Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters











Publication year range
1.
Glob Chall ; 8(7): 2300331, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39006061

ABSTRACT

Over the past decades, red meat allergy, also known as mammalian meat allergy, which manifests differently from classic food allergies, has been reported in different countries and regions, including China. The allergen of this disease is not a protein but an oligosaccharide: galactose-α-1,3-galactose, i.e., alpha-gal or α-gal. Therefore, this clinical syndrome is also called α-gal syndrome (AGS). It clinically manifests as delayed anaphylaxis, i.e., patients generally develop allergic symptoms 2-6 h after ingesting red meat. This clinical manifestation is believed to be related to sensitization to α-gal after tick bites. Sensitized individuals may also develop anaphylaxis after ingesting food and medicine or being exposed to medical equipment containing α-gal, such as cetuximab and gelatin. Here, the literature on AGS is reviewed for a better understanding of its pathogenesis, clinical diagnosis, and treatment.

2.
Article in English | MEDLINE | ID: mdl-39067555

ABSTRACT

BACKGROUND AND AIMS: Alpha-gal syndrome (AGS) is an IgE-mediated allergic reaction to galactose-α-1,3-galactose, primarily linked with Lone Star tick bites in the United States. It presents with symptoms ranging from urticaria and gastrointestinal (GI) manifestations to delayed anaphylaxis following red meat consumption. We aimed to study AGS patients' clinical manifestations, diagnosis, and outcomes. METHODS: A retrospective chart review of patients who underwent serological testing for suspected AGS between 2014 and 2023 at Mayo Clinic was performed. Patients with positive serology were age and sex matched with those who tested negative. Clinical characteristics of seropositive cohort with and without GI symptoms were compared, and outcomes assessed. RESULTS: Of 1260 patients who underwent testing, 124 tested positive for AGS. They were matched with 380 seronegative control subjects. AGS patients reported a higher frequency of tick bites (odds ratio [OR], 26.0; 95% confidence interval [CI], 9.8-68.3), reported a higher prevalence of urticaria (56% vs 37%; P = .0008), and were less likely to have asthma (OR, 0.4; 95% CI, 0.3-0.7). They had a lower prevalence of heartburn (6% vs 12%; P = .03) and bloating (6% vs 13%; P = .03). A total of 47% had GI symptoms, and a higher proportion were female than those without GI symptoms (69% vs 35%; P = .002). During a mean follow-up of 27 months, 22 of 40 patients reported symptom resolution after avoiding red meat, and 7 were able to transition to regular diet. CONCLUSIONS: A diagnosis of AGS should be strongly considered in patients with a history of tick bites and clinical presentation of allergic or GI manifestations. Dietary intervention is effective in most but not all patients.

3.
J Allergy Clin Immunol Pract ; 12(10): 2817-2825.e2, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38944197

ABSTRACT

BACKGROUND: IgE to galactose-alpha-1,3-galactose (alpha-gal) is linked to tick bites and an important cause of anaphylaxis and urticarial reactions to mammalian meat. The alpha-gal syndrome (AGS) is recognized as being common in the southeastern United States. However, prevalence studies are lacking and open questions remain about risk factors and clinical presentation of alpha-gal sensitization. OBJECTIVE: Here we characterized the prevalence as well as the presentation and risk factors of AGS and alpha-gal IgE sensitization in adults in central Virginia recruited without regard to the history of allergic disease. METHODS: Adults in central Virginia, primarily University of Virginia Health employees, were recruited as part of a COVID-19 vaccine study. Subjects provided at least one blood sample and answered questionnaires about medical and dietary history. We used ImmunoCAP for IgE assays and assessed the ABO blood group by reverse typing using stored serum. We also investigated biobanked serum from COVID-19 patients. RESULTS: Median age of the 267 enrollees was 42 years, 76% were female, and 43 (16%) were sensitized to alpha-gal (cutoff of 0.1 IU/mL), of which mammalian meat allergy was reported by seven (2.6%). Sensitized subjects (1) were older, (2) had higher total IgE levels but a similar frequency of IgE to common respiratory allergens, and (3) were more likely to report tick bites than were nonsensitized subjects. Among those who were sensitized, alpha-gal IgE levels were higher among meat-allergic than nonallergic subjects (geometric mean, 9.0 vs 0.5 IU/mL; P < .001). Mammalian meat and dairy consumption was common in individuals with low-level sensitization. CONCLUSION: In central Virginia, AGS is a dominant cause of adult food allergy with a prevalence approaching or exceeding 2%.


