Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Publication year range
1.
Genes (Basel) ; 13(6)2022 06 02.
Article in English | MEDLINE | ID: mdl-35741770

ABSTRACT

The reversible and substoichiometric modification of RNA has recently emerged as an additional layer of translational regulation in normal biological function and disease. Modifications are often enzymatically deposited in and removed from short (~5 nt) consensus motif sequences to carefully control the translational output of the cell. Although characterization of modification occupancy at consensus motifs can be accomplished using RNA sequencing methods, these approaches are generally time-consuming and do not directly detect post-transcriptional modifications. Here, we present a nuclease protection assay coupled with matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) to rapidly characterize modifications in consensus motifs, such as GGACU, which frequently harbor N6-methyladenosine (m6A). While conventional nuclease protection methods rely on long (~30 nt) oligonucleotide probes that preclude the global assessment of consensus motif modification stoichiometry, we investigated a series of ion-tagged oligonucleotide (ITO) probes and found that a benzylimidazolium-functionalized ITO (ABzIM-ITO) conferred significantly improved nuclease resistance for GGACU targets. After optimizing the conditions of the nuclease protection assay, we applied the ITO and MALDI-MS-based method for determining the stoichiometry of GG(m6A)CU and GGACU in RNA mixtures. Overall, the ITO-based nuclease protection and MALDI-MS method constitutes a rapid and promising approach for determining modification stoichiometries of consensus motifs.


Subject(s)
Protein Processing, Post-Translational , RNA , Lasers , Oligonucleotide Probes , RNA/genetics , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
2.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-940716

ABSTRACT

Traditional Chinese medicine (TCM), which owns abundant chemical components and complex action pathways, has been widely recognized in the prevention and treatment of diseases. Some analysis methods have been emerged in order to ensure the quality of TCM and to develop new TCM drugs. Matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) is a soft ionization mass spectrometric technique with the advantages of high throughput, high sensitivity, low cost and so on. It provides technical support for the molecular level study on TCM. At present, this technique has been used in the field of composition analysis and metabonomics research of TCM, and plays an important role in the identification of Chinese herbal medicines, real-time molecular screening and the construction of metabolic network pathway of active ingredients. Among them, the selection of appropriate matrix and sample preparation technology is the key to ensure the detection effect of MALDI-MS. With the development and optimization of new matrix, the continuous improvement of sample preparation technology and the combination of MALDI-MS with various analytical methods will greatly improve the detection effect. Based on this, this paper discusses the application of MALDI-MS in TCM, including high-throughput detection of active ingredients in TCM, monitoring of the original medicines and their metabolites in vivo, and in situ visualization and characterization of tissue distribution information of active ingredients in TCM. It also discusses the application prospect and existing problems of MALDI-MS in TCM, so as to provide technical support for the identification of active ingredients in TCM, drug utilization and metabolism.

3.
J Agric Food Chem ; 68(31): 8438-8446, 2020 Aug 05.
Article in English | MEDLINE | ID: mdl-32648743

ABSTRACT

Taxonomic research plays an important role in the classification of organisms. Molecular techniques provide useful tools for the determination of the taxonomic status of species, although often time-consuming and not cost-efficient. Herein, we developed a strategy to analyze fish samples in a rapid mode. Experimentally, fish fillet samples were pretreated with trifluoroacetic acid aqueous solution, and