Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
Add more filters











Publication year range
1.
EMBO J ; 43(19): 4197-4227, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39160277

ABSTRACT

In mammals, the transition from mitosis to meiosis facilitates the successful production of gametes. However, the regulatory mechanisms that control meiotic initiation remain unclear, particularly in the context of complex histone modifications. Herein, we show that KDM2A, acting as a lysine demethylase targeting H3K36me3 in male germ cells, plays an essential role in modulating meiotic entry and progression. Conditional deletion of Kdm2a in mouse pre-meiotic germ cells results in complete male sterility, with spermatogenesis ultimately arrested at the zygotene stage of meiosis. KDM2A deficiency disrupts H3K36me2/3 deposition in c-KIT+ germ cells, characterized by a reduction in H3K36me2 but a dramatic increase in H3K36me3. Furthermore, KDM2A recruits the transcription factor E2F1 and its co-factor HCFC1 to the promoters of key genes required for meiosis entry and progression, such as Stra8, Meiosin, Spo11, and Sycp1. Collectively, our study unveils an essential role for KDM2A in mediating H3K36me2/3 deposition and controlling the programmed gene expression necessary for the transition from mitosis to meiosis during spermatogenesis.


Subject(s)
E2F1 Transcription Factor , Jumonji Domain-Containing Histone Demethylases , Meiosis , Spermatogenesis , Animals , Male , Mice , Jumonji Domain-Containing Histone Demethylases/metabolism , Jumonji Domain-Containing Histone Demethylases/genetics , Spermatogenesis/genetics , E2F1 Transcription Factor/metabolism , E2F1 Transcription Factor/genetics , Host Cell Factor C1/metabolism , Host Cell Factor C1/genetics , Histones/metabolism , Histones/genetics , Mice, Knockout , Infertility, Male/genetics , Infertility, Male/metabolism , Histone Demethylases
2.
Anim Reprod ; 21(2): e20240011, 2024.
Article in English | MEDLINE | ID: mdl-39021502

ABSTRACT

Histone deacetylase 9 (HDAC9) is a histone deacetylase (HDAC) subtype IIa protein that deacetylates histone 3 (H3), histone 4 (H4), and nonhistone proteins in vivo to alter chromosomal shape and regulate gene transcription. There have been few studies on the regulatory influence of the HDAC9 gene on the differentiation of chicken embryonic stem cells (cESCs) into male germ cells, and the significance of HDAC9 is still unknown. Therefore, we explored the specific role of HDAC9 during differentiation of the cESCs of Jilin Luhua chickens through inhibition or overexpression. In medium supplemented with 10-5 mol/L retinoic acid (RA), cESCs were stimulated to develop into germ cells. HDAC9 and germline marker gene mRNA and protein levels were measured using qRT‒PCR and western blotting. During the differentiation of cESCs into male germ cells, overexpression of the HDAC9 gene greatly increased the mRNA and protein expression levels of the germline marker genes Stra8, Dazl, c-kit, and integrin ɑ6. The HDAC9 inhibitor TMP195 significantly decreased the mRNA and protein expression levels of the above markers. In summary, HDAC9 positively regulates the differentiation of cESCs.

3.
Cell Rep ; 43(6): 114323, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38861385

ABSTRACT

Aberrant male germline development can lead to the formation of seminoma, a testicular germ cell tumor. Seminomas are biologically similar to primordial germ cells (PGCs) and many bear an isochromosome 12p [i(12p)] with two additional copies of the short arm of chromosome 12. By mapping seminoma transcriptomes and open chromatin landscape onto a normal human male germline trajectory, we find that seminoma resembles premigratory/migratory PGCs; however, it exhibits enhanced germline and pluripotency programs and upregulation of genes involved in apoptosis, angiogenesis, and MAPK/ERK pathways. Using pluripotent stem cell-derived PGCs from Pallister-Killian syndrome patients mosaic for i(12p), we model seminoma and identify gene dosage effects that may contribute to transformation. As murine seminoma models do not exist, our analyses provide critical insights into genetic, cellular, and signaling programs driving seminoma transformation, and the in vitro platform developed herein permits evaluation of additional signals required for seminoma tumorigenesis.