Subject(s)
COVID-19 , Food Hypersensitivity , Immunoglobulin E , Humans , Immunoglobulin E/blood , Female , Male , Adult , Virginia/epidemiology , Middle Aged , Food Hypersensitivity/epidemiology , Food Hypersensitivity/immunology , Food Hypersensitivity/diagnosis , COVID-19/immunology , COVID-19/epidemiology , COVID-19 Vaccines/immunology , COVID-19 Vaccines/adverse effects , SARS-CoV-2/immunology , Cohort Studies , Tick Bites/immunology , Tick Bites/epidemiology , Prevalence , Risk Factors , Allergens/immunology , Animals , Meat , Aged , Disaccharides/immunology
4.
Allergy ; 79(6): 1440-1454, 2024 06.
Article in English | MEDLINE | ID: mdl-38193233

ABSTRACT

The recent recognition of a syndrome of tick-acquired mammalian meat allergy has transformed the previously held view that mammalian meat is an uncommon allergen. The syndrome, mediated by IgE antibodies against the oligosaccharide galactose-alpha-1,3-galactose (alpha-gal), can also involve reactions to visceral organs, dairy, gelatin and other products, including medications sourced from non-primate mammals. Thus, fittingly, this allergic disorder is now called the alpha-gal syndrome (AGS). The syndrome is strikingly regional, reflecting the important role of tick bites in sensitization, and is more common in demographic groups at risk of tick exposure. Reactions in AGS are delayed, often by 2-6 h after ingestion of mammalian meat. In addition to classic allergic symptomatology such as urticaria and anaphylaxis, AGS is increasingly recognized as a cause of isolated gastrointestinal morbidity and alpha-gal sensitization has also been linked with cardiovascular disease. The unusual link with tick bites may be explained by the fact that allergic cells and mediators are mobilized to the site of tick bites and play a role in resistance against ticks and tick-borne infections. IgE directed to alpha-gal is likely an incidental consequence of what is otherwise an adaptive immune strategy for host defense against endo- and ectoparasites, including ticks.


Subject(s)
Anaphylaxis , Food Hypersensitivity , Immunoglobulin E , Tick Bites , Tick-Borne Diseases , Urticaria , Animals , Humans , Allergens/immunology , Anaphylaxis/immunology , Anaphylaxis/etiology , Anaphylaxis/diagnosis , Disaccharides/immunology , Food Hypersensitivity/immunology , Food Hypersensitivity/etiology , Immunoglobulin E/immunology , Mammals/immunology , Meat/adverse effects , Syndrome , Tick Bites/immunology , Tick Bites/complications , Ticks/immunology , Urticaria/immunology , Urticaria/etiology , Tick-Borne Diseases/immunology
5.
J Allergy Clin Immunol Pract ; 12(1): 175-184.e5, 2024 01.
Article in English | MEDLINE | ID: mdl-37918651

