Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 647
Filter
1.
Forensic Sci Int Genet ; 72: 103078, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38889491

ABSTRACT

DNA mixtures are a common sample type in forensic genetics, and we typically assume that contributors to the mixture are unrelated when calculating the likelihood ratio (LR). However, scenarios involving mixtures with related contributors, such as in family murder or incest cases, can also be encountered. Compared to the mixtures with unrelated contributors, the kinship within the mixture would bring additional challenges for the inference of the number of contributors (NOC) and the construction of probabilistic genotyping models. To evaluate the influence of potential kinship on the individual identification of the person of interest (POI), we conducted simulations of two-person (2 P) and three-person (3 P) DNA mixtures containing unrelated or related contributors (parent-child, full-sibling, and uncle-nephew) at different mixing ratios (for 2 P: 1:1, 4:1, 9:1, and 19:1; for 3 P: 1:1:1, 2:1:1, 5:4:1, and 10:5:1), and performed massively parallel sequencing (MPS) using MGIEasy Signature Identification Library Prep Kit on MGI platform. In addition, in silico simulations of mixtures with unrelated and related contributors were also performed. In this study, we evaluated 1): the MPS performance; 2) the influence of multiple genetic markers on determining the presence of related contributors and inferring the NOC within the mixture; 3) the probability distribution of MAC (maximum allele count) and TAC (total allele count) based on in silico mixture profiles; 4) trends in LR values with and without considering kinship in mixtures with related and unrelated contributors; 5) trends in LR values with length- and sequence-based STR genotypes. Results indicated that multiple numbers and types of genetic markers positively influenced kinship and NOC inference in a mixture. The LR values of POI were strongly dependent on the mixing ratio. Non- and correct-kinship hypotheses essentially did not affect the individual identification of the major POI; the correct kinship hypothesis yielded more conservative LR values; the incorrect kinship hypothesis did not necessarily lead to the failure of POI individual identification. However, it is noteworthy that these considerations could lead to uncertain outcomes in the identification of minor contributors. Compared to length-based STR genotyping, using sequence-based STR genotype increases the individual identification power of the POI, concurrently improving the accuracy of mixing ratio inference using EuroForMix. In conclusion, the MGIEasy Signature Identification Library Prep kit demonstrated robust individual identification power, which is a viable MPS panel for forensic DNA mixture interpretations, whether involving unrelated or related contributors.

2.
Forensic Sci Int Genet ; 71: 103057, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38733649

ABSTRACT

In recent years, probabilistic genotyping software has been adapted for the analysis of massively parallel sequencing (MPS) forensic data. Likelihood ratios (LR) are based on allele frequencies selected from populations of interest. This study provides an outline of sequence-based (SB) allele frequencies for autosomal short tandem repeats (aSTRs) and identity single nucleotide polymorphisms (iSNPs) in 371 individuals from Southern Norway. 27 aSTRs and 94 iSNPs were previously analysed with the ForenSeq™ DNA Signature Prep Kit (Verogen). The number of alleles with frequencies less than 0.05 for sequenced-based alleles was 4.6 times higher than for length-based alleles. Consistent with previous studies, it was observed that sequence-based data (both with and without flanks) exhibited higher allele diversity compared to length-based (LB) data; random match probabilities were lower for SB alleles confirming their advantage to discriminate between individuals. Two alleles in markers D22S1045 and Penta D were observed with SNPs in the 3´ flanking region, which have not been reported before. Also, a novel SNP with a minor allele frequency (MAF) of 0.001, was found in marker TH01. The impact of the sample size on minor allele frequency (MAF) values was studied in 88 iSNPs from Southern Norway (n = 371). The findings were then compared to a larger Norwegian population dataset (n = 15,769). The results showed that the smaller Southern Norway dataset provided similar results, and it was a representative sample. Population structure was analyzed for regions within Southern Norway; FST estimates for aSTR and iSNPs did not indicate any genetic structure. Finally, we investigated the genetic differences between Southern Norway and two other populations: Northern Norway and Denmark. Allele frequencies between these populations were compared, and we found no significant frequency differences (p-values > 0.0001). We also calculated the pairwise FST values per marker and comparisons between Southern and Northern Norway showed small differences. In contrast, the comparisons between Southern Norway and Denmark showed higher FST values for some markers, possibly driven by distinct alleles that were present in only one of the populations. In summary, we propose that allele frequencies from each population considered in this study could be used interchangeably to calculate genotype probabilities.


Subject(s)
DNA Fingerprinting , Gene Frequency , Genetics, Population , High-Throughput Nucleotide Sequencing , Microsatellite Repeats , Polymorphism, Single Nucleotide , Humans , Norway , Sequence Analysis, DNA , Likelihood Functions , Genotype
3.
Forensic Sci Int Genet ; 71: 103055, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38762965

ABSTRACT

Forensic Investigative Genetic Genealogy, a recent sub discipline of forensic genomics, leverages the high throughput and sensitivity of detection of next generation sequencing and established genetic and genealogical approaches to support the identification of human remains from missing persons investigations and investigative lead generation in violent crimes. To facilitate forensic DNA evidence analysis, the ForenSeq® Kintelligence multiplex, consisting of 10,230 SNPs, was developed. Design of the ForenSeq Kintelligence Kit, the MiSeq FGx® Sequencing System and the ForenSeq Universal Analysis Software is described. Developmental validation in accordance with SWGDAM guidelines and forensic quality assurance standards, using single source samples, is reported for the end-to-end workflow from library preparation to data interpretation. Performance metrics support the conclusion that more genetic information can be obtained from challenging samples compared to other commercially available forensic targeted DNA assays developed for capillary electrophoresis (CE) or other current next generation sequencing (NGS) kits due to the higher number of markers, the overall shorter amplicon sizes (97.8% <150 bp), and kit design. Data indicate that the multiplex is robust and fit for purpose for a wide range of quantity and quality samples. The ForenSeq Kintelligence Kit and the Universal Analysis Software allow transfer of the genetic component of forensic investigative genetic genealogy to the operational forensic laboratory.


Subject(s)
DNA Fingerprinting , High-Throughput Nucleotide Sequencing , Polymorphism, Single Nucleotide , Sequence Analysis, DNA , Software , Humans
5.
Curr Issues Mol Biol ; 46(5): 5010-5022, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38785568

ABSTRACT

Numerous hereditary ophthalmic diseases display significant genetic diversity. Consequently, the utilization of gene panel sequencing allows a greater number of patients to receive a genetic diagnosis for their clinical manifestations. We investigated how to improve the yield of genetic diagnosis through additional gene panel sequencing in hereditary ophthalmic diseases. A gene panel sequencing consisting of a customized hereditary retinopathy panel or hereditary retinitis pigmentosa (RP) panel was prescribed and referred to a CAP-accredited clinical laboratory. If no significant mutations associated with hereditary retinopathy and RP were detected in either panel, additional gene panel sequencing was requested for research use, utilizing the remaining panel. After additional gene panel sequencing, a total of 16 heterozygous or homozygous variants were identified in 15 different genes associated with hereditary ophthalmic diseases. Of 15 patients carrying any candidate variants, the clinical symptoms could be tentatively accounted for by genetic mutations in seven patients. However, in the remaining eight patients, given the in silico mutation predictive analysis, variant allele frequency in gnomAD, inheritance pattern, and genotype-phenotype correlation, fully elucidating the clinical manifestations with the identified rare variant was challenging. Our study highlights the utility of gene panel sequencing in achieving accurate diagnoses for hereditary ophthalmic diseases and enhancing the diagnostic yield through additional gene panel sequencing. Thus, gene panel sequencing can serve as a primary tool for the genetic diagnosis of hereditary ophthalmic diseases, even in cases where a single genetic cause is suspected. With a deeper comprehension of the genetic mechanisms underlying these diseases, it becomes feasible.

6.
Genes (Basel) ; 15(4)2024 04 18.
Article in English | MEDLINE | ID: mdl-38674444

ABSTRACT

The inference of biogeographical ancestry (BGA) can assist in police investigations of serious crime cases and help to identify missing people and victims of mass disasters. In this study, we evaluated the typing performance of 56 ancestry-informative SNPs in 177 samples using the ForenSeq™ DNA Signature Prep Kit on the MiSeq FGx system. Furthermore, we compared the prediction accuracy of the tools Universal Analysis Software v1.2 (UAS), the FROG-kb, and GenoGeographer when inferring the ancestry of 503 Europeans, 22 non-Europeans, and 5 individuals with co-ancestry. The kit was highly sensitive with complete aiSNP profiles in samples with as low as 250pg input DNA. However, in line with others, we observed low read depth and occasional drop-out in some SNPs. Therefore, we suggest not using less than the recommended 1ng of input DNA. FROG-kb and GenoGeographer accurately predicted both Europeans (99.6% and 91.8% correct, respectively) and non-Europeans (95.4% and 90.9% correct, respectively). The UAS was highly accurate when predicting Europeans (96.0% correct) but performed poorer when predicting non-Europeans (40.9% correct). None of the tools were able to correctly predict individuals with co-ancestry. Our study demonstrates that the use of multiple prediction tools will increase the prediction accuracy of BGA inference in forensic casework.


Subject(s)
DNA Fingerprinting , Polymorphism, Single Nucleotide , Humans , DNA/genetics , DNA Fingerprinting/methods , Forensic Genetics/methods , Genetics, Population/methods , High-Throughput Nucleotide Sequencing/methods , Polymorphism, Single Nucleotide/genetics , Sequence Analysis, DNA/methods , Software , White People/genetics , Europe
7.
Forensic Sci Int Genet ; 71: 103047, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38598919

ABSTRACT

Massively parallel sequencing (MPS) is increasingly applied in forensic short tandem repeat (STR) analysis. The presence of stutter artefacts and other PCR or sequencing errors in the MPS-STR data partly limits the detection of low DNA amounts, e.g., in complex mixtures. Unique molecular identifiers (UMIs) have been applied in several scientific fields to reduce noise in sequencing. UMIs consist of a stretch of random nucleotides, a unique barcode for each starting DNA molecule, that is incorporated in the DNA template using either ligation or PCR. The barcode is used to generate consensus reads, thus removing errors. The SiMSen-Seq (Simple, multiplexed, PCR-based barcoding of DNA for sensitive mutation detection using sequencing) method relies on PCR-based introduction of UMIs and includes a sophisticated hairpin design to reduce unspecific primer binding as well as PCR protocol adjustments to further optimize the reaction. In this study, SiMSen-Seq is applied to develop a proof-of-concept seven STR multiplex for MPS library preparation and an associated bioinformatics pipeline. Additionally, machine learning (ML) models were evaluated to further improve UMI allele calling. Overall, the seven STR multiplex resulted in complete detection and concordant alleles for 47 single-source samples at 1 ng input DNA as well as for low-template samples at 62.5 pg input DNA. For twelve challenging mixtures with minor contributions of 10 pg to 150 pg and ratios of 1-15% relative to the major donor, 99.2% of the expected alleles were detected by applying the UMIs in combination with an ML filter. The main impact of UMIs was a substantially lowered number of artefacts as well as reduced stutter ratios, which were generally below 5% of the parental allele. In conclusion, UMI-based STR sequencing opens new means for improved analysis of challenging crime scene samples including complex mixtures.


Subject(s)
DNA Fingerprinting , High-Throughput Nucleotide Sequencing , Microsatellite Repeats , Humans , DNA Fingerprinting/methods , Alleles , Multiplex Polymerase Chain Reaction , Polymerase Chain Reaction , Sequence Analysis, DNA , Machine Learning , Genetic Markers
8.
Curr Osteoporos Rep ; 22(3): 308-317, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38600318

ABSTRACT

PURPOSE OF REVIEW: The purpose of this review is to outline the principles of clinical genetic testing and to provide practical guidance to clinicians in navigating genetic testing for patients with suspected monogenic forms of osteoporosis. RECENT FINDINGS: Heritability assessments and genome-wide association studies have clearly shown the significant contributions of genetic variations to the pathogenesis of osteoporosis. Currently, over 50 monogenic disorders that present primarily with low bone mass and increased risk of fractures have been described. The widespread availability of clinical genetic testing offers a valuable opportunity to correctly diagnose individuals with monogenic forms of osteoporosis, thus instituting appropriate surveillance and treatment. Clinical genetic testing may identify the appropriate diagnosis in a subset of patients with low bone mass, multiple or unusual fractures, and severe or early-onset osteoporosis, and thus clinicians should be aware of how to incorporate such testing into their clinical practices.


Subject(s)
Bone Density , Genetic Testing , Osteoporosis , Humans , Osteoporosis/genetics , Bone Density/genetics , Genome-Wide Association Study , Osteoporotic Fractures/genetics , Fractures, Bone/genetics , Genetic Predisposition to Disease
9.
Best Pract Res Clin Haematol ; 37(1): 101533, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38490763

ABSTRACT

The diversity of genetic and genomic abnormalities observed in acute myeloid leukemia (AML) reflects the complexity of these hematologic neoplasms. The detection of cytogenetic and molecular alterations is fundamental to diagnosis, risk stratification and treatment of AML. Chromosome rearrangements are well established in the diagnostic classification of AML, as are some gene mutations, in several international classification systems. Additionally, the detection of new mutational profiles at relapse and identification of mutations in the pre- and post-transplant settings are illuminating in understanding disease evolution and are relevant to the risk assessment of AML patients. In this review, we discuss recurrent cytogenetic abnormalities, as well as the detection of recurrent mutations, within the context of a normal karyotype, and in the setting of chromosome abnormalities. Two new classification schemes from the WHO and ICC are described, comparing these classifications in terms of diagnostic criteria and entity definition in AML. Finally, we discuss ways in which genomic sequencing can condense the detection of gene mutations and chromosome abnormalities into a single assay.


Subject(s)
Leukemia, Myeloid, Acute , Humans , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/therapy , Chromosome Aberrations , Mutation , Genomics , Cytogenetic Analysis
10.
J Forensic Leg Med ; 103: 102678, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38522119

ABSTRACT

Target and flanking region (FR) variation at 94 identity-informative SNPs (iSNPs) are investigated in 635 Northern Han Chinese using the ForenSeq DNA Signature Prep Kit on the MiSeq FGx Forensic Genomics System. The dataset presents the following performance characteristics (average values): ≥60% bases with a quality score of 20 or higher (%≥ Q20); >700 × of depth of coverage (DoC) from both Sample Details Reports and Flanking Region Reports; >80% of effective reads; ≥60% of allele coverage ratio (ACR); and ≥70% of inter-locus balance, while some stable low-performance characteristics are also observed: low DoC at rs1736442, rs1031825, rs7041158, rs338882, rs2920816, rs1493232, rs719366, and rs2342747; high noise at rs891700; and imbalanced ACR at rs6955448 and rs338882. The average amplicon length is 69 bp, suitable for detecting degraded samples. Bioinformatic concordance achieves 99.99% between the ForenSeq Universal Analysis Software (UAS) and the Integrative Genomic Viewer (IGV) inspection. Discordance results from flanking region deletions of rs10776839, rs8078417, rs2831700, and rs1454361. Due to FR variants within amplicons detected by massively parallel sequencing (MPS), the increases in the number of unique alleles, effective alleles (Ae), and observed heterozygosity (Hobs) are 46.81%, 4.51%, and 3.29%, respectively. Twelve FR variants are first reported to dbSNP, such as rs1252699848, rs1665500714, rs1771121532, rs2097285015, rs1851671415, rs2045669877, rs2046758811, rs2044248635, rs1251308240, rs1968822112, rs1981638299, and rs1341756746. All 94 iSNPs from target and amplicon data are in Hardy-Weinberg equilibrium (HWE) and independent within autosomes. As expected, forensic parameters from the amplicon data increase significantly on the combined power of discrimination (CPD = 1 - 3.9876 × 10-38) and the combined power of exclusion (CPE = 1 - 6.6690 × 10-8). Additionally, the power of the system effectiveness (CPD = 1 - 6.7054 × 10-72 and CPE = 1 - 4.4719 × 10-20) with sequence-based 27 autosomal STRs and 94 iSNP amplicons in combination is substantially improved compared to one type of marker alone. In conclusion, we have established a traditional length-based and current sequence-based reference database with 58 STRs and 94 iSNPs in the Northern Han Chinese population. We hope these data can serve as a solid reference and foundation for forensic practice.


Subject(s)
DNA Fingerprinting , High-Throughput Nucleotide Sequencing , Polymorphism, Single Nucleotide , Sequence Analysis, DNA , Female , Humans , Male , China , East Asian People/genetics , Ethnicity/genetics
11.
J Forensic Sci ; 69(3): 825-835, 2024 May.
Article in English | MEDLINE | ID: mdl-38505986

ABSTRACT

As massively parallel sequencing is implemented in forensic genetics, an understanding of sequence data must accompany these advancements, that is, accurate modeling of data for proper statistical analysis. Allelic drop-out, a common stochastic effect seen in genetic data, is often modeled in statistical analysis of STR results. This proof-of-concept study sequenced several serial dilutions of a standard sample ranging from 4 ng to 7.82 pg to evaluate allelic drop-out trends on a select panel of autosomal STRs using the ForenSeq™ DNA Signature Prep Kit, Primer Set A on the Illumina MiSeq FGx. Parameters assessed included locus, profile, and run specific information. A majority of the allelic drop-out occurred in DNA concentrations less than 31.25 pg. Statistical results indicated a need for locus-specific modeling based on STR descriptors, like simple versus compound repeat patterns. No correlation was seen between average read count of scored alleles and allelic drop-out at a locus. A statistical correlation was observed between the amount of allelic drop-out and the starting amount of DNA in a sample, average read count of a sample, and total read count generated on a flow cell. This study supports using common allelic drop-out factors used in fragment length analysis on sequenced STRs while including additional locus, sample, and run specific information. Results demonstrate multiple factors that can be considered when developing probability of allelic drop-out models for sequenced autosomal STRs including locus-specific analysis, total read count of a profile, and total read count sequenced on a flow cell.


Subject(s)
Alleles , DNA Fingerprinting , High-Throughput Nucleotide Sequencing , Microsatellite Repeats , Sequence Analysis, DNA , Humans , Proof of Concept Study , Polymerase Chain Reaction
12.
ArXiv ; 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38495572

ABSTRACT

The revolutionary progress in development of next-generation sequencing (NGS) technologies has made it possible to deliver accurate genomic information in a timely manner. Over the past several years, NGS has transformed biomedical and clinical research and found its application in the field of personalized medicine. Here we discuss the rise of personalized medicine and the history of NGS. We discuss current applications and uses of NGS in medicine, including infectious diseases, oncology, genomic medicine, and dermatology. We provide a brief discussion of selected studies where NGS was used to respond to wide variety of questions in biomedical research and clinical medicine. Finally, we discuss the challenges of implementing NGS into routine clinical use.

13.
Genes (Basel) ; 15(2)2024 01 24.
Article in English | MEDLINE | ID: mdl-38397140

ABSTRACT

In the realm of DNA testing with legal implications, the reliability and precision of genetic markers play a pivotal role in confirming or negating paternity claims. This study aimed to assess the potential utility of human leukocyte antigen (HLA) gene polymorphism through massively parallel sequencing (MPS) technology as robust forensic markers for parentage testing involving genetic deficiencies. It sought to redefine the significance of HLA genes in this context. Data on autosomal short tandem repeat (aSTR) mutational events across 18 paternity cases involving 16 commonly employed microsatellite loci were presented. In instances where traditional aSTR analysis failed to establish statistical certainty, kinship determination was pursued via HLA genotyping, encompassing the amplification of 17 linked HLA loci. Within the framework of this investigation, phase-resolved genotypes for HLA genes were meticulously generated, resulting in the definition of 34 inherited HLA haplotypes. An impressive total of 274 unique HLA alleles, which were classified at either the field 3 or 4 level, were identified, including the discovery of four novel HLA alleles. Likelihood ratio (LR) values, which indicated the likelihood of the observed data under a true biological relationship versus no relationship, were subsequently calculated. The analysis of the LR values demonstrated that the HLA genes significantly enhanced kinship determination compared with the aSTR analysis. Combining LR values from aSTR markers and HLA loci yielded conclusive outcomes in duo paternity cases, showcasing the potential of HLA genes and MPS technology for deeper insights and diversity in genetic testing. Comprehensive reference databases and high-resolution HLA typing across diverse populations are essential. Reintegrating HLA alleles into forensic identification complements existing markers, creating a potent method for future forensic analysis.


Subject(s)
DNA Fingerprinting , Paternity , Polymorphism, Genetic , Humans , Alleles , DNA Fingerprinting/methods , High-Throughput Nucleotide Sequencing/methods , HLA Antigens/genetics , Reproducibility of Results
14.
Genes (Basel) ; 15(2)2024 02 10.
Article in English | MEDLINE | ID: mdl-38397213

ABSTRACT

Microhaplotypes (MHs) consisting of multiple SNPs and indels on short stretches of DNA are new and interesting loci for forensic genetic investigations. In this study, we analysed 74 previously defined MHs in two of the populations that our laboratory provides with forensic genetic services, Danes and Greenlanders. In addition to the 229 SNPs that originally made up the 74 MHs, 66 SNPs and 3 indels were identified in the two populations, and 45 of these variants were included in new definitions of the MHs, whereas 24 SNPs were considered rare and of little value for case work. The average effective number of alleles (Ae) was 3.2, 3.0, and 2.6 in Danes, West Greenlanders, and East Greenlanders, respectively. High levels of linkage disequilibrium were observed in East Greenlanders, which reflects the characteristics of this population that has a small size, and signs of admixture and substructure. Pairwise kinship simulations of full siblings, half-siblings, first cousins, and unrelated individuals were performed using allele frequencies from MHs, STRs and SNPs from Danish and Greenlandic populations. The MH panel outperformed the currently used STR and SNP marker sets and was able to differentiate siblings from unrelated individuals with a 0% false positive rate and a 1.1% false negative rate using an LR threshold of 10,000 in the Danish population. However, the panel was not able to differentiate half-siblings or first cousins from unrelated individuals. The results generated in this study will be used to implement MHs as investigative markers for relationship testing in our laboratory.


Subject(s)
DNA Fingerprinting , High-Throughput Nucleotide Sequencing , Scandinavians and Nordic People , Humans , High-Throughput Nucleotide Sequencing/methods , Gene Frequency/genetics , Polymorphism, Single Nucleotide/genetics
15.
Int J Legal Med ; 138(4): 1255-1264, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38416217

ABSTRACT

Massively parallel sequencing allows for integrated genotyping of different types of forensic markers, which reduces DNA consumption, simplifies experimental processes, and provides additional sequence-based genetic information. The STRseqTyper122 kit genotypes 63 autosomal STRs, 16 X-STRs, 42 Y-STRs, and the Amelogenin locus. Amplicon sizes of 117 loci were below 300 bp. In this study, MiSeq FGx sequencing metrics for STRseqTyper122 were presented. The genotyping accuracy of this kit was examined by comparing to certified genotypes of NIST standard reference materials and results from five capillary electrophoresis-based kits. The sensitivity of STRseqTyper122 reached 125 pg, and > 80% of the loci were correctly called with 62.5 pg and 31.25 pg input genomic DNA. Repeatability, species specificity, and tolerance for DNA degradation and PCR inhibitors of this kit were also evaluated. STRseqTyper122 demonstrated reliable performance with routine case-work samples and provided a powerful tool for forensic applications.


Subject(s)
DNA Fingerprinting , High-Throughput Nucleotide Sequencing , Microsatellite Repeats , Humans , DNA Fingerprinting/methods , Amelogenin/genetics , Reproducibility of Results , Sequence Analysis, DNA/methods , Genotype , Polymerase Chain Reaction , Species Specificity , Male , Animals , DNA Degradation, Necrotic , Electrophoresis, Capillary , Female
16.
Front Genet ; 15: 1347868, 2024.
Article in English | MEDLINE | ID: mdl-38317659

ABSTRACT

Introduction: Short Tandem Repeats (STRs) are highly valuable genetic markers in forensic science. However, the conventional PCR-CE technique has limitations, and the emergence of massively parallel sequencing (MPS) technology presents new opportunities for STR analysis. Yet, there is limited research on Chinese population diversity using MPS. Methods: In this study, we obtained genotype data for 52 A-STRs and 81 Y-STRs from the Hakka population in Meizhou, Guangdong, China, using the Forensic Analysis System Multiplecues SetB Kit on the MGISEQ-2000 platform. Results: Our findings demonstrate that these 133 STRs are highly efficient for forensic applications within the Meizhou Hakka population. Statistical analysis revealed Hobs values ranging from 0.61306 to 0.91083 and Hexp values ranging from 0.59156 to 0.91497 for A-STRs based on length polymorphism. For sequence polymorphism, Hobs values ranged from 0.61306 to 0.94586, and Hexp values fluctuated between 0.59156 and 0.94487. The CPE values were 1-5.0779620E-21 and 1-3.257436E-24 for length and sequence polymorphism, respectively, while the CPD values were 1-1.727007E-59 and 1-5.517015E-66, respectively. Among the 80 Y-STR loci, the HD values for length and sequence polymorphism were 0.99764282 and 0.99894195, respectively. The HMP values stood at 0.00418102 and 0.00288427, respectively, and the DC values were 0.75502742 and 0.83363803, respectively. For the 52 A-STR loci, we identified 554 and 989 distinct alleles based on length and sequence polymorphisms, respectively. For the 81 Y-STR loci, 464 and 652 unique alleles were detected at the length and sequence level, respectively. Population genetic analysis revealed that the Meizhou Hakka population has a close kinship relationship with the Asian populations THI and KOR based on length polymorphism data of A-STRs. Conversely, based on length polymorphism data of Y-STRs, the Meizhou Hakka population has the closest kinship relationship with the Henan Han population. Discussion: Overall, the variation information of repeat region sequences significantly enhances the forensic identification efficacy of STR genetic markers, providing an essential database for forensic individual and paternity testing in this region. Additionally, the data generated by our study will serve as a vital resource for research into the genetic structure and historical origins of the Meizhou Hakka population.

17.
Mol Genet Genomics ; 299(1): 9, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38374461

ABSTRACT

Currently, the most commonly used method for human identification and kinship analysis in forensic genetics is the detection of length polymorphism in short tandem repeats (STRs) using polymerase chain reaction (PCR) and capillary electrophoresis (CE). However, numerous studies have shown that considerable sequence variations exist in the repeat and flanking regions of the STR loci, which cannot be identified by CE detection. Comparatively, massively parallel sequencing (MPS) technology can capture these sequence differences, thereby enhancing the identification capability of certain STRs. In this study, we used the ForenSeq™ DNA Signature Prep Kit to sequence 58 STRs and 94 individual identification SNPs (iiSNPs) in a sample of 220 unrelated individuals from the Eastern Chinese Han population. Our aim is to obtain MPS-based STR and SNP data, providing further evidence for the study of population genetics and forensic applications. The results showed that the MPS method, utilizing sequence information, identified a total of 486 alleles on autosomal STRs (A-STRs), 97 alleles on X-chromosome STRs (X-STRs), and 218 alleles on Y-chromosome STRs (Y-STRs). Compared with length polymorphism, we observed an increase of 260 alleles (157, 31, and 72 alleles on A-STRs, X-STRs, and Y-STRs, respectively) across 36 STRs. The most substantial increments were observed in DYF387S1 and DYS389II, with increases of 287.5% and 250%, respectively. The most increment in the number of alleles was found at DYF387S1 and DYS389II (287.5% and 250%, respectively). The length-based (LB) and sequence-based (SB) combined random match probability (RMP) of 27 A-STRs were 6.05E-31 and 1.53E-34, respectively. Furthermore, other forensic parameters such as total discrimination power (TDP), cumulative probability of exclusion of trios (CPEtrio), and duos (CPEduo) were significantly improved when using the SB data, and informative data were obtained for the 94 iiSNPs. Collectively, these findings highlight the advantages of MPS technology in forensic genetics, and the Eastern Chinese Han genetic data generated in this study could be used as a valuable reference for future research in this field.


Subject(s)
DNA Fingerprinting , Ethnicity , Humans , DNA Fingerprinting/methods , Ethnicity/genetics , Genetics, Population , Polymorphism, Single Nucleotide/genetics , Microsatellite Repeats/genetics , High-Throughput Nucleotide Sequencing/methods , China , DNA , Sequence Analysis, DNA/methods
18.
Int J Mol Sci ; 25(3)2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38339091

ABSTRACT

Blood is one of the most commonly found biological fluids at crime scenes, with the detection and identification of blood holding a high degree of evidential value. It can provide not only information about the nature of the crime but can also lead to identification via DNA profiling. Presumptive tests for blood are usually sensitive but not specific, so small amounts of the substrate can be detected, but false-positive results are often encountered, which can be misleading. Novel methods for the detection of red blood cells based on aptamer-target interactions may be able to overcome these issues. Aptamers are single-stranded DNA or RNA sequences capable of undergoing selective antigen association due to three-dimensional structure formation. The use of aptamers as a target-specific moiety poses several advantages and has the potential to replace antibodies within immunoassays. Aptamers are cheaper to produce, display no batch-to-batch variation and can allow for a wide range of chemical modifications. They can help limit cross-reactivity, which is a hindrance to current forensic testing methods. Within this study, a modified Systematic Evolution of Ligands by Exponential Enrichment (SELEX) process was used to generate aptamers against whole red blood cells. Obtained aptamer pools were analysed via massively parallel sequencing to identify viable sequences that demonstrate a high affinity for the target. Using bioinformatics platforms, aptamer candidates were identified via their enrichment profiles. Binding characterisation was also conducted on two selected aptamer candidates via fluorescent microscopy and qPCR to visualise and quantify aptamer binding. The potential for these aptamers is broad as they can be utilised within a range of bioassays for not only forensic applications but also other analytical science and medical applications. Potential future work includes the incorporation of developed aptamers into a biosensing platform that can be used at crime scenes for the real-time detection of human blood.


Subject(s)
Aptamers, Nucleotide , DNA, Single-Stranded , Humans , DNA, Single-Stranded/genetics , Aptamers, Nucleotide/chemistry , SELEX Aptamer Technique/methods , Ligands , Erythrocytes/metabolism
19.
Int J Mol Sci ; 25(2)2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38256085

ABSTRACT

Chromatin immunoprecipitation followed by massively parallel DNA sequencing (ChIP-seq) is a central genome-wide method for in vivo analyses of DNA-protein interactions in various cellular conditions. Numerous studies have demonstrated the complex contextual organization of ChIP-seq peak sequences and the presence of binding sites for transcription factors in them. We assessed the dependence of the ChIP-seq peak score on the presence of different contextual signals in the peak sequences by analyzing these sequences from several ChIP-seq experiments using our fully enumerative GPU-based de novo motif discovery method, Argo_CUDA. Analysis revealed sets of significant IUPAC motifs corresponding to the binding sites of the target and partner transcription factors. For these ChIP-seq experiments, multiple regression models were constructed, demonstrating a significant dependence of the peak scores on the presence in the peak sequences of not only highly significant target motifs but also less significant motifs corresponding to the binding sites of the partner transcription factors. A significant correlation was shown between the presence of the target motifs FOXA2 and the partner motifs HNF4G, which found experimental confirmation in the scientific literature, demonstrating the important contribution of the partner transcription factors to the binding of the target transcription factor to DNA and, consequently, their important contribution to the peak score.


Subject(s)
Chromatin Immunoprecipitation Sequencing , Transcription Factors , Chromatin Immunoprecipitation , Sequence Analysis, DNA , Transcription Factors/genetics , DNA/genetics
20.
Forensic Sci Int Genet ; 69: 103007, 2024 03.
Article in English | MEDLINE | ID: mdl-38217952

ABSTRACT

In cases of sexual assault, the evidence often exists as a mixture of female and male body fluids, and in many cases, contains a higher proportion of female body fluids than males. In these cases, Y-STR, rather than autosomal STRs, can provide useful information. It becomes very difficult to identify the true suspect if there is no match among known suspects or if a match exists for two or more suspects, e.g. two suspects from the same paternal lineage. However, age prediction using the DNA methylation of Y-chromosomal CpGs can help narrow the search for unknown suspects and discriminate between older and younger suspects. Therefore, the DNA methylation profiles of semen samples from 56 healthy Korean males were generated using Illumina's Infinium MethylationEPIC BeadChip Array. Among the ten identified age-associated CpG markers located in the Y-chromosome, nine were used to construct age prediction models. The identified markers were further investigated in the MPS analysis of 147 semen samples, and the multiplex assay was validated with the reliability, reproducibility and sensitivity tests. Several age prediction models were constructed using the MPS data with the multiple linear regression, stepwise linear regression, ridge linear regression, lasso regression, elastic net linear regression and support vector machine analyses, and all showed MAEs of 5 to 7 years in the test set samples. Six single-source female samples were also subjected to MPS analysis but showed very low coverage that could not affect the analysis of the mixed samples. Therefore, the age prediction models of the present study are expected to provide useful investigative leads, especially in mixed male and female samples from sexual assault cases.


Subject(s)
DNA Methylation , Semen , Humans , Male , Female , Child, Preschool , Child , Reproducibility of Results , Chromosomes, Human, Y , Linear Models , CpG Islands/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...