Subject(s)
Epigenesis, Genetic , Germ Cells , Seminoma , Testicular Neoplasms , Humans , Seminoma/genetics , Seminoma/pathology , Seminoma/metabolism , Male , Germ Cells/metabolism , Testicular Neoplasms/genetics , Testicular Neoplasms/pathology , Testicular Neoplasms/metabolism , Transcription, Genetic , Gene Expression Regulation, Neoplastic , Transcriptome/genetics
4.
Cell Regen ; 13(1): 13, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38918264

ABSTRACT

F-box proteins play essential roles in various cellular processes of spermatogenesis by means of ubiquitylation and subsequent target protein degradation. They are the substrate-recognition subunits of SKP1-cullin 1-F-box protein (SCF) E3 ligase complexes. Dysregulation of F­box protein­mediated proteolysis could lead to male infertility in humans and mice. The emerging studies revealed the physiological function, pathological evidence, and biochemical substrates of F-box proteins in the development of male germ cells, which urging us to review the current understanding of how F­box proteins contribute to spermatogenesis. More functional and mechanistic study will be helpful to define the roles of F-box protein in spermatogenesis, which will pave the way for the logical design of F-box protein-targeted diagnosis and therapies for male infertility, as the spermatogenic role of many F-box proteins remains elusive.

5.
Aging Cell ; 23(8): e14200, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38757354

ABSTRACT

The sperm epigenome is thought to affect the developmental programming of the resulting embryo, influencing health and disease in later life. Age-related methylation changes in the sperm of old fathers may mediate the increased risks for reproductive and offspring medical problems. The impact of paternal age on sperm methylation has been extensively studied in humans and, to a lesser extent, in rodents and cattle. Here, we performed a comparative analysis of paternal age effects on protein-coding genes in the human and marmoset sperm methylomes. The marmoset has gained growing importance as a non-human primate model of aging and age-related diseases. Using reduced representation bisulfite sequencing, we identified age-related differentially methylated transcription start site (ageTSS) regions in 204 marmoset and 27 human genes. The direction of methylation changes was the opposite, increasing with age in marmosets and decreasing in humans. None of the identified ageTSS was differentially methylated in both species. Although the average methylation levels of all TSS regions were highly correlated between marmosets and humans, with the majority of TSS being hypomethylated in sperm, more than 300 protein-coding genes were endowed with species-specifically (hypo)methylated TSS. Several genes of the glycosphingolipid (GSL) biosynthesis pathway, which plays a role in embryonic stem cell differentiation and regulation of development, were hypomethylated (<5%) in human and fully methylated (>95%) in marmoset sperm. The expression levels and patterns of defined sets of GSL genes differed considerably between human and marmoset pre-implantation embryo stages and blastocyst tissues, respectively.


Subject(s)
Aging , Callithrix , DNA Methylation , Epigenome , Species Specificity , Spermatozoa , Animals , Callithrix/genetics , Male , DNA Methylation/genetics , Humans , Spermatozoa/metabolism , Aging/genetics , Transcription Initiation Site , Epigenesis, Genetic
6.
Environ Toxicol Pharmacol ; 108: 104466, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38759847

ABSTRACT

Titanium dioxide nanoparticles (TiO2 NPs) are widely used in consumer products, raising concerns about their impact on human health. This study investigates the effects of TiO2 NPs on male germ cells while focusing on cell proliferation inhibition and underlying mechanisms. This was done by utilizing mouse GC-1 spermatogonia cells, an immortalized spermatogonia cell line. TiO2 NPs induced a concentration-dependent proliferation inhibition with increased reactive oxygen species (ROS) generation. Notably, TiO2 NPs induced autophagy and decreased ERK phosphorylation. Treatment with the ROS inhibitor N-Acetyl-l-cysteine (NAC) alleviated TiO2 NPs-induced autophagy, restored ERK phosphorylation, and promoted cell proliferation. These findings call attention to the reproductive risks posed by TiO2 NPs while also highlighting NAC as a possible protective agent against reproductive toxins.


Subject(s)
Acetylcysteine , Autophagy , Cell Proliferation , Metal Nanoparticles , Reactive Oxygen Species , Titanium , Titanium/toxicity , Male , Autophagy/drug effects , Animals , Acetylcysteine/pharmacology , Mice , Reactive Oxygen Species/metabolism , Cell Line , Cell Proliferation/drug effects , Metal Nanoparticles/toxicity , Spermatogonia/drug effects , Nanoparticles/toxicity
7.
Am J Hum Genet ; 111(6): 1125-1139, 2024 06 06.
Article in English | MEDLINE | ID: mdl-38759652

ABSTRACT

Sperm production and function require the correct establishment of DNA methylation patterns in the germline. Here, we examined the genome-wide DNA methylation changes during human spermatogenesis and its alterations in disturbed spermatogenesis. We found that spermatogenesis is associated with remodeling of the methylome, comprising a global decline in DNA methylation in primary spermatocytes followed by selective remethylation, resulting in a spermatids/sperm-specific methylome. Hypomethylated regions in spermatids/sperm were enriched in specific transcription factor binding sites for DMRT and SOX family members and spermatid-specific genes. Intriguingly, while SINEs displayed differential methylation throughout spermatogenesis, LINEs appeared to be protected from changes in DNA methylation. In disturbed spermatogenesis, germ cells exhibited considerable DNA methylation changes, which were significantly enriched at transposable elements and genes involved in spermatogenesis. We detected hypomethylation in SVA and L1HS in disturbed spermatogenesis, suggesting an association between the abnormal programming of these regions and failure of germ cells progressing beyond meiosis.


Subject(s)
DNA Methylation , Genome, Human , Spermatogenesis , Humans , Spermatogenesis/genetics , Male , Spermatids/metabolism , Spermatocytes/metabolism , DNA Transposable Elements/genetics , Spermatozoa/metabolism , Meiosis/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
8.
Methods Mol Biol ; 2770: 37-52, 2024.
Article in English | MEDLINE | ID: mdl-38351445

ABSTRACT

Transcriptomic analyses of germ cells at different stages of differentiation have shed light on the transcriptional and post-transcriptional mechanisms regulating gene expression that ensure the correct progression of spermatogenesis and male fertility. In this chapter, we describe a method to isolate meiotic and post-meiotic germ cells, based on gravimetric sedimentation, starting from a testicular germ cell suspension isolated from a single adult mouse. We also describe how to assess the purity and quality of the collected fractions of germ cells and how to optimize the extraction from these samples of RNA for subsequent RNA-sequencing experiment. In our experience, this protocol is suitable for germ cell isolation and transcriptomic analysis for mouse models with spermatogenic defects, overcoming the limits that reduced fertility poses to the obtaining of experimental animals.


Subject(s)
Spermatogenesis , Testis , Mice , Male , Animals , Spermatogenesis/genetics , Germ Cells , Gene Expression Profiling , RNA/genetics
9.
Bull Exp Biol Med ; 175(6): 781-784, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37979030

ABSTRACT

We studied the influence of epiphysectomy and administration of melatonin to epiphysectomized outbred white rats on the level and daily dynamics of damage to the genetic material of developing male germ cells. Epiphysectomy leads to an increase in the level of damage in the DNA structure and the disappearance of the circadian rhythm of the activity of repair enzyme PARP-1 and the apoptosis-inducing enzyme caspase-3. The administration of melatonin to animals after epiphysectomy reduces the level of DNA damage, restores the circadian rhythm of activity of PARP-1 and caspase-3. These fundings suggest that melatonin can indirectly protect DNA of maturing male gametes.


Subject(s)
Melatonin , Rats , Animals , Male , Melatonin/pharmacology , Caspase 3/genetics , Poly(ADP-ribose) Polymerase Inhibitors , Circadian Rhythm , DNA
10.
Cells Dev ; 175: 203865, 2023 09.
Article in English | MEDLINE | ID: mdl-37336426

ABSTRACT

The testis is a key male reproductive organ that produces gametes through the process of spermatogenesis. Testis morphologies, sperm phenotypes, and the process of spermatogenesis evolve rapidly in mammals, presumably due to the evolutionary pressure on males to give rise to their own offspring. Here, we review studies illuminating the molecular evolution of the testis, in particular large-scale transcriptomic studies, which were based on bulk tissue samples and, more recently, individual cells. Together with various genomic and epigenomic data, these studies have unveiled the cellular source, molecular mechanisms, and evolutionary forces that underlie the rapid phenotypic evolution of the testis. They also revealed shared (ancestral) and species-specific spermatogenic gene expression programs. The insights and available data that have accumulated also provide a valuable resource for the investigation and treatment of male fertility disorders - a dramatically increasing problem in modern industrial societies.