ABSTRACT

BACKGROUND: IgE to the oligosaccharide galactose-alpha-1,3-galactose (alpha-gal) is an important cause of allergic reactions to mammalian meat. The "alpha-gal syndrome" is strongly associated with a preceding history of tick bites and in the United States is most commonly reported in parts of the southeast, but there has been limited investigation into national alpha-gal sensitization patterns and the relevance of other risk factors. OBJECTIVE: To systematically investigate alpha-gal IgE prevalence, regional patterns, and risk factors. METHODS: Alpha-gal IgE was measured by ImmunoCAP in biobanked serum samples collected from 3000 service members who presented for intake to 1 of 10 military bases in the central/eastern United States. Alpha-gal IgE sensitization (cutoff 0.1 international units/mL) was related to home of record at enlistment. RESULTS: Of the cohort, 2456 (81.9%) subjects were male, median age was 19 years (interquartile range: 18-22 years), and alpha-gal IgE was detected in 179 (6.0%). Home of record spanned all 50 states, with a median of 36 recruits per state (range: 3-261). The highest prevalence rates were in Arkansas (39%), Oklahoma (35%), and Missouri (29%), with several other southeastern states >10%. Granular mapping revealed sensitization patterns that closely mimicked county-level Amblyomma americanum reports and Ehrlichia chaffeensis infections. Sensitization was associated with male sex, rural residence, and White race in univariate and multivariable models. CONCLUSIONS: In this systematic survey, the prevalence of alpha-gal IgE among incoming military personnel was 6.0%. There were significant regional differences, with an overall pattern consistent with the known range of the lone star tick (A. americanum) and highest frequency in an area including Arkansas, Oklahoma, and Missouri.


Subject(s)
Food Hypersensitivity , Military Personnel , Animals , Female , Humans , Male , Young Adult , Allergens , Galactose , Immunoglobulin E , Mammals , Prevalence , United States/epidemiology
6.
bioRxiv ; 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-38014105

ABSTRACT

Introduction: Alpha-Gal Syndrome (AGS) is a delayed allergic reaction due to specific IgE antibodies targeting galactose-α-1,3-galactose (α-gal), a carbohydrate found in red meat. This condition has gained significant attention globally due to its increasing prevalence, with more than 450,000 cases estimated in the United States alone. Previous research has established a connection between AGS and tick bites, which sensitize individuals to α-gal antigens and elevate the levels of α-gal specific IgE. However, the precise mechanism by which tick bites influence the hosts immune system and contribute to the development of AGS remains poorly understood. This study investigates various factors related to ticks and the host associated with the development of AGS following a tick bite, using mice with a targeted disruption of alpha-1,3-galactosyltransferase (AGKO) as a model organism. Methods: Lone-star tick (Amblyomma americanum) and gulf-coast tick (Amblyomma maculatum) nymphs were used to sensitize AGKO mice, followed by pork meat challenge. Tick bite site biopsies from sensitized and non-sensitized mice were subjected to mRNA gene expression analysis to assess the host immune response. Antibody responses in sensitized mice were also determined. Results: Our results showed a significant increase in the titer of total IgE, IgG1, and α-gal IgG1 antibodies in the lone-star tick-sensitized AGKO mice compared to the gulf-coast tick-sensitized mice. Pork challenge in Am. americanum -sensitized mice led to a decline in body temperature after the meat challenge. Gene expression analysis revealed that Am. americanum bites direct mouse immunity toward Th2 and facilitate host sensitization to the α-gal antigen, while Am. maculatum did not. Conclusion: This study supports the hypothesis that specific tick species may increase the risk of developing α-gal-specific IgE and hypersensitivity reactions or AGS, thereby providing opportunities for future research on the mechanistic role of tick and host-related factors in AGS development.

7.
J Allergy Clin Immunol Glob ; 2(4): 100139, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37781673

ABSTRACT

Pork-cat syndrome can occur in children younger than 10 years. A history of contact with animals since infancy and history of severe atopic dermatitis, which can promote epicutaneous sensitization to animal serum albumin, may be helpful in diagnosis.

8.
JPGN Rep ; 4(3): e322, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37600621

ABSTRACT

Mammalian meat allergy is a delayed immunoglobulin E (IgE) mediated hypersensitivity reaction to galactose-alpha-1,3-galactose (alpha-gal). Alpha-gal is an oligosaccharide present on glycoproteins and glycolipids of nonprimate mammals as well as biologic agents prepared using mammalian cells including infliximab. We describe a pediatric patient with Crohn's disease who developed urticaria and pruritus roughly 6 hours after her very first infliximab infusion that progressed to chronic urticaria following subsequent infliximab infusions. She was diagnosed with mammalian meat allergy based on an elevated serum IgE level directed against alpha-gal. Her symptoms resolved once infliximab infusions were discontinued and did not recur after commencing therapy with adalimumab.

9.
Life (Basel) ; 13(3)2023 Mar 05.
Article in English | MEDLINE | ID: mdl-36983854

ABSTRACT

(1) Background: alpha-gal syndrome (AGS) is a serious, potentially life-threatening allergic reaction. This is a type of food allergy to red meat and other mammalian products (e.g., gelatin). In Poland, this problem seems to be rare or, more likely, very underdiagnosed. The diagnosis of AGS is difficult. It seems that the knowledge about this syndrome is insufficient. There are no effective diagnostic tools able to clearly diagnose this cross-reactive allergy. This paper presents the clinical application of a non-standard method in the diagnosis of a cross-reactive allergy using the example of AGS. (2) Methods: standard tests for in vitro allergy diagnostics and the non-standard ImmunoCAP inhibition test(IT) were carried out for serum collected from a patient with a red meat allergy. (3) Results: the serum concentration of anti-α-Gal IgE was very high (302 kUA/L), and IgE antibodies toanti-mammalian-meat allergens were found. The level of IgE antibodies to mammalian meat allergens decreased after blocking on α-GAL-CAP. The concentration of anti-α-Gal IgE decreased after blocking on CAPs coated with various mammalian meat allergens. Blocking with allergens of poultry meat did not affect the concentration of anti-α-Gal IgE. (4) Conclusions: the ImmunoCAP ITseems to be a useful tool in the diagnosis of cross-reactive allergies. Based on their clinical history and test results, the patient was diagnosed with AGS caused by a primary sensitization to α-Gal after a tick bite. This is the second case of AGS described in Poland and the first in Pomerania.

10.
Curr Issues Mol Biol ; 45(2): 1168-1182, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36826022

ABSTRACT

Cross-reactivity of allergens is the cause of various, sometimes unexpected, clinical reactions. There are no standard methods to investigate cross-reactivity. We present an experimental model of a two-sided inhibition test (IT) on ImmunoCAP membranes (CAP). We constructed the described model based on the known cross-allergy syndrome to red meat developing in people bitten by ticks (α-Gal syndrome; AGS). Some individuals who are bitten by ticks develop IgE antibodies specific to the carbohydrate determinant, galactose-α-1,3-galactose (α-Gal), present in the tick's saliva. These antibodies can cross-react with α-Gal molecules expressed on mammalian meat proteins. The well-known property of anti-α-Gal IgE antibodies binding by various sources of this allergen was used by us in the proposed model of the two-sided inhibition test on ImmunoCAP membranes. We expected that anti-α-Gal IgE antibodies bind allergens from mammalian meat and blocking them abolishes this reactivity, and the two-sided inhibition test model we proposed on ImmunoCAP membranes allowed us to observe such a relationship. We conducted the experiment three times on biological material from people with different clinical manifestations of allergy to α-Gal, each time obtaining similar results. In conclusion, the model of bilateral inhibition on ImmunoCAP membranes proposed by us seems to be an attractive, simple tool for direct testing of allergic cross-reactivity.

11.
Curr Gastroenterol Rep ; 25(2): 21-30, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36705797

ABSTRACT

PURPOSE OF REVIEW: Food allergies are typically not considered as a cause of gastrointestinal (GI) distress without additional allergic symptoms, apart from celiac disease and eosinophilic esophagitis. However, recent reports of patients with alpha-gal syndrome who presented with GI-only symptoms like abdominal pain, vomiting, and diarrhea challenge this paradigm. Alpha-gal syndrome is an IgE-mediated allergy characterized by delayed reactions after eating mammalian meat or mammalian-derived products that contain galactose-alpha-1,3-galactose (alpha-gal). The purpose of this review is to discuss our current understanding of food allergies, GI illness, and the GI manifestations of alpha-gal syndrome. RECENT FINDINGS: Among Southeastern U.S. GI clinic patients who screened positive for serum alpha-gal IgE, a majority of patients reported significant symptom improvement on an alpha-gal-avoidant diet, suggesting that the allergy had played a role in their GI symptoms. Diagnosis of alpha-gal syndrome is typically made with concerning allergic symptoms, elevated alpha-gal specific IgE in the serum, and symptom improvement on an alpha-gal avoidant diet. Alpha-gal syndrome can cause a delayed allergic response that is increasingly recognized worldwide, including among patients with predominant GI symptoms.


Subject(s)
Food Hypersensitivity , Gastroenterologists , Animals , Humans , Galactose , Immunoglobulin E , Food Hypersensitivity/complications , Food Hypersensitivity/diagnosis , Syndrome , Mammals
12.
Front Immunol ; 14: 1336883, 2023.
Article in English | MEDLINE | ID: mdl-38390396

ABSTRACT

Introduction: Alpha-Gal Syndrome (AGS) is a delayed allergic reaction due to specific IgE antibodies targeting galactose-α-1,3-galactose (α-gal), a carbohydrate found in red meat. This condition has gained significant attention globally due to its increasing prevalence, with more than 450,000 cases estimated just in the United States alone. Previous research has established a connection between AGS and tick bites, which sensitize individuals to α-gal antigens and elevate the levels of specific IgE. However, the precise mechanism by which tick bites influence the host's immune system and contribute to the development of AGS remains poorly understood. This study investigates various factors related to ticks and the host associated with the development of AGS following a tick bite, using mice with a targeted disruption of alpha-1,3-galactosyltransferase (AGKO) as a model organism. Methods: Lone-star tick (Amblyomma americanum) and gulf-coast tick (Amblyomma maculatum) nymphs were used to sensitize AGKO mice, followed by pork meat challenge. Tick bite site biopsies from sensitized and non-sensitized mice were subjected to mRNA gene expression analysis to assess the host immune response. Antibody responses in sensitized mice were also determined. Results: Our results showed a significant increase in the total IgE, IgG1, and α-gal IgG1 antibodies titers in the lone-star tick-sensitized AGKO mice compared to the gulf-coast tick-sensitized mice. Pork challenge in Am. americanum -sensitized mice led to a decline in body temperature after the meat challenge. Gene expression analysis revealed that Am. americanum bites direct mouse immunity toward Th2 and facilitate host sensitization to the α-gal antigen. Conclusion: This study supports the hypothesis that specific tick species may increase the risk of developing α-gal-specific IgE and hypersensitivity reactions or AGS, thereby providing opportunities for future research on the mechanistic role of tick and host-related factors in AGS development.


Subject(s)
Food Hypersensitivity , Tick Bites , Ticks , Animals , Mice , Galactose , Disease Models, Animal , Immunoglobulin E , Amblyomma , Immunoglobulin G
13.
Immunotargets Ther ; 11: 37-54, 2022.
Article in English | MEDLINE | ID: mdl-36134173

ABSTRACT

Alpha-gal syndrome is an unconventional food allergy, characterized by IgE-mediated hypersensitivity responses to the glycan galactose-alpha-1,3-galactose (alpha-gal) and not to a food-protein. In this review, we discuss how alpha-gal syndrome reframes our current conception of the mechanisms of pathogenesis of food allergy. The development of alpha-gal IgE is associated with tick bites though the possibility of other parasites promoting sensitization to alpha-gal remains. We review the immune cell populations involved in the sensitization and effector phases of alpha-gal syndrome and describe the current understanding of why allergic responses to ingested alpha-gal can be delayed by several hours. We review the foundation of management in alpha-gal syndrome, namely avoidance, but also discuss the use of antihistamines, mast cell stabilizers, and the emerging role of complementary and alternative therapies, biological products, and oral immunotherapy in the management of this condition. Alpha-gal syndrome influences the safety and tolerability of medications and medical devices containing or derived from mammalian products and impacts quality of life well beyond food choices.

14.
Proc Natl Acad Sci U S A ; 119(28): e2123212119, 2022 07 12.
Article in English | MEDLINE | ID: mdl-35867757

ABSTRACT

Humans lack the capacity to produce the Galα1-3Galß1-4GlcNAc (α-gal) glycan, and produce anti-α-gal antibodies upon exposure to the carbohydrate on a diverse set of immunogens, including commensal gut bacteria, malaria parasites, cetuximab, and tick proteins. Here we use X-ray crystallographic analysis of antibodies from α-gal knockout mice and humans in complex with the glycan to reveal a common binding motif, centered on a germline-encoded tryptophan residue at Kabat position 33 (W33) of the complementarity-determining region of the variable heavy chain (CDRH1). Immunoglobulin sequencing of anti-α-gal B cells in healthy humans and tick-induced mammalian meat anaphylaxis patients revealed preferential use of heavy chain germline IGHV3-7, encoding W33, among an otherwise highly polyclonal antibody response. Antigen binding was critically dependent on the presence of the germline-encoded W33 residue for all of the analyzed antibodies; moreover, introduction of the W33 motif into naive IGHV3-23 antibody phage libraries enabled the rapid selection of α-gal binders. Our results outline structural and genetic factors that shape the human anti-α-galactosyl antibody response, and provide a framework for future therapeutics development.


Subject(s)
Anaphylaxis , Antibodies , Food Hypersensitivity , Immunoglobulin Heavy Chains , Immunoglobulin Variable Region , Tick-Borne Diseases , Trisaccharides , Anaphylaxis/immunology , Animals , Antibodies/chemistry , Antibodies/genetics , Antibody Formation/genetics , Antigen-Antibody Complex/chemistry , Crystallography, X-Ray , Food Hypersensitivity/immunology , Humans , Immunoglobulin Heavy Chains/chemistry , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Variable Region/chemistry , Immunoglobulin Variable Region/immunology , Mice , Mice, Knockout , Peptide Library , Protein Conformation , Tick-Borne Diseases/immunology , Trisaccharides/genetics , Trisaccharides/immunology
15.
Bioessays ; 44(1): e2100142, 2022 01.
Article in English | MEDLINE | ID: mdl-34811781

ABSTRACT

Tick bite induced α-gal syndrome (AGS) following consumption of mammalian meat is a recently described intriguing disease occurring worldwide. Here we argue that AGS and delayed allergy in general is an adaptive defence method against cancer. Our hypothesis synthesizes two lines of supporting evidence. First, allergy has been shown to have direct anti-cancer effects with unknown mechanism. Second, eating processed meat was shown to be linked to developing cancer. Humans lost their genes encoding molecules α-gal 30 MYA and Neu5Gc 2 MYA, the latter co-occurring with the start of using fire. These molecules are acquired from external sources, as tick bite for α-gal and mammalian meat for Neu5Gc, the latter accumulating in tumors. The resulting specific delayed allergic response is a molecular adaptation to fight cancer. By further testing and applying our hypothesis, new avenues in cancer research and therapy will open that might save lives and decrease human suffering.


Subject(s)
Food Hypersensitivity , Tick Bites , Animals , Eating , Humans , Tick Bites/drug therapy
16.
Immun Inflamm Dis ; 9(3): 984-990, 2021 09.
Article in English | MEDLINE | ID: mdl-34034363

ABSTRACT

INTRODUCTION: Alpha-gal syndrome (AGS) is characterized by delayed hypersensitivity to non-primate mammalian meat in people having specific immunoglobulin E (sIgE) to the oligosaccharide galactose-alpha-1,3-galactose. AGS has been linked to tick bites from Amblyomma americanum (Aa) in the U.S. A small animal model of meat allergy is needed to study the mechanism of alpha-gal sensitization, the effector phase leading to delayed allergic responses and potential therapeutics to treat AGS. METHODS: Eight- to ten-weeks old mice with a targeted inactivation of alpha-1,3-galactosyltransferase (AGKO) were injected intradermally with 50 µg of Aa tick salivary gland extract (TSGE) on days 0, 7, 21, 28, 42, and 49. Total IgE and alpha-gal sIgE were quantitated on Day 56 by enzyme-linked immunosorbent assay. Mice were challenged orally with 400 mg of cooked pork kidney homogenate or pork fat. Reaction severity was assessed by measuring a drop in core body temperature and scoring allergic signs. RESULTS: Compared to control animals, mice treated with TSGE had 190-fold higher total IgE on Day 56 (0.60 ± 0.12 ng/ml vs. 113.2 ± 24.77 ng/ml; p < 0.001). Alpha-gal sIgE was also produced in AGKO mice following TSGE sensitization (undetected vs. 158.4 ± 72.43 pg/ml). Further, sensitized mice displayed moderate clinical allergic signs along with a drop in core body temperature of ≥2°C as an objective measure of a systemic allergic reaction. Interestingly, female mice had higher total IgE responses to TSGE treatment but male mice had larger declines in mean body temperature. CONCLUSION: TSGE-sensitized AGKO mice generate sIgE to alpha-gal and demonstrate characteristic allergic responses to pork fat and pork kidney. In keeping with the AGS responses documented in humans, mice reacted more rapidly to organ meat than to high fat pork challenge. This mouse model establishes the central role of tick bites in the development of AGS and provides a small animal model to mechanistically study mammalian meat allergy.


Subject(s)
Food Hypersensitivity , Ticks , Animals , Female , Male , Mice , Plant Extracts , Salivary Glands
17.
J Allergy Clin Immunol ; 147(4): 1393-1401.e7, 2021 04.
Article in English | MEDLINE | ID: mdl-33539899

ABSTRACT

BACKGROUND: IgE to α-Gal is a cause of mammalian meat allergy and has been linked to tick bites in North America, Australia, and Eurasia. Reports from the developing world indicate that α-Gal sensitization is prevalent but has been little investigated. OBJECTIVE: We sought evidence for the cause(s) of α-Gal sensitization and lack of reported meat allergy among children in less developed settings in Ecuador and Kenya. METHODS: IgE to α-Gal and total IgE were assessed in children from Ecuador (n = 599) and Kenya (n = 254) and compared with children with (n = 42) and without known (n = 63) mammalian meat allergy from the southeastern United States. Information on diet, potential risk factors, and helminth infections was available for children from Ecuador. IgG4 to α-Gal and antibodies to regionally representative parasites were assessed in a subset of children. RESULTS: In Ecuador (32%) and Kenya (54%), α-Gal specific IgE was prevalent, but levels were lower than in children with meat allergy from the United States. Sensitization was associated with rural living, antibody markers of Ascaris exposure, and total IgE, but not active infections with Ascaris or Trichuris species. In Ecuador, 87.5% reported consuming beef at least once per week, including 83.9% of those who had α-Gal specific IgE. Levels of α-Gal specific IgG4 were not high in Ecuador, but were greater than in children from the United States. CONCLUSIONS: These results suggest that in areas of the developing world with endemic parasitism, α-Gal sensitization is (1) common, (2) associated with Ascaris exposure, and (3) distinguished by a low percentage of specific/total IgE compared with individuals with meat allergy in the United States.


Subject(s)
Disaccharides/immunology , Food Hypersensitivity/immunology , Immunoglobulin E/immunology , Immunoglobulin G/immunology , Adolescent , Adult , Animals , Ascaris/immunology , Ascaris/isolation & purification , Child , Child, Preschool , Diet , Ecuador/epidemiology , Feces/parasitology , Female , Food Hypersensitivity/blood , Food Hypersensitivity/epidemiology , Food Hypersensitivity/parasitology , Humans , Immunoglobulin E/blood , Immunoglobulin G/blood , Kenya/epidemiology , Male , Prevalence , Red Meat , Trichuris/isolation & purification , Virginia/epidemiology , Young Adult
18.
J Allergy Clin Immunol ; 147(2): 643-652.e7, 2021 02.
Article in English | MEDLINE | ID: mdl-32522461

ABSTRACT

BACKGROUND: A syndrome of mammalian meat allergy relating to IgE specific for galactose-α-1,3-galactose (α-Gal) was first reported 10 years ago in the southeastern United States and has been related to bites of the lone star tick (Amblyomma americanum). OBJECTIVE: Here we investigated the epidemiology of the "α-Gal syndrome" in the United States and sought additional evidence for the connection to tick bites. METHODS: A survey of allergists was conducted by using a snowball approach. A second tier of the survey included questions about anaphylaxis to imported fire ants (IFAs). History of tick bites and tick-related febrile illness were assessed as part of a case-control study in Virginia. Antibody assays were conducted on sera from subjects reporting allergic reactions to mammalian meat or IFA. RESULTS: In North America the α-Gal syndrome is recognized across the Southeast, Midwest, and Atlantic Coast, with many providers in this area managing more than 100 patients each. The distribution of cases generally conformed to the reported range of A americanum, although within this range there was an inverse relationship between α-Gal cases and cases of IFA anaphylaxis that were closely related to the territory of IFA. The connection between tick bites and α-Gal sensitization was further supported by patients' responses to a questionnaire and the results of serologic tests. CONCLUSIONS: The α-Gal syndrome is commonly acquired in adulthood as a consequence of tick bites and has a regional distribution that largely conforms to the territory of the lone star tick. The epidemiology of the syndrome is expected to be dynamic and shifting north because of climate change and ecologic competition from IFA.


Subject(s)
Anaphylaxis/etiology , Ants , Food Hypersensitivity/epidemiology , Tick-Borne Diseases/epidemiology , Amblyomma , Anaphylaxis/immunology , Animals , Food Hypersensitivity/etiology , Geography , Humans , Immunoglobulin E/immunology , Tick Bites/complications , Tick Bites/immunology , United States/epidemiology
19.
Foods ; 9(11)2020 Nov 13.
Article in English | MEDLINE | ID: mdl-33203004

ABSTRACT

A lateral flow immunoassay for sensitive detection of skeletal troponin I (TnI) as a specific, thermostable marker of muscle tissue was developed. Due to the antibodies' choice, the assay specifically detects mammalian TnI (in beef, pork, lamb, and horse) but does not detect bird TnI (in chicken or turkey), thus enabling differentiation of these types of raw meat materials. The assay is based on a sandwich format of the analysis using gold nanoparticles as labels. The time of the assay is 15 min, and the TnI detection limit is 25 ng/mL. A buffer solution is proposed for efficient extraction of TnI from muscle tissues and from finished meat products that have undergone technological processing (smoking-cooking-smoking, cooking and smoking). The possibility of detecting beef addition in minced chicken down to 1% was demonstrated.

20.
Int J Mol Sci ; 21(16)2020 Aug 11.
Article in English | MEDLINE | ID: mdl-32796496

ABSTRACT

Transepithelial transport of proteins is an important step in the immune response to food allergens. Mammalian meat allergy is characterized by an IgE response against the carbohydrate moiety galactosyl-α-1,3-galactose (α-Gal) present on mammalian glycoproteins and glycolipids, which causes severe allergic reactions several hours after red meat consumption. The delayed reaction may be related to the processing of α-Gal carrying proteins in the gastrointestinal tract. The aim of this study was to investigate how protein glycosylation by α-Gal affects the susceptibility to gastric digestion and transport through the Caco-2 cell monolayer. We found that α-Gal glycosylation altered protein susceptibility to gastric digestion, where large protein fragments bearing the α-Gal epitope remained for up to 2 h of digestion. Furthermore, α-Gal glycosylation of the protein hampered transcytosis of the protein through the Caco-2 monolayer. α-Gal epitope on the intact protein could be detected in the endosomal fraction obtained by differential centrifugation of Caco-2 cell lysates. Furthermore, the level of galectin-3 in Caco-2 cells was not affected by the presence of α-Gal glycosylated BSA (bovine serum albumin) (BSA-α-Gal). Taken together, our data add new knowledge and shed light on the digestion and transport of α-Gal glycosylated proteins.


Subject(s)
Disaccharides/metabolism , Proteins/chemistry , Transcytosis , Animals , Caco-2 Cells , Carbohydrates/chemistry , Cattle , Endosomes/metabolism , Galectin 3/metabolism , Glycosylation , Humans , Pepsin A/metabolism , Protein Transport , Serum Albumin, Bovine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL