ABSTRACT
ABSTRACT: We aimed to apply genomic information based on SNP (single nucleotide polymorphism) markers for the genetic evaluation of the traits stay-green (SG), plant architecture (PA), grain aspect (GA) and grain yield (GY) in common bean through Bayesian models. These models were compared in terms of prediction accuracy and ability for heritability estimation for each one of the mentioned traits. A total of 80 cultivars were genotyped for 377 SNP markers, whose effects were estimated by five different Bayesian models: Bayes A (BA), B (BB), C (BC), LASSO (BL) e Ridge regression (BRR). Although, prediction accuracies calculated by means of cross-validation have been similar within each trait, the BB model stood out for the trait SG, whereas the BRR was indicated for the remaining traits. The heritability estimates for the traits SG, PA, GA and GY were 0.61, 0.28, 0.32 and 0.29, respectively. In summary, the Bayesian methods applied here were effective and ease to be implemented. The used SNP markers can help in the early selection of promising genotypes, since incorporating genomic information increase the prediction accuracy of the estimated genetic merit.
RESUMO: Objetivou-se incorporar informações genômicas de marcadores SNP (single nucleotide polymorphism) na avaliação genética das características stay-green (SG), arquitetura de planta (AP), aspecto de grãos (AG) e produtividade de grãos (PG) em feijoeiro-comum via modelos Bayesianos. Estes modelos foram comparados quanto a acurácia de predição e habilidade de estimação da herdabilidade para cada característica. Utilizaram-se informações de 80 cultivares genotipadas para 377 marcadores SNP, cujos efeitos de substituição alélica foram estimados por meio de cinco diferentes modelos Bayesianos: Bayes A (BA), B (BB), C (BC), LASSO (BL) e regressão ridge (BRR). Embora as acurácias de predição calculadas por meio de análise de validação cruzada tenham sido similares dentro de cada característica, o modelo BB se destacou para a característica SG, enquanto o modelo BRR foi indicado para as demais. As herdabilidades estimadas para SG, AP, AG e PG foram, respectivamente, 0,61, 0,28, 0,32 e 0,29. Em resumo, os métodos contemplados mostraram-se efetivos e de fácil implementação. O conjunto de marcadores utilizado pode auxiliar na seleção precoce de genótipos promissores, uma vez que a incorporação de informações genômicas aumenta a acurácia de predição do mérito genético estimado.
ABSTRACT
We aimed to apply genomic information based on SNP (single nucleotide polymorphism) markers for the genetic evaluation of the traits stay-green (SG), plant architecture (PA), grain aspect (GA) and grain yield (GY) in common bean through Bayesian models. These models were compared in terms of prediction accuracy and ability for heritability estimation for each one of the mentioned traits. A total of 80 cultivars were genotyped for 377 SNP markers, whose effects were estimated by five different Bayesian models: Bayes A (BA), B (BB), C (BC), LASSO (BL) e Ridge regression (BRR). Although, prediction accuracies calculated by means of cross-validation have been similar within each trait, the BB model stood out for the trait SG, whereas the BRR was indicated for the remaining traits. The heritability estimates for the traits SG, PA, GA and GY were 0.61, 0.28, 0.32 and 0.29, respectively. In summary, the Bayesian methods applied here were effective and ease to be implemented. The used SNP markers can help in the early selection of promising genotypes, since incorporating genomic information increase the prediction accuracy of the estimated genetic merit.(AU)
Objetivou-se incorporar informações genômicas de marcadores SNP (single nucleotide polymorphism) na avaliação genética das características stay-green (SG), arquitetura de planta (AP), aspecto de grãos (AG) e produtividade de grãos (PG) em feijoeiro-comum via modelos Bayesianos. Estes modelos foram comparados quanto a acurácia de predição e habilidade de estimação da herdabilidade para cada característica. Utilizaram-se informações de 80 cultivares genotipadas para 377 marcadores SNP, cujos efeitos de substituição alélica foram estimados por meio de cinco diferentes modelos Bayesianos: Bayes A (BA), B (BB), C (BC), LASSO (BL) e regressão ridge (BRR). Embora as acurácias de predição calculadas por meio de análise de validação cruzada tenham sido similares dentro de cada característica, o modelo BB se destacou para a característica SG, enquanto o modelo BRR foi indicado para as demais. As herdabilidades estimadas para SG, AP, AG e PG foram, respectivamente, 0,61, 0,28, 0,32 e 0,29. Em resumo, os métodos contemplados mostraram-se efetivos e de fácil implementação. O conjunto de marcadores utilizado pode auxiliar na seleção precoce de genótipos promissores, uma vez que a incorporação de informações genômicas aumenta a acurácia de predição do mérito genético estimado.(AU)
Subject(s)
Phaseolus/growth & development , Phaseolus/genetics , Polymorphism, Single Nucleotide , Genome , Bayes TheoremABSTRACT
ABSTRACT: We aimed to apply genomic information based on SNP (single nucleotide polymorphism) markers for the genetic evaluation of the traits "stay-green" (SG), plant architecture (PA), grain aspect (GA) and grain yield (GY) in common bean through Bayesian models. These models were compared in terms of prediction accuracy and ability for heritability estimation for each one of the mentioned traits. A total of 80 cultivars were genotyped for 377 SNP markers, whose effects were estimated by five different Bayesian models: Bayes A (BA), B (BB), C (BC), LASSO (BL) e Ridge regression (BRR). Although, prediction accuracies calculated by means of cross-validation have been similar within each trait, the BB model stood out for the trait SG, whereas the BRR was indicated for the remaining traits. The heritability estimates for the traits SG, PA, GA and GY were 0.61, 0.28, 0.32 and 0.29, respectively. In summary, the Bayesian methods applied here were effective and ease to be implemented. The used SNP markers can help in the early selection of promising genotypes, since incorporating genomic information increase the prediction accuracy of the estimated genetic merit.
RESUMO: Objetivou-se incorporar informações genômicas de marcadores SNP ("single nucleotide polymorphism") na avaliação genética das características "stay-green" (SG), arquitetura de planta (AP), aspecto de grãos (AG) e produtividade de grãos (PG) em feijoeiro-comum via modelos Bayesianos. Estes modelos foram comparados quanto a acurácia de predição e habilidade de estimação da herdabilidade para cada característica. Utilizaram-se informações de 80 cultivares genotipadas para 377 marcadores SNP, cujos efeitos de substituição alélica foram estimados por meio de cinco diferentes modelos Bayesianos: Bayes A (BA), B (BB), C (BC), LASSO (BL) e regressão "ridge" (BRR). Embora as acurácias de predição calculadas por meio de análise de validação cruzada tenham sido similares dentro de cada característica, o modelo BB se destacou para a característica SG, enquanto o modelo BRR foi indicado para as demais. As herdabilidades estimadas para SG, AP, AG e PG foram, respectivamente, 0,61, 0,28, 0,32 e 0,29. Em resumo, os métodos contemplados mostraram-se efetivos e de fácil implementação. O conjunto de marcadores utilizado pode auxiliar na seleção precoce de genótipos promissores, uma vez que a incorporação de informações genômicas aumenta a acurácia de predição do mérito genético estimado.