Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
1.
Nanotheranostics ; 8(2): 163-178, 2024.
Article in English | MEDLINE | ID: mdl-38444740

ABSTRACT

Background: Combining magnetic particle imaging (MPI) and magnetic fluid hyperthermia (MFH) offers the ability to perform localized hyperthermia and magnetic particle imaging-assisted thermometry of hyperthermia treatment. This allows precise regional selective heating inside the body without invasive interventions. In current MPI-MFH platforms, separate systems are used, which require object transfer from one system to another. Here, we present the design, development and evaluation process for integrable MFH platforms, which extends a commercial MPI scanner with the functionality of MFH. Methods: The biggest issue of integrating magnetic fluid hyperthermia platforms into a magnetic particle imaging system is the magnetic coupling of the devices, which induces high voltage in the imaging system, and is harming its components. In this paper, we use a self-compensation approach derived from heuristic algorithms to protect the magnetic particle imaging scanner. The integrable platforms are evaluated regarding electrical and magnetic characteristics, cooling capability, field strength, the magnetic coupling to a replica of the magnetic particle imaging system's main solenoid and particle heating. Results: The MFH platforms generate suitable magnetic fields for the magnetic heating of particles and are compatible with a commercial magnetic particle imaging scanner. In combination with the imaging system, selective heating with a gradient field and steerable heating positioning using the MPI focus fields are possible. Conclusion: The proposed MFH platforms serve as a therapeutic tool to unlock the MFH functionality of a commercial magnetic particle imaging scanner, enabling its use in future preclinical trials of MPI-guided, spatially selective magnetic hyperthermia therapy.


Subject(s)
Hyperthermia, Induced , Magnetic Fields
2.
Comput Biol Med ; 170: 108053, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38325210

ABSTRACT

Magnetic fluid hyperthermia (MFH) is a technique whose results show promise in the treatment against cancer, but which still faces obstacles such as controlling the spatial distribution of temperature. The present study developed an agent-based model in order to simulate the temperature changes in an aqueous environment submitted to the magnetic fluid hyperthermia technique. The developed model was built with its parameters based on the clinical treatment protocol for glioblastoma multiforme (GBM). Using thermodynamic properties of magnetic fluid and tissues, we define a specific thermal parameter (α) and evaluate its influence, together with the intensity of the external magnetic field (H), on the dynamics of the temperature of the cancer environment. The temperature evolution generated by the model was in accordance with experimental results known from the subject literature. The parameters evaluation indicates that the temperature stabilization of the tumor environment during MFH treatment is due to the local interactions of energy diffusion, as well as indicating that the α-parameter is a key factor for controlling the temperature and heating speed.


Subject(s)
Hyperthermia, Induced , Neoplasms , Humans , Temperature , Hyperthermia, Induced/methods , Magnetics , Magnetic Fields , Neoplasms/therapy
3.
Nanotechnology ; 35(16)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38211331

ABSTRACT

The effects of pH, MNP concentration, and medium viscosity on the magnetic fluid hyperthermia (MFH) properties of chitosan-coated superparamagnetic Fe3O4nanoparticles (MNPs) are probed here. Due to the protonation of the amide groups, the MNPs are colloidally stable at lower pH (∼2), but form aggregates at higher pH (∼8). The increased aggregate size at higher pH causes the Brownian relaxation time (τB) to increase, leading to a decrease in specific absorption rate (SAR). For colloidal conditions ensuring Brownian-dominated relaxation dynamics, an increase in MNP concentrations or medium viscosity is found to increase theτB. SAR decreases with increasing MNP concentration, whereas it exhibits a non-monotonic variation with increasing medium viscosity. Dynamic hysteresis loop-based calculations are found to be in agreement with the experimental results. The findings provide a greater understanding of the variation of SAR with the colloidal properties and show the importance of relaxation dynamics on MFH efficiency, where variations in the frequency-relaxation time product across the relaxation plateau cause significant variations in SAR. Further, thein vitrocytotoxicity studies show good bio-compatibility of the chitosan-coated Fe3O4MNPs. Higher SAR at acidic pH for bio-medically acceptable field parameters makes the bio-compatible chitosan-coated Fe3O4MNPs suitable for MFH applications.

4.
Theranostics ; 14(1): 324-340, 2024.
Article in English | MEDLINE | ID: mdl-38164157

ABSTRACT

Theranostic platforms, combining diagnostic and therapeutic approaches within one system, have garnered interest in augmenting invasive surgical, chemical, and ionizing interventions. Magnetic particle imaging (MPI) offers a quite recent alternative to established radiation-based diagnostic modalities with its versatile tracer material (superparamagnetic iron oxide nanoparticles, SPION). It also offers a bimodal theranostic framework that can combine tomographic imaging with therapeutic techniques using the very same SPION. Methods: We show the interleaved combination of MPI-based imaging, therapy (highly localized magnetic fluid hyperthermia (MFH)) and therapy safety control (MPI-based thermometry) within one theranostic platform in all three spatial dimensions using a commercial MPI system and a custom-made heating insert. The heating characteristics as well as theranostic applications of the platform were demonstrated by various phantom experiments using commercial SPION. Results: We have shown the feasibility of an MPI-MFH-based theranostic platform by demonstrating high spatial control of the therapeutic target, adequate MPI-based thermometry, and successful in situ interleaved MPI-MFH application. Conclusions: MPI-MFH-based theranostic platforms serve as valuable tools that enable the synergistic integration of diagnostic and therapeutic approaches. The transition into in vivo studies will be essential to further validate their potential, and it holds promising prospects for future advancements.


Subject(s)
Hyperthermia, Induced , Magnetite Nanoparticles , Thermometry , Precision Medicine , Diagnostic Imaging/methods , Magnetite Nanoparticles/therapeutic use , Magnetic Fields
5.
Mol Imaging Biol ; 25(6): 1020-1033, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37789103

ABSTRACT

Magnetic particle imaging (MPI) is a novel quantitative imaging technique using the nonlinear magnetization behavior of magnetic nanoparticles (MNPs) to determine their local concentration. Magnetic fluid hyperthermia (MFH) is a promising non-invasive therapy using the heating effects of MNPs. MPI-MFH is expected to enable real-time MPI guidance, localized MFH, and non-invasive temperature monitoring, which shows great potential for precise treatment of cancer. In this review, we introduce the fundamentals of MPI and MFH and their applications in the treatment of cancer. Also, we discuss the challenges and prospects of MPI-MFH.


Subject(s)
Hyperthermia, Induced , Magnetite Nanoparticles , Neoplasms , Humans , Hyperthermia, Induced/methods , Magnetite Nanoparticles/therapeutic use , Neoplasms/diagnostic imaging , Neoplasms/therapy , Diagnostic Imaging , Magnetic Phenomena
6.
Int J Biol Macromol ; 249: 126071, 2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37524291

ABSTRACT

Recent increase in the integration of nanotechnology and nanosciences to the biomedical sector fetches the human wellness through the development of sustainable treatment methodologies for cancerous tumors at all stages of their initiation and progression. This involves the development of multifunctional theranostic probes that effectively support for the early cancer diagnosis, avoiding non-target cell toxicity, controlled and customized anticancer drug release etc. Therefore, to advance the field of nanotechnology-based sustainable cancer treatment, we fabricated and tested the efficacy of anticancer drug-loaded magnetic hybrid nanoparticles (NPs) towards in vitro cell culture systems. The developed conjugate of NPs was incorporated with the functions of both controlled drug delivery and heat-releasing ability using Mn3O4 (manganese oxide) magnetic core with Cu shell encapsulated within trimethyl chitosan (TMC) biopolymer. On characterization, the Cu@Mn3O4-TMC NPs were confirmed to have an approximate size of 130 nm with full agglomeration (as observed by the HRTEM) and crystal size of 92.95 ± 18.38 nm with tetragonal hausmannite phase for Mn3O4 spinel structure (XRD). Also, the UV-Vis and FTIR analysis provided the qualitative and quantitative effects of 5-fluororacil (5-Fu) anticancer drug loading (max 68 %) onto the Cu@Mn3O4-TMC NPs. The DLS analysis indicated for the occurrence of no significant changes to the particle size (around 100 nm) of Cu@Mn3O4-TMC due to the solution dispersion thereby confirming for the aqueous stability of developed NPs. In addition, the magnetization values of Cu@Mn3O4-TMC NPs were measured to be 34 emu/g and a blocking temperature of 42 K. Further tests of magnetic hyperthermia by the Cu@Mn3O4-TMC/5-Fu NPs provided that the heat-releasing capacity (% ΔT at 15 min) increases with that of increased frequency, i.e. 28 % (440 Hz) > 22.6 % (240 Hz) > 18 % (44 Hz), and the highest specific power loss (SPL) value observed to be 488 W/g for water. Moreover, the 5-Fu drug release studies indicate that the release is high at a pH of 5.2 and almost all the loaded drug is getting delivered under the influence of the external magnetic field (430 Hz) due to the influence of both Brownian-rotation and Néel relaxation heat-mediated mechanism. The pharmacokinetic drug release studies have suggested for the occurrence of more than one model, i.e. First-order, Higuchi (diffusion), and Korsemeyer-Peppas (non-Fickian), in addition to hyperthermia. Finally, the in vitro cell culture systems (MCF-7 cancer and MCF-10 non-cancer) helped to differentiate the physiological changes due to the effects of hyperthermia and 5-Fu drug individually and as a combination of both. The observed differences of cell viability losses among both cell types are measured and discussed with the expression of heat shock proteins (HSPs) by the MCF-10 cells as against the MCF-7 cancer cells. We believe that the results generated in this project can be helpful for the designing of new cancer therapeutic models with nominal adverse effects on healthy normal cells and thus paving a way for the treatment of cancer and other deadly diseases in a sustainable manner.


Subject(s)
Antineoplastic Agents , Hyperthermia, Induced , Nanoparticles , Neoplasms , Humans , Drug Delivery Systems/methods , Antineoplastic Agents/pharmacokinetics , Nanoparticles/chemistry , Fluorouracil/pharmacology
7.
Neurosurg Clin N Am ; 34(2): 269-283, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36906333

ABSTRACT

Magnetic hyperthermia therapy (MHT) is a highly localized form of hyperthermia therapy (HT) that has been effective in treating various forms of cancer. Many clinical and preclinical studies have applied MHT to treat aggressive forms of brain cancer and assessed its role as a potential adjuvant to current therapies. Initial results show that MHT has a strong antitumor effect in animal studies and a positive association with overall survival in human glioma patients. Although MHT is a promising therapy with the potential to be incorporated into the future treatment of brain cancer, significant advancement of current MHT technology is required.


Subject(s)
Brain Neoplasms , Glioma , Hyperthermia, Induced , Animals , Humans , Hyperthermia, Induced/methods , Glioma/therapy , Brain Neoplasms/therapy , Magnetic Phenomena
8.
Nanomaterials (Basel) ; 13(5)2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36903670

ABSTRACT

We present an investigation of the effects on BxPC3 pancreatic cancer cells of proton therapy combined with hyperthermia, assisted by magnetic fluid hyperthermia performed with the use of magnetic nanoparticles. The cells' response to the combined treatment has been evaluated by means of the clonogenic survival assay and the estimation of DNA Double Strand Breaks (DSBs). The Reactive Oxygen Species (ROS) production, the tumor cell invasion and the cell cycle variations have also been studied. The experimental results have shown that the combination of proton therapy, MNPs administration and hyperthermia gives a clonogenic survival that is much smaller than the single irradiation treatment at all doses, thus suggesting a new effective combined therapy for the pancreatic tumor. Importantly, the effect of the therapies used here is synergistic. Moreover, after proton irradiation, the hyperthermia treatment was able to increase the number of DSBs, even though just at 6 h after the treatment. Noticeably, the magnetic nanoparticles' presence induces radiosensitization effects, and hyperthermia increases the production of ROS, which contributes to cytotoxic cellular effects and to a wide variety of lesions including DNA damage. The present study indicates a new way for clinical translation of combined therapies, also in the vision of an increasing number of hospitals that will use the proton therapy technique in the near future for different kinds of radio-resistant cancers.

9.
Biomed Phys Eng Express ; 9(3)2023 03 10.
Article in English | MEDLINE | ID: mdl-36827691

ABSTRACT

Objective:Magnetic fluid hyperthermia (MFH) is a still experimental technique found to have a potential application in the treatment of cancer. The method aims to reach around 41 °C-47 °C in the tumor site by exciting magnetic nanoparticles with an externally applied alternating magnetic field (AMF), where cell death is expected to occur. Applying AMFs with high spatial resolution is still a challenge. The AMFs from current and prospective MFH applicators cover relatively large areas; being not suitable for patients having metallic implants near the treatment area. Thus, there will be a clinical need for smaller magnetic field applicators. To this end, a laparoscopic induction heater (LIH) and a transrectal induction heater (TRIH) were developed.Methods:Miniature 'pancake' coils were wound and inserted into 3D printed enclosures. Ovarian (SKOV-3, A2780) and prostate (PC-3, LNCaP) cancer cell lines were used to evaluate the instruments' capabilities in killing cancer cellsin vitro, using Synomag®-D nanoparticles as the heat mediators. NIH3T3 normal cell lines were also used with both devices to observe if these cells tolerated the conditions applied.Results:Magnetic field intensities reached by the LIH and TRIH were 42.6 kA m-1at 326 kHz and 26.3 kA m-1at 303 kHz, respectively. Temperatures reached in the samples were 41 °C by the LIH and 43 °C by the TRIH. Both instruments successfully accomplished killing cancer cells, with minimal effects on normal cells.Conclusion:This work presents the first line of handheld medical induction heaters and have the potential to be a complement to existing cancer therapies.Significance:These instruments could enable the development of MFH modalities that will facilitate the clinical translation of this thermal treatment.


Subject(s)
Hyperthermia, Induced , Ovarian Neoplasms , Prostatic Neoplasms , Male , Mice , Animals , Humans , Female , Prostatic Neoplasms/therapy , Hyperthermia, Induced/methods , Cell Line, Tumor , Ovarian Neoplasms/therapy , NIH 3T3 Cells , Prospective Studies , Magnetic Fields
10.
Pharmaceutics ; 14(12)2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36559083

ABSTRACT

Because of the unique physicochemical properties of magnetic iron-based nanoparticles, such as superparamagnetism, high saturation magnetization, and high effective surface area, they have been applied in biomedical fields such as diagnostic imaging, disease treatment, and biochemical separation. Iron-based nanoparticles have been used in magnetic resonance imaging (MRI) to produce clearer and more detailed images, and they have therapeutic applications in magnetic fluid hyperthermia (MFH). In recent years, researchers have used clay minerals, such as ceramic materials with iron-based nanoparticles, to construct nanocomposite materials with enhanced saturation, magnetization, and thermal effects. Owing to their unique structure and large specific surface area, iron-based nanoparticles can be homogenized by adding different proportions of ceramic minerals before and after modification to enhance saturation magnetization. In this review, we assess the potential to improve the magnetic properties of iron-based nanoparticles and in the preparation of multifunctional composite materials through their combination with ceramic materials. We demonstrate the potential of ferromagnetic enhancement and multifunctional composite materials for MRI diagnosis, drug delivery, MFH therapy, and cellular imaging applications.

11.
Cancers (Basel) ; 14(20)2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36291935

ABSTRACT

This paper reports a comprehensive investigation of a magnetic nanoparticle (MNP), named M55, which belongs to a class of innovative doped ferrite nanomaterials, characterized by a self-limiting temperature. M55 is obtained from M48, an MNP previously described by our group, by implementing an additional purification step in the synthesis. M55, after citrate and glucose coating, is named G-M55. The present study aimed to demonstrate the properties of G-M55 as a diagnostic contrast agent for MRI and magnetic particle imaging (MPI), and as an antitumoral agent in magnetic fluid hyperthermia (MFH). Similar specific absorption rate values were obtained by standard MFH and by an MPI apparatus. This result is of interest in relation to the application of localized MFH by MPI apparatus. We demonstrated the biocompatibility of G-M55 in a triple-negative human breast cancer line (MDA-MB-231), and its efficacy as an MFH agent in the same cell line. We also demonstrated the efficacy of MFH treatment with G-M55 in an experimental model of breast cancer. Overall, our results pave the way for the clinical application of G-M55 as an MFH agent in breast cancer therapy, allowing not only efficient treatment by both standard MFH apparatus and MPI but also temperature monitoring.

12.
Adv Healthc Mater ; 11(23): e2201399, 2022 12.
Article in English | MEDLINE | ID: mdl-36165612

ABSTRACT

The central cells of solid tumors are more proliferative and metastatic than the marginal cells. Therefore, more intelligent strategies for targeting cells with deep spatial distributions in solid tumors remain to be explored. In this work, a biocompatible nanotheranostic agent with a lipid membrane-coated, Fe3 O4 and perfluoropentane (PFP)-loaded, cRGD peptide (specifically targeting the integrin αvß3 receptor)-grafted, magnetic nanodroplets (MNDs) is developed. The MNDs exhibit excellent magnetothermal conversion and controllable magnetic hyperthermia (MHT) through alternating magnetic field regulation. Furthermore, MHT-mediated magnetic droplet vaporization (MDV) induces the expansion of the MNDs to transform them into ultrasonic microbubbles, increasing the permeability of tissue and the cell membrane via the ultrasound-targeted microbubble destruction (UTMD) technique and thereby promoting the deep penetration of MNDs in solid tumors. More importantly, MHT not only causes apoptotic damage by downregulating the expression of the HSP70, cyclin D1, and Bcl-2 proteins in tumor cells but also improves the response rate to T-cell-related immunotherapy by upregulating PD-L1 expression in tumor cells, thus inhibiting the growth of both primary and metastatic tumors. Overall, this work introduces a distinct application of nanoultrasonic biomedicine in cancer therapy and provides an attractive immunotherapy strategy for preventing the proliferation and metastasis of deeply distributed cells in solid tumors.


Subject(s)
Neoplasms , Humans , Neoplasms/therapy , Cell Proliferation , Magnetic Phenomena
13.
Front Oncol ; 12: 811783, 2022.
Article in English | MEDLINE | ID: mdl-35402279

ABSTRACT

Background: Globally, ovarian cancer is one of the most common gynecological malignant tumors, and the overall curative effect has been unsatisfactory for years. Exploring and investigating novel therapeutic strategy for ovarian cancer are an imperative need. Methods: Using manganese zinc ferrite nanoparticles (PEG-MZF-NPs) as gene transferring vector and drug delivery carrier, a new combinatorial regimen for the target treatment of ovarian cancer by integrating CD44-shRNA, DDP (cisplatin) and magnetic fluid hyperthermia (MFH) together was designed and investigated in vivo and in vitro in this study. Results: PEG-MZF-NPs/DDP/CD44-shRNA nanoliposomes were successfully prepared, and TEM detection indicated that they were 15-20 nm in diameter, with good magnetothermal effect in AMF, similar to the previously prepared PEG-MZF-NPs. Under the action of AMF, PEG-MZF-NPs/shRNA/DDP nanoliposomes effectively inhibited ovarian tumors' growth, restrained the cancer cells' proliferation and invasion, and promoted cell apoptosis. VEGF, survivin, BCL-2, and BCL-xl proteins significantly decreased, while caspase-3 and caspase-9 proteins markedly increased both in vitro and in vivo, far better than any of the individual therapies did. Moreover, no significant effects were found on bone marrow hematopoiesis and liver and kidney function of nude mice intervened by the combinatorial therapeutic regimen. Conclusion: In the present study, we developed PEG-MZF-NPs/DDP/CD44-shRNA magnetic nanoliposomes and inaugurated an integrated therapy through the synergistic effect of MFH, gene therapy, and chemotherapy, and it shows a satisfactory therapeutic effect on ovarian cancer in vitro and in vivo, much better than any single treatment regimen did, with no significant side effects. This study provides a new promising method for ovarian cancer treatment.

14.
Article in English | MEDLINE | ID: mdl-35238181

ABSTRACT

Magnetic nanomaterials that respond to clinical magnetic devices have significant potential as cancer nanotheranostics. The complexities of their physics, however, introduce challenges for these applications. Hyperthermia is a heat-based cancer therapy that improves treatment outcomes and patient survival when controlled energy delivery is combined with accurate thermometry. To date, few technologies have achieved the needed evolution for the demands of the clinic. Magnetic fluid hyperthermia (MFH) offers this potential, but to be successful it requires particle-imaging technology that provides real-time thermometry. Presently, the only technology having the potential to meet these requirements is magnetic particle imaging (MPI), for which a proof-of-principle demonstration with MFH has been achieved. Successful clinical translation and adoption of integrated MPI/MFH technology will depend on successful resolution of the technological challenges discussed. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.


Subject(s)
Hyperthermia, Induced , Magnetite Nanoparticles , Neoplasms , Diagnostic Imaging/methods , Humans , Hyperthermia, Induced/methods , Magnetic Phenomena , Magnetite Nanoparticles/therapeutic use , Neoplasms/diagnostic imaging , Neoplasms/therapy
15.
Med Phys ; 49(1): 547-567, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34724215

ABSTRACT

PURPOSE: The purpose of this study was to identify the properties of magnetite nanoparticles that deliver optimal heating efficiency, predict the geometrical characteristics to get these target properties, and determine the concentrations of nanoparticles required to optimize thermotherapy. METHODS: Kinetic Monte Carlo simulations were employed to identify the properties of magnetic nanoparticles that deliver high Specific Absorption Rate (SAR) values. Optimal volumes were determined for anisotropies ranging between 11 and 40 kJ/m3 under clinically relevant magnetic field conditions. Atomistic spin simulations were employed to determine the aspect ratios of ellipsoidal magnetite nanoparticles that deliver the target properties. A numerical model was developed using the extended cardiac-torso (XCAT) phantom to simulate low-field (4 kA/m) and high-field (18 kA/m) prostate cancer thermotherapy. A stationary optimization study exploiting the Method of Moving Asymptotes (MMA) was carried out to calculate the concentration fields that deliver homogenous temperature distributions within target thermotherapy range constrained by the optimization objective function. A time-dependent study was used to compute the thermal dose of a 30-min session. RESULTS: Prolate ellipsoidal magnetite nanoparticles with a volume of 3922 ± 35 nm3 and aspect ratio of 1.56, which yields an effective anisotropy of 20 kJ/m3 , constituted the optimal design at current maximum clinical field properties (H0   = 18 kA/m, f = 100 kHz), with SAR = 342.0 ± 2.7 W/g, while nanoparticles with a volume of 4147 ± 36 nm3 , aspect ratio of 1.29, and effective anisotropy 11 kJ/m3 were optimal for low-field applications (H0   = 4 kA/m, f = 100 kHz), with SAR = 50.2 ± 0.5 W/g. The average concentration of 3.86 ± 0.10 and 0.57 ± 0.01 mg/cm3 at 4 and 18 kA/m, respectively, were sufficient to reach therapeutic temperatures of 42-44°C throughout the prostate volume. The thermal dose delivered during a 30-min session exceeded 5.8 Cumulative Equivalent Minutes at 43°C within 90% of the prostate volume (CEM43T90 ). CONCLUSION: The optimal properties and design specifications of magnetite nanoparticles vary with magnetic field properties. Application-specific magnetic nanoparticles or nanoparticles that are optimized at low fields are indicated for optimal thermal dose delivery at low concentrations.


Subject(s)
Hyperthermia, Induced , Magnetite Nanoparticles , Humans , Magnetic Fields , Male , Monte Carlo Method , Temperature
16.
Nanomaterials (Basel) ; 11(11)2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34835613

ABSTRACT

We explored a series of highly uniform magnetic nanoparticles (MNPs) with a core-shell nanoarchitecture prepared by an efficient solvothermal approach. In our study, we focused on the water dispersion of MNPs based on two different CoFe2O4 core sizes and the chemical nature of the shell (MnFe2O4 and spinel iron oxide). We performed an uncommon systematic investigation of the time and temperature evolution of the adiabatic heat release at different frequencies of the alternating magnetic field (AMF). Our systematic study elucidates the nontrivial variations in the heating efficiency of core-shell MNPs concerning their structural, magnetic, and morphological properties. In addition, we identified anomalies in the temperature and frequency dependencies of the specific power absorption (SPA). We conclude that after the initial heating phase, the heat release is governed by the competition of the Brown and Néel mechanism. In addition, we demonstrated that a rational parameter sufficiently mirroring the heating ability is the mean magnetic moment per MNP. Our study, thus, paves the road to fine control of the AMF-induced heating by MNPs with fine-tuned structural, chemical, and magnetic parameters. Importantly, we claim that the nontrivial variations of the SPA with the temperature must be considered, e.g., in the emerging concept of MF-assisted catalysis, where the temperature profile influences the undergoing chemical reactions.

17.
Nanomaterials (Basel) ; 11(11)2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34835777

ABSTRACT

Iron oxide nanoparticle-based hyperthermia is an emerging field in cancer treatment. The hyperthermia is primarily achieved by two differing methods: magnetic fluid hyperthermia and photothermal therapy. In magnetic fluid hyperthermia, the iron oxide nanoparticles are heated by an alternating magnetic field through Brownian and Néel relaxation. In photothermal therapy, the hyperthermia is mainly generated by absorption of light, thereby converting electromagnetic waves into thermal energy. By use of iron oxide nanoparticles, this effect can be enhanced. Both methods are promising tools in cancer treatment and are, therefore, also explored for gastrointestinal malignancies. Here, we provide an extensive literature research on both therapy options for the most common gastrointestinal malignancies (esophageal, gastric and colorectal cancer, colorectal liver metastases, hepatocellular carcinoma, cholangiocellular carcinoma and pancreatic cancer). As many of these rank in the top ten of cancer-related deaths, novel treatment strategies are urgently needed. This review describes the efforts undertaken in vitro and in vivo.

18.
Bioengineering (Basel) ; 8(10)2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34677207

ABSTRACT

Magnetic iron oxide nanoparticles (MNPs) have been developed and applied for a broad range of biomedical applications, such as diagnostic imaging, magnetic fluid hyperthermia, targeted drug delivery, gene therapy and tissue repair. As one key element, reproducible synthesis routes of MNPs are capable of controlling and adjusting structure, size, shape and magnetic properties are mandatory. In this review, we discuss advanced methods for engineering and utilizing MNPs, such as continuous synthesis approaches using microtechnologies and the biosynthesis of magnetosomes, biotechnological synthesized iron oxide nanoparticles from bacteria. We compare the technologies and resulting MNPs with conventional synthetic routes. Prominent biomedical applications of the MNPs such as diagnostic imaging, magnetic fluid hyperthermia, targeted drug delivery and magnetic actuation in micro/nanorobots will be presented.

19.
Biomaterials ; 277: 121100, 2021 10.
Article in English | MEDLINE | ID: mdl-34492584

ABSTRACT

Ferroptosis-based nanomedicine has drawn increasing attention in antitumor therapy because of the advantages of this unconventional mode of apoptosis, but the difficulties of delivery to the tumor site and surface-to-core penetration after arrival seriously hinder further clinical transformation and application. Herein, we propose an unprecedented strategy of injecting magnetic nanodroplets (MNDs) to solve these two longstanding problems. MNDs are nanocarriers that can carry multifunctional drugs and imaging materials. MNDs can effectively accumulate in the tumor site by active tumor targeting (multifunctional drugs) and passive tumor targeting (enhanced permeability and retention effect), allowing diffusion of the MNDs from the surface to the core through mild-temperature magnetic fluid hyperthermia (MHT) under multimodal imaging guidance. Finally, the ferroptosis pathway is activated deep within the tumor site through the drug release. This approach was inspired by the ability of mild-temperature MHT to allow MNDs to quickly pass through the blood vessel-tumor barrier and deeply penetrate the tumor tissue from the surface to the core to amplify the antitumor efficacy of ferroptosis. This strategy is termed as "thermoferroptosis sensitization". Importantly, this behavior can be performed under the guidance of multimodal imaging, making the design of MNDs for cancer therapy safer and more reasonable.


Subject(s)
Hyperthermia, Induced , Nanoparticles , Cell Line, Tumor , Magnetic Phenomena , Multimodal Imaging
20.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 38(3): 528-538, 2021 Jun 25.
Article in Chinese | MEDLINE | ID: mdl-34180199

ABSTRACT

Cholangiocarcinoma is a highly malignant tumor. It is not sensitive to radiotherapy and chemotherapy and has a poor prognosis. At present, there is no effective treatment. As a new method for treating cancer, magnetic fluid hyperthermia has been clinically applied to a variety of cancers in recent years. This article introduces it to the cholangiocarcinoma model and systematically studies the effect of magnetic fluid hyperthermia on cholangiocarcinoma. Starting from the theory of magnetic fluid heating, the electromagnetic and heat transfer models were constructed in the finite element simulation software COMSOL using the Pennes biological heat transfer equation. The Helmholtz coil was used as an alternating magnetic field generating device. The relationship between the magnetic fluid-related properties and the heating power was analyzed according to Rosensweig's theory. After the multiphysics coupling simulation was performed, the electromagnetic field and thermal field distribution in the hyperthermia region were obtained. The results showed that the magnetic field distribution in the treatment area was uniform, and the thermal field distribution met the requirements of hyperthermia. After the magnetic fluid injection, the cholangiocarcinoma tissue warmed up rapidly, and the temperature of tumor tissues could reach above 42 °C, but the surrounding healthy tissues did not heat up significantly. At the same time, it was verified that the large blood vessels around the bile duct, the overflow of the magnetic fluid, and the eddy current heat had little effect on thermotherapy. The results of this article can provide a reference for the clinical application of magnetic fluid hyperthermia for cholangiocarcinoma.


Subject(s)
Cholangiocarcinoma , Hyperthermia, Induced , Humans , Hyperthermia , Magnetic Fields , Magnetics
SELECTION OF CITATIONS
SEARCH DETAIL
...