Subject(s)
Semen , Spermatogenesis , Animals , Male , Spermatogenesis/genetics , Testis/metabolism , Evolution, Molecular , Mammals/genetics
11.
Biomolecules ; 13(5)2023 04 25.
Article in English | MEDLINE | ID: mdl-37238614

ABSTRACT

In recent decades, male infertility has been correlated with the shortening of sperm telomeres. Telomeres regulate the reproductive lifespan by mediating the synapsis and homologous recombination of chromosomes during gametogenesis. They are composed of thousands of hexanucleotide DNA repeats (TTAGGG) that are coupled to specialized shelterin complex proteins and non-coding RNAs. Telomerase activity in male germ cells ensures that the telomere length is maintained at maximum levels during spermatogenesis, despite telomere shortening due to DNA replication or other genotoxic factors such as environmental pollutants. An emerging body of evidence has associated an exposure to pollutants with male infertility. Although telomeric DNA may be one of the important targets of environmental pollutants, only a few authors have considered it as a conventional parameter for sperm function. The aim of this review is to provide comprehensive and up-to-date data on the research carried out so far on the structure/function of telomeres in spermatogenesis and the influence of environmental pollutants on their functionality. The link between pollutant-induced oxidative stress and telomere length in germ cells is discussed.


Subject(s)
Infertility, Male , Seeds , Male , Humans , Telomere/genetics , Germ Cells/metabolism , Spermatozoa
12.
Arch Virol ; 168(6): 168, 2023 May 25.
Article in English | MEDLINE | ID: mdl-37227513

ABSTRACT

Vertical hepatitis B virus (HBV) transmission is defined as transmission that occurs during pregnancy or postpartum from an HBV-infected mother to her fetus or child. It is an efficient route for the spread of HBV and is responsible for most of the cases of chronic HBV infection in adults. During pregnancy, vertical transmission can occur in the intrauterine phase, by placental infection via peripheral blood mononuclear cells, by placental leakage, or through female germ cells.The detection of HBV DNA in semen and spermatids from HBV-infected men has provided strong evidence that the male genital tract may act as a reservoir of the virus in HBV-infected men, supporting the possibility that vertical HBV transmission from an HBV-infected father to his child may also occur via the germ line at the time of fertilization, as occurs in HBV transmission from mother to child. Furthermore, it has been shown that integration of the HBV genome into the sperm cell genome can compromise sperm morphology and function and even cause hereditary or congenital biological effects in the offspring when an HBV-infected sperm fuses with an ovum.Since vertical HBV transmission from father to child can be a topic of interest and of global importance for controlling the spread of HBV, this article addresses the evidence supporting its occurrence via germ cells, the biological impact of integration of the HBV genome into the male germ cell genome, and the role of maternal immunoprophylaxis in vertical HBV transmission from father to child.


Subject(s)
Hepatitis B , Pregnancy Complications, Infectious , Humans , Child , Adult , Male , Female , Pregnancy , Hepatitis B virus/genetics , Leukocytes, Mononuclear , Placenta , Infectious Disease Transmission, Vertical/prevention & control , Semen , Fathers , DNA, Viral/genetics , Hepatitis B Surface Antigens
13.
Aging (Albany NY) ; 15(5): 1257-1278, 2023 02 27.
Article in English | MEDLINE | ID: mdl-36849136

ABSTRACT

Advanced paternal age is associated with increased risks for reproductive and offspring medical problems. Accumulating evidence suggests age-related changes in the sperm epigenome as one underlying mechanism. Using reduced representation bisulfite sequencing on 73 sperm samples of males attending a fertility center, we identified 1,162 (74%) regions which were significantly (FDR-adjusted) hypomethylated and 403 regions (26%) being hypermethylated with age. There were no significant correlations with paternal BMI, semen quality, or ART outcome. The majority (1,152 of 1,565; 74%) of age-related differentially methylated regions (ageDMRs) were located within genic regions, including 1,002 genes with symbols. Hypomethylated ageDMRs were closer to transcription start sites than hypermethylated DMRs, half of which reside in gene-distal regions. In this and conceptually related genome-wide studies, so far 2,355 genes have been reported with significant sperm ageDMRs, however most (90%) of them in only one study. The 241 genes which have been replicated at least once showed significant functional enrichments in 41 biological processes associated with development and the nervous system and in 10 cellular components associated with synapses and neurons. This supports the hypothesis that paternal age effects on the sperm methylome affect offspring behaviour and neurodevelopment. It is interesting to note that sperm ageDMRs were not randomly distributed throughout the human genome; chromosome 19 showed a highly significant twofold enrichment with sperm ageDMRs. Although the high gene density and CpG content have been conserved, the orthologous marmoset chromosome 22 did not appear to exhibit an increased regulatory potential by age-related DNA methylation changes.


Subject(s)
Epigenesis, Genetic , Epigenome , Humans , Male , Semen Analysis , Semen , DNA Methylation , Spermatozoa/metabolism , CpG Islands
14.
Andrology ; 11(5): 927-942, 2023 07.
Article in English | MEDLINE | ID: mdl-36697378

ABSTRACT

BACKGROUND: DNA methylation (DNAme) erasure and reacquisition occur during prenatal male germ cell development; some further remodeling takes place after birth during spermatogenesis. Environmental insults during germline epigenetic reprogramming may affect DNAme, presenting a potential mechanism for transmission of environmental exposures across multiple generations. OBJECTIVES: We investigated how germ cell DNAme is impacted by lifetime exposures to diets containing either low or high, clinically relevant, levels of the methyl donor folic acid and whether resulting DNAme alterations were inherited in germ cells of male offspring of subsequent generations. MATERIALS AND METHODS: Female mice were placed on a control (FCD), 7-fold folic acid deficient (7FD) or 10- to 20-fold supplemented (10FS and 20FS) diet before and during pregnancy. Resulting F1 litters were weaned on the respective diets. F2 and F3 males received control diets. Genome-wide DNAme at cytosines (within CpG sites) was assessed in F1 spermatogonia, and in F1, F2 and F3 sperm. RESULTS: In F1 germ cells, a greater number of differentially methylated cytosines (DMCs) were observed in spermatogonia as compared with F1 sperm for all folic acid diets. DMCs were lower in number in F2 versus F1 sperm, while an unexpected increase was found in F3 sperm. DMCs were predominantly hypomethylated, with genes in neurodevelopmental pathways commonly affected in F1, F2 and F3 male germ cells. While no DMCs were found to be significantly inherited inter- or transgenerationally, we observed over-representation of repetitive elements, particularly young long interspersed nuclear elements (LINEs). DISCUSSION AND CONCLUSION: These results suggest that the prenatal window is the time most susceptible to folate-induced alterations in sperm DNAme in male germ cells. Altered methylation of specific sites in F1 germ cells was not present in later generations. However, the presence of DNAme perturbations in the sperm of males of the F2 and F3 generations suggests that epigenetic inheritance mechanisms other than DNAme may have been impacted by the folate diet exposure of F1 germ cells.


Subject(s)
DNA Methylation , Folic Acid Deficiency , Pregnancy , Male , Female , Mice , Animals , Folic Acid Deficiency/genetics , Folic Acid Deficiency/metabolism , Semen/metabolism , Epigenesis, Genetic , Spermatozoa/metabolism , Folic Acid/metabolism , Dietary Supplements , Spermatogonia/metabolism , DNA/metabolism
15.
Anim Biotechnol ; 34(4): 1120-1131, 2023 Nov.
Article in English | MEDLINE | ID: mdl-35020556

ABSTRACT

The differentiation of embryonic stem cells (ESCs) into germ cells in vitro could have very promising applications for infertility treatment and could provide an excellent model for uncovering the molecular mechanisms of germline generation. This study aimed to investigate the differentially expressed miRNAs (DEMs) during the differentiation of chicken ESCs (cESCs) into male germ cells and to establish a profile of the DEMs. Cells before and after induction were subjected to miRNA sequencing (miRNA-seq). A total of 113 DEMs were obtained, including 61 upregulated and 52 downregulated DEMs. GO and KEGG enrichment analyses showed that the target genes were enriched mainly in the MAPK signaling pathway, HTLV infection signaling pathway, cell adhesion molecule (CAM)-related pathways, viral myocarditis, Wnt signaling pathway, ABC transporters, TGF-ß signaling pathways, Notch signaling pathways and insulin signaling pathway. The target genes of the miRNAs were related to cell binding, cell parts and biological regulatory processes. Six DEMs, let-7k-5p, miR-132c-5p, miR-193a-5p, miR-202-5p, miR-383-5p and miR-6553-3p, were assessed by qRT-PCR, and the results were consistent with the results of miRNA-seq. Based on qRT-PCR and western blot verification, miR-383-5p and its putative target gene STRN3 were selected to construct an STRN3 3'-UTR dual-luciferase gene reporter vector and its mutant vector. The double luciferase reporter activity of the cotransfected STRN3-WT + miR-383-5p mimics group was significantly lower (by approximately 46%) than that of the other five groups (p < 0.01). There was no significant difference in luciferase activity among the other 5 groups. This study establishes a DEM profile during the process of cESC differentiation into male germ cells; illustrates the mechanisms by which miRNAs regulate target genes; provides a theoretical basis for further research on the mechanisms of the formation and regulation of male germ cells; and provides an important strategy for gene editing, animal genetic resource protection and transgenic animal production.


Subject(s)
MicroRNAs , Chick Embryo , Male , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Chickens/genetics , Chickens/metabolism , Cell Differentiation/genetics , Germ Cells/metabolism , Luciferases/genetics , Gene Expression Profiling
16.
Asian J Androl ; 25(1): 13-20, 2023.
Article in English | MEDLINE | ID: mdl-35435336

ABSTRACT

Infertility has become a serious disease since it affects 10%-15% of couples worldwide, and male infertility contributes to about 50% of the cases. Notably, a significant decrease occurs in the newborn population by 7.82 million in 2020 compared to 2016 in China. As such, it is essential to explore the effective methods of obtaining functional male gametes for restoring male fertility. Stem cells, including embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), spermatogonial stem cells (SSCs), and mesenchymal stem cells (MSCs), possess the abilities of both self-renewal and differentiation into germ cells. Significantly, much progress has recently been achieved in the generation of male germ cells in vitro from various kinds of stem cells under the specified conditions, e.g., the coculturing with Sertoli cells, three-dimensional culture system, the addition of growth factors and cytokines, and/or the overexpression of germ cell-related genes. In this review, we address the current advance in the derivation of male germ cells in vitro from stem cells based on the studies of the peers and us, and we highlight the perspectives and potential application of stem cell-derived male gametes in reproductive medicine.


Subject(s)
Induced Pluripotent Stem Cells , Infertility, Male , Humans , Infant, Newborn , Male , Germ Cells , Embryonic Stem Cells , Cell Differentiation
17.
Histochem Cell Biol ; 159(2): 127-147, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36241856

ABSTRACT

DNA double-strand breaks (DSBs) are commonly appearing deleterious DNA damages, which progressively increase in male germ cells during biological aging. There are two main pathways for repairing DSBs: homologous recombination (HR) and classical nonhomologous end joining (cNHEJ). Knockout and functional studies revealed that, while RAD51 and RPA70 proteins are indispensable for HR-based repair, KU80 and XRCC4 are the key proteins in cNHEJ repair. As is known, γH2AX contributes to these pathways through recruiting repair-related proteins to damaged site. The underlying reasons of increased DSBs in male germ cells during aging are not fully addressed yet. In this study, we aimed to analyze the spatiotemporal expression of the Rad51, Rpa70, Ku80, and Xrcc4 genes in the postnatal mouse testes, classified into young, prepubertal, pubertal, postpubertal, and aged groups according to their reproductive features and histological structures. We found that expression of these genes significantly decreased in the aged group compared with the other groups (P < 0.05). γH2AX staining showed that DSB levels in the germ cells from spermatogonia to elongated spermatids as well as in the Sertoli cells remarkably increased in the aged group (P < 0.05). The RAD51, RPA70, KU80, and XRCC4 protein levels exhibited predominant changes in the germ and Sertoli cells among groups (P < 0.05). These findings suggest that altered expression of the Rad51, Rpa70, Ku80, and Xrcc4 genes in the germ and Sertoli cells may be associated with increasing DSBs during biological aging, which might result in fertility loss.


Subject(s)
DNA Repair , Rad51 Recombinase , Male , Mice , Animals , Rad51 Recombinase/genetics , Rad51 Recombinase/metabolism , Mice, Knockout , DNA Repair/genetics , Homologous Recombination/genetics , Germ Cells/metabolism
18.
Sci Total Environ ; 859(Pt 2): 160432, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36423848

ABSTRACT

Di(2-ethyl-hexyl) phthalate (DEHP), an environmental endocrine disruptor, can destroy the sperm genomic integrity and impairs spermatogenesis. N6-methyladenosine (m6A) is involved in the cellular effects of DEHP. However, the genotoxic effect of DEHP on spermatocytes and the possible role of m6A in this process remain unclear. This study demonstrated that m6A alleviates DEHP genotoxicity in GC-2 cells. In DEHP-treated mice, DNA double-strand breaks (DSBs) were induced in the testis and spermatocytes. To further explore the molecular mechanism of DEHP genotoxicity on spermatocytes, GC-2 cells were exposed to DEHP. DEHP produced distinct genotoxicity and caused DSBs, which led to the inhibition of DNA synthesis and cell cycle arrest. The DNA damage response (DDR) was initiated to repair the DSBs induced by environmentally relevant levels of DEHP (100 µM and 200 µM). During this process, METTL3 upregulated m6A, which facilitated the DDR via stabilizing the DNA damage repair factors (Rad51 and Xrcc5) mRNA to maintain the pro-survival state. Moreover, Mettl3 knockdown partially inhibited DDR. Interestingly, high-dose DEHP (400 µM and 600 µM) directly induced apoptosis rather than the pro-survival state. Altogether: METTL3-mediated m6A participates in maintaining the pro-survival state by upregulating DDR, providing guidance for mitigating the genotoxicity of environment-related level DEHP exposure.


Subject(s)
Diethylhexyl Phthalate , Semen , Male , Mice , Animals , DNA Repair , DNA Damage , Spermatozoa , DNA , Diethylhexyl Phthalate/toxicity
19.
Asian Journal of Andrology ; (6): 13-20, 2023.
Article in English | WPRIM (Western Pacific) | ID: wpr-970987

ABSTRACT

Infertility has become a serious disease since it affects 10%-15% of couples worldwide, and male infertility contributes to about 50% of the cases. Notably, a significant decrease occurs in the newborn population by 7.82 million in 2020 compared to 2016 in China. As such, it is essential to explore the effective methods of obtaining functional male gametes for restoring male fertility. Stem cells, including embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), spermatogonial stem cells (SSCs), and mesenchymal stem cells (MSCs), possess the abilities of both self-renewal and differentiation into germ cells. Significantly, much progress has recently been achieved in the generation of male germ cells in vitro from various kinds of stem cells under the specified conditions, e.g., the coculturing with Sertoli cells, three-dimensional culture system, the addition of growth factors and cytokines, and/or the overexpression of germ cell-related genes. In this review, we address the current advance in the derivation of male germ cells in vitro from stem cells based on the studies of the peers and us, and we highlight the perspectives and potential application of stem cell-derived male gametes in reproductive medicine.


Subject(s)
Humans , Infant, Newborn , Male , Germ Cells , Embryonic Stem Cells , Cell Differentiation , Infertility, Male , Induced Pluripotent Stem Cells
20.
Mol Biol Rep ; 50(3): 1971-1979, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36534237

ABSTRACT

BACKGROUND: Previous studies have shown significant results in the differentiation of mouse-induced pluripotent stem cells (miPSCs) into primordial germ cell-like cells (PGCLCs) and that human iPSCs (hiPSCs) can also differentiate into PGCLCs; however, the efficiency of PGCLC induction from hiPSCs is < 5%. In this study, we examined a new protocol to differentiate hiPSCs into PGCLCs. METHODS AND RESULTS: hiPSCs-derived embryoid bodies (EBs) were exposed to differentiate inducing factors, bone morphogenetic protein 4 (BMP4), and retinoic acid (RA) for 6 days. Cell differentiation was assessed by reverse transcriptase-polymerase chain reaction (RT-PCR) and immunofluorescence (IF) studies. Our results showed increased expression of the PRDM1 gene on the first day of differentiation. On other days, DAZL, VASA, and STRA8 genes increased, and the expression of PRDM1, NANOG, and OCT4 genes decreased. The expression of VASA, C-KIT, and STRA8 proteins was confirmed by IF. A flow cytometry analysis revealed that ~ 60% of differentiated cells were VASA- and STRA8-positive. CONCLUSION: EB formation and constant exposure of EBs to BMP4 and RA lead to the differentiation of hiPSCs into PGCLCs.


Subject(s)
Induced Pluripotent Stem Cells , Humans , Animals , Mice , Cells, Cultured , Cell Differentiation/genetics , Germ Cells/metabolism , Genes, Homeobox , Tretinoin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL