Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Med Entomol ; 58(3): 1210-1218, 2021 05 15.
Article in English | MEDLINE | ID: mdl-33300038

ABSTRACT

The rapid and economical monitoring of mosquitos is imperative to understanding the dynamics of both disease vectors and nuisance species. In light of technological advances in mosquito sampling and DNA sequencing, health agencies can now utilize the full potential of metabarcoding pipelines for rapid and standardizable surveillance. Here, we describe mosquito spatial and temporal variation, with particular focus on Mansonia Blanchard species, in the Madeira (Rondônia State) and the Ribeira (São Paulo) watersheds, Brazil using metabarcoding of the D2 rDNA marker. Sampling and molecular pipelines were used to evaluate the taxonomic contribution of mosquitos in pools of culicids collected en masse from macrophyte-roots (immatures) and from Mosquito Magnet traps and protected human landings (adults). Results for adult captures are comparable to morphological diagnoses and clarify previously unknown temporal and spatial species turnover. Metabarcoding of immature stages also confirmed the extent of the geographical distribution of some species and each taxon's association with macrophyte species. Given the benefits of metabarcoding, such as taxonomic acuity, high throughput processing, and objectivity, we suggest such techniques should be more fully incorporated into culicid monitoring schemes. The metabarcoding protocol described herein paired with standardized field sampling schemes, when used by mosquito monitoring professionals, offers substantial improvements in terms of practicality, speed and cost.


Subject(s)
Culicidae/classification , DNA Barcoding, Taxonomic , Entomology/methods , Animals , Brazil , Culicidae/growth & development , Larva/classification , Larva/growth & development , Pupa/classification , Pupa/growth & development
2.
J Anim Ecol ; 85(1): 227-39, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26346553

ABSTRACT

Arthropods represent most of global biodiversity, with the highest diversity found in tropical rain forests. Nevertheless, we have a very incomplete understanding of how tropical arthropod communities are assembled. We conducted a comprehensive mass sampling of arthropod communities within three major habitat types of lowland Amazonian rain forest, including terra firme clay, white-sand and seasonally flooded forests in Peru and French Guiana. We examined how taxonomic and functional composition (at the family level) differed across these habitat types in the two regions. The overall arthropod community composition exhibited strong turnover among habitats and between regions. In particular, seasonally flooded forest habitats of both regions comprised unique assemblages. Overall, 17·7% (26 of 147) of arthropod families showed significant preferences for a particular habitat type. We present a first reproducible arthropod functional classification among the 147 taxa based on similarity among 21 functional traits describing feeding source, major mouthparts and microhabitats inhabited by each taxon. We identified seven distinct functional groups whose relative abundance contrasted strongly across the three habitats, with sap and leaf feeders showing higher abundances in terra firme clay forest. Our novel arthropod functional classification provides an important complement to link these contrasting patterns of composition to differences in forest functioning across geographical and environmental gradients. This study underlines that both environment and biogeographical processes are responsible for driving arthropod taxonomic composition while environmental filtering is the main driver of the variance in functional composition.


Subject(s)
Arthropods/physiology , Biodiversity , Rainforest , Animals , Arthropods/classification , French Guiana , Peru
SELECTION OF CITATIONS
SEARCH DETAIL