancer and the leading cause of cancer-related deaths. Tumor-associated circulating cells in NSCLC can have a wide variety of morphological and phenotypic characteristics, including epithelial, immunological or hybrid subtypes. The distinctive characteristics and potential clinical significance of these cells in patients with NSCLC are explored in this study. Methods: We utilised a spiral microfluidic device to enrich large cells and cell aggregates from the peripheral blood samples of NSCLC patients. These cells were characterised through high-resolution immunofluorescent imaging and statistical analysis, correlating findings with clinical information from our patient cohort. Results: We have identified varied populations of heterotypic circulating tumor cell clusters with differing immune cell composition that included a distinct class of atypical tumor-associated macrophages that exhibits unique morphology and cell size. This subtype's prevalence is positively correlated with the tumor stage, progression and metastasis. Conclusions: Our study reveals a heterogeneous landscape of circulating tumor cells and their clusters, underscoring the complexity of NSCLC pathobiology. The identification of a unique subtype of atypical tumor-associatedmacrophages that simultaneously express both tumor and immune markers and whose presence correlates with late disease stages, poor clinical outcomes and metastatic risk infers  the potential of these cells as biomarkers for NSCLC staging and prognosis. Future studies should focus on the role of these cells in the tumor microenvironment and their potential as therapeutic targets. Additionally, longitudinal studies tracking these cell types through disease progression could provide further insights into their roles in NSCLC evolution and response to treatment.

7.
Front Cell Dev Biol ; 12: 1385399, 2024.
Article in English | MEDLINE | ID: mdl-38840849

ABSTRACT

Skeletal muscle regeneration relies on the intricate interplay of various cell populations within the muscle niche-an environment crucial for regulating the behavior of muscle stem cells (MuSCs) and ensuring postnatal tissue maintenance and regeneration. This review delves into the dynamic interactions among key players of this process, including MuSCs, macrophages (MPs), fibro-adipogenic progenitors (FAPs), endothelial cells (ECs), and pericytes (PCs), each assuming pivotal roles in orchestrating homeostasis and regeneration. Dysfunctions in these interactions can lead not only to pathological conditions but also exacerbate muscular dystrophies. The exploration of cellular and molecular crosstalk among these populations in both physiological and dystrophic conditions provides insights into the multifaceted communication networks governing muscle regeneration. Furthermore, this review discusses emerging strategies to modulate the muscle-regenerating niche, presenting a comprehensive overview of current understanding and innovative approaches.

8.
Kidney Int ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38825324
9.
Sci Rep ; 14(1): 12721, 2024 06 03.
Article in English | MEDLINE | ID: mdl-38830871

ABSTRACT

Surface structure plays a crucial role in determining cell behavior on biomaterials, influencing cell adhesion, proliferation, differentiation, as well as immune cells and macrophage polarization. While grooves and ridges stimulate M2 polarization and pits and bumps promote M1 polarization, these structures do not accurately mimic the real bone surface. Consequently, the impact of mimicking bone surface topography on macrophage polarization remains unknown. Understanding the synergistic sequential roles of M1 and M2 macrophages in osteoimmunomodulation is crucial for effective bone tissue engineering. Thus, exploring the impact of bone surface microstructure mimicking biomaterials on macrophage polarization is critical. In this study, we aimed to sequentially activate M1 and M2 macrophages using Poly-L-Lactic acid (PLA) membranes with bone surface topographical features mimicked through the soft lithography technique. To mimic the bone surface topography, a bovine femur was used as a model surface, and the membranes were further modified with collagen type-I and hydroxyapatite to mimic the bone surface microenvironment. To determine the effect of these biomaterials on macrophage polarization, we conducted experimental analysis that contained estimating cytokine release profiles and characterizing cell morphology. Our results demonstrated the potential of the hydroxyapatite-deposited bone surface-mimicked PLA membranes to trigger sequential and synergistic M1 and M2 macrophage polarizations, suggesting their ability to achieve osteoimmunomodulatory macrophage polarization for bone tissue engineering applications. Although further experimental studies are required to completely investigate the osteoimmunomodulatory effects of these biomaterials, our results provide valuable insights into the potential advantages of biomaterials that mimic the complex microenvironment of bone surfaces.


Subject(s)
Macrophages , Polyesters , Surface Properties , Animals , Macrophages/metabolism , Macrophages/drug effects , Macrophages/immunology , Cattle , Polyesters/chemistry , Mice , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Tissue Engineering/methods , Durapatite/chemistry , Cytokines/metabolism , Bone and Bones/cytology , Cell Differentiation/drug effects , Macrophage Activation/drug effects , Cell Adhesion/drug effects , RAW 264.7 Cells , Cell Polarity/drug effects , Femur , Collagen Type I/metabolism
10.
Curr Pharm Des ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38859791

ABSTRACT

Primary liver cancer is the second leading cause of cancer-related death worldwide. At present, liver cancer is often in an advanced stage once diagnosed, and treatment effects are generally poor. Therefore, there is an urgent need for other powerful treatments. Macrophages are an important component of the tumor microenvironment, and macrophage polarization is crucial to tumor proliferation and differentiation. Regulatory interactions between macrophage subtypes, such as M1 and M2, lead to a number of clinical outcomes, including tumor progression and metastasis. So, it is important to study the drivers of this process. Long non-coding RNA has been widely proven to be of great value in the early diagnosis and treatment of tumors. Many studies have shown that long non-coding RNA participates in macrophage polarization through its ability to drive M1 or M2 polarization, thereby participating in the occurrence and development of liver cancer. In this article, we systematically elaborated on the long non-coding RNAs involved in the polarization of liver cancer macrophages, hoping to provide a new idea for the early diagnosis and treatment of liver cancer. Liver cancer- related studies were retrieved from PubMed. Based on our identification of LncRNA and macrophage polarization as powerful therapies for liver cancer, we analyzed research articles in the PubMed system in the last ten years on the crosstalk between LncRNA and macrophage polarization. By targeting M1/M2 macrophage polarization, LncRNA may promote or suppress liver cancer, and the references are determined primarily by the article's impact factor. Consequently, the specific mechanism of action between LncRNA and M1/M2 macrophage polarization was explored, along with the role of their crosstalk in the occurrence, proliferation, and metastasis of liver cancer. lncRNA is bidirectionally expressed in liver cancer and can target macrophage polarization to regulate tumor behavior. lncRNA mainly functions as ceRNA and can participate in the crosstalk between liver cancer cells and macrophages through extracellular vesicles. lncRNA can potentially participate in the immunotherapy of liver cancer by targeting macrophages and becoming a new biomolecular marker of liver cancer.

11.
Circ Res ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38860377

ABSTRACT

BACKGROUND: Cell phenotype switching is increasingly being recognized in atherosclerosis. However, our understanding of the exact stimuli for such cellular transformations and their significance for human atherosclerosis is still evolving. Intraplaque hemorrhage is thought to be a major contributor to plaque progression in part by stimulating the influx of CD163+ macrophages. Here, we explored the hypothesis that CD163 macrophages cause plaque progression through the induction of proapoptotic endothelial-to-mesenchymal transition (EndMT) within the fibrous cap. METHODS: Human coronary artery sections from CVPath's autopsy registry were selected for pathological analysis. Athero-prone ApoE-/- and ApoE-/-/CD163-/- mice were used for in vivo studies. Human peripheral blood mononuclear cell-induced macrophages and human aortic endothelial cells were used for in vitro experiments. RESULTS: In 107 lesions with acute coronary plaque rupture, 55% had pathological evidence of intraplaque hemorrhage in nonculprit vessels/lesions. Thinner fibrous cap, greater CD163+ macrophage accumulation, and a larger number of CD31/FSP-1 (fibroblast specific protein-1) double-positive cells and TUNEL positive cells in the fibrous cap were observed in nonculprit intraplaque hemorrhage lesions, as well as in culprit rupture sections versus nonculprit fibroatheroma sections. Human aortic endothelial cells cultured with supernatants from hemoglobin/haptoglobin-exposed macrophages showed that increased mesenchymal marker proteins (transgelin and FSP-1) while endothelial markers (VE-cadherin and CD31) were reduced, suggesting EndMT induction. Activation of NF-κB (nuclear factor kappa ß) signaling by proinflammatory cytokines released from CD163+ macrophages directly regulated the expression of Snail, a critical transcription factor during EndMT induction. Western blot analysis for cleaved caspase 3 and microarray analysis of human aortic endothelial cells indicated that apoptosis was stimulated during CD163+ macrophage-induced EndMT. Additionally, CD163 deletion in athero-prone mice suggested that CD163 is required for EndMT and plaque progression. Using single-cell RNA sequencing from human carotid endarterectomy lesions, a population of EndMT was detected, which demonstrated significant upregulation of apoptosis-related genes. CONCLUSIONS: CD163+ macrophages provoke EndMT, which may promote plaque progression through fibrous cap thinning.

12.
ACS Biomater Sci Eng ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38860558

ABSTRACT

In patients with diabetes, endoplasmic reticulum stress (ERS) is a crucial disrupting factor of macrophage homeostasis surrounding implants, which remains an obstacle to oral implantation success. Notably, the ERS might be modulated by the implant surface morphology. Titania nanotubes (TNTs) may enhance diabetic osseointegration. However, a consensus has not been achieved regarding the tube-size-dependent effect and the underlying mechanism of TNTs on diabetic macrophage ERS. We manufactured TNTs with small (30 nm) and large diameters (100 nm). Next, we assessed how the different titanium surfaces affected diabetic macrophages and regulated ERS and Ca2+ homeostasis. TNTs alleviated the inflammatory response, oxidative stress, and ERS in diabetic macrophages. Furthermore, TNT30 was superior to TNT100. Inhibiting ERS abolished the positive effect of TNT30. Mechanistically, topography-induced extracellular Ca2+ influx might mitigate excessive ERS in macrophages by alleviating ER Ca2+ depletion and IP3R activation. Furthermore, TNT30 attenuated the peri-implant inflammatory response and promoted osseointegration in diabetic rats. TNTs with small nanodiameters attenuated ERS and re-established diabetic macrophage hemostasis by inhibiting IP3R-induced ER Ca2+ depletion.

13.
Adv Biol (Weinh) ; : e2300711, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864247

ABSTRACT

Ovarian endometrioma (OE) is a common gynecological condition characterized by the formation of "chocolate cysts". Recent research indicates that the cyst fluid acts as a "toxic environment" for the ovary and plays a significant role in the development of OE, with macrophages being pivotal. However, the specific molecular and cellular mechanisms of it are not fully understood. In this study, clinical samples are integrated, single-cell sequencing, in vivo and in vitro experimental models to comprehensively investigate the effects of OE fluid on ovarian function and the mechanisms of it. Combined with bioinformatics analysis and experimental validation, the findings demonstrate that OE fluid can cause ovarian function decline, which associated with inflammatory response, and mitochondrial dysfunction and cellular senescence, while activating the cGAS/STING signaling pathway. As a STING inhibitor, H-151 effectively alleviates ovarian dysfunction, inflammatory state and cell apoptosis induced by OE fluid. Furthermore, it is also discovered that H-151 can inhibit OE fluid-induced mitochondrial dysfunction and cellular senescence. These findings provide important theoretical and experimental foundations for further research and development of STING inhibitors as potential drugs for treating ovarian dysfunction.

14.
Inflammation ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38865055

ABSTRACT

The prevention and treatment strategies for traumatic infection often focus on the use of antibiotics, while eschew the combined treatment of the bacteria, their toxins, and inflammatory mediators. This might be a main reason the prognosis of wound victims has not improved. Although our previous work found that the combination of indomethacin (IND) and ciprofloxacin (CIP) could promote skin wound repair and enhance the immune function, the efficacy and safety of this strategy for severe traumatic infection-mediated complications remain unknown. Additionally, there is no study on the relevant target cells and molecular mechanisms. In this study, C57BL/6 adult male mice were modeled for severe traumatic infection, and the optimal doses of IND and CIP alone were determined. After that, the efficacy and safety of IND plus CIP in traumatic infection mice were explored. Then the differentially expressed genes of activated macrophages in this process were analysed and verified by transcriptomic methods and conventional experimental techniques. The role of a candidate signalling pathway (PI3K/Akt) in regulating macrophage function and drug combination therapy was evaluated. The results showed that IND plus CIP increased the survival rate, reduced the degree of inflammatory response, and enhanced the bacteriostatic effect in mice under traumatic infection. This combined therapy did not cause significant damage to the functions of important organs (liver, kidney, heart). In addition, IND combined with CIP induced macrophages to significantly change their expression levels of several cytokines, including interleukin (IL) -1ß, IL-6, IL-10, IL-22, IL-23A, IL-17A, IL-17F, cluster of differentiation (CD) 11b and other genes/encode proteins. Further study showed that intervention with the PI3K inhibitor LY294002 modulated the secretion function of the above-mentioned macrophages and Akt activation (phosphorylation at serine 473). IND plus CIP can regulate macrophage function through the PI3K/Akt signalling pathway and improve the prognosis of severe traumatic infected mice. This may be a new therapeutic strategy for the prevention and treatment of severe traumatic infection.

15.
Circ Res ; 134(12): 1718-1751, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38843294

ABSTRACT

The adult mammalian heart has limited endogenous regenerative capacity and heals through the activation of inflammatory and fibrogenic cascades that ultimately result in the formation of a scar. After infarction, massive cardiomyocyte death releases a broad range of damage-associated molecular patterns that initiate both myocardial and systemic inflammatory responses. TLRs (toll-like receptors) and NLRs (NOD-like receptors) recognize damage-associated molecular patterns (DAMPs) and transduce downstream proinflammatory signals, leading to upregulation of cytokines (such as interleukin-1, TNF-α [tumor necrosis factor-α], and interleukin-6) and chemokines (such as CCL2 [CC chemokine ligand 2]) and recruitment of neutrophils, monocytes, and lymphocytes. Expansion and diversification of cardiac macrophages in the infarcted heart play a major role in the clearance of the infarct from dead cells and the subsequent stimulation of reparative pathways. Efferocytosis triggers the induction and release of anti-inflammatory mediators that restrain the inflammatory reaction and set the stage for the activation of reparative fibroblasts and vascular cells. Growth factor-mediated pathways, neurohumoral cascades, and matricellular proteins deposited in the provisional matrix stimulate fibroblast activation and proliferation and myofibroblast conversion. Deposition of a well-organized collagen-based extracellular matrix network protects the heart from catastrophic rupture and attenuates ventricular dilation. Scar maturation requires stimulation of endogenous signals that inhibit fibroblast activity and prevent excessive fibrosis. Moreover, in the mature scar, infarct neovessels acquire a mural cell coat that contributes to the stabilization of the microvascular network. Excessive, prolonged, or dysregulated inflammatory or fibrogenic cascades accentuate adverse remodeling and dysfunction. Moreover, inflammatory leukocytes and fibroblasts can contribute to arrhythmogenesis. Inflammatory and fibrogenic pathways may be promising therapeutic targets to attenuate heart failure progression and inhibit arrhythmia generation in patients surviving myocardial infarction.


Subject(s)
Myocardial Infarction , Humans , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Animals , Signal Transduction , Regeneration , Inflammation Mediators/metabolism , Myocardium/metabolism , Myocardium/pathology
16.
Biochim Biophys Acta Rev Cancer ; 1879(5): 189125, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38851437

ABSTRACT

Tertiary lymphoid structures (TLS) can reflect cancer prognosis and clinical outcomes in various tumour tissues. Tumour-associated macrophages (TAMs) are indispensable components of the tumour microenvironment and play crucial roles in tumour development and immunotherapy. TAMs are associated with TLS induction via the modulation of the T cell response, which is a major component of the TLS. Despite their important roles in cancer immunology, the subtypes of TAMs that influence TLS and their correlation with prognosis are not completely understood. Here, we provide novel insights into the role of TAMs in regulating TLS formation. Furthermore, we discuss the prognostic value of these TAM subtypes and TLS, as well as the current antitumour therapies for inducing TLS. This study highlights an entirely new field of TLS regulation that may lead to the development of an innovative perspective on immunotherapy for cancer treatment.

17.
Circ Res ; 134(12): 1767-1790, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38843292

ABSTRACT

Autoimmunity significantly contributes to the pathogenesis of myocarditis, underscored by its increased frequency in autoimmune diseases such as systemic lupus erythematosus and polymyositis. Even in cases of myocarditis caused by viral infections, dysregulated immune responses contribute to pathogenesis. However, whether triggered by existing autoimmune conditions or viral infections, the precise antigens and immunologic pathways driving myocarditis remain incompletely understood. The emergence of myocarditis associated with immune checkpoint inhibitor therapy, commonly used for treating cancer, has afforded an opportunity to understand autoimmune mechanisms in myocarditis, with autoreactive T cells specific for cardiac myosin playing a pivotal role. Despite their self-antigen recognition, cardiac myosin-specific T cells can be present in healthy individuals due to bypassing the thymic selection stage. In recent studies, novel modalities in suppressing the activity of pathogenic T cells including cardiac myosin-specific T cells have proven effective in treating autoimmune myocarditis. This review offers an overview of the current understanding of heart antigens, autoantibodies, and immune cells as the autoimmune mechanisms underlying various forms of myocarditis, along with the latest updates on clinical management and prospects for future research.


Subject(s)
Autoimmune Diseases , Myocarditis , Myocarditis/immunology , Myocarditis/therapy , Myocarditis/etiology , Humans , Autoimmune Diseases/immunology , Autoimmune Diseases/therapy , Autoimmune Diseases/drug therapy , Animals , Autoantibodies/immunology , Autoimmunity , T-Lymphocytes/immunology , Autoantigens/immunology , Cardiac Myosins/immunology
18.
Discov Oncol ; 15(1): 215, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38850433

ABSTRACT

BACKGROUND: Multiple myeloma (MM) is a prevalent hematologic malignancy characterized by the uncontrolled proliferation of monoclonal plasma cells in the bone marrow and excessive monoclonal immunoglobulin production, leading to organ damage. Despite therapeutic advancements, recurrence and drug resistance remain significant challenges. OBJECTIVE: This study investigates the effects of dandelion flavone (DF) on MM cell proliferation, migration, and invasion, aiming to elucidate the mechanisms involved in MM metastasis and to explore the potential of traditional Chinese medicine in MM therapy. METHODS: DF's impact on myeloma cell viability was evaluated using the CCK-8 and colony formation assays. Cell mobility and invasiveness were assessed through wound healing and transwell assays, respectively. RT-PCR was employed to quantify mRNA levels of MMP-2, MMP-9, TIMP-1, and TIMP-2. Apoptotic rates and molecular markers were analyzed via flow cytometry and RT-PCR. The PI3K/AKT signaling pathway was studied using Western blot and ELISA, with IGF-1 and the PI3K inhibitor LY294002 used to validate the findings. RESULTS: DF demonstrated dose-dependent inhibitory effects on MM cell proliferation, migration, and invasion. It reduced mRNA levels of MMP-2 and MMP-9 while increasing those of TIMP-1 and TIMP-2. Furthermore, DF enhanced the expression of pro-apoptotic proteins and inhibited M2 macrophage polarization by targeting key molecules and enzymes. The anti-myeloma activity of DF was mediated through the inhibition of the PI3K/AKT pathway, as evidenced by diminished phosphorylation and differential effects in the presence of IGF-1 and LY294002. CONCLUSION: By modulating the PI3K/AKT pathway, DF effectively inhibits MM cell proliferation, migration, and invasion, and induces apoptosis, establishing a novel therapeutic strategy for MM based on traditional Chinese medicine.

19.
Front Nutr ; 11: 1399687, 2024.
Article in English | MEDLINE | ID: mdl-38854165

ABSTRACT

The concept of inflammation encompasses beneficial and detrimental aspects, which are referred to as infectious and sterile inflammations, respectively. Infectious inflammation plays a crucial role in host defense, whereas sterile inflammation encompasses allergic, autoimmune, and lifestyle-related diseases, leading to detrimental effects. Dendritic cells and macrophages, both of which are representative mononuclear phagocytes (MNPs), are essential for initiating immune responses, suggesting that the regulation of MNPs limits excessive inflammation. In this context, dietary components with immunomodulatory properties have been identified. Among them, soybean-derived compounds, including isoflavones, saponins, flavonoids, and bioactive peptides, act directly on MNPs to fine-tune immune responses. Notably, some soybean-derived compounds have demonstrated the ability to alleviate the symptom of allergy and autoimmunity in mouse models. In this review, we introduce and summarize the roles of soybean-derived compounds on MNP-mediated inflammatory responses. Understanding the mechanism by which soybean-derived molecules regulate MNPs could provide valuable insights for designing safe immunomodulators.

20.
Transl Oncol ; 46: 102009, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38833783

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) is the third most common cancer worldwide. Connexin is a transmembrane protein involved in gap junctions (GJs) formation. Our previous study found that connexin 37 (Cx37), encoded by gap junction protein alpha 4 (GJA4), expressed on fibroblasts acts as a promoter of CRC and is closely related to epithelial-mesenchymal transition (EMT) and tumor immune microenvironment. However, to date, the mechanism concerning the malignancy of GJA4 in tumor stroma has not been studied. METHODS: Hematoxylin-eosin (HE) and immunohistochemical (IHC) staining were used to validate the expression and localization of GJA4. Using single-cell analysis, enrichment analysis, spatial transcriptomics, immunofluorescence staining (IF), Sirius red staining, wound healing and transwell assays, western blotting (WB), Cell Counting Kit-8 (CCK8) assay and in vivo experiments, we investigated the possible mechanisms of GJA4 in promoting CRC. RESULTS: We discovered that in CRC, GJA4 on fibroblasts is involved in promoting fibroblast activation and promoting EMT through a fibroblast-dependent pathway. Furthermore, GJA4 may act synergistically with M2 macrophages to limit T cell infiltration by stimulating the formation of an immune-excluded desmoplasic barrier. Finally, we found a significantly correlation between GJA4 and pathological staging (P < 0.0001) or D2 dimer (R = 0.03, P < 0.05). CONCLUSION: We have identified GJA4 expressed on fibroblasts is actually a promoter of the tumor mesenchymal phenotype. Our findings suggest that the interaction between GJA4+ fibroblasts and M2 macrophages may be an effective target for enhancing tumor immunotherapy.

SELECTION OF CITATIONS
SEARCH DETAIL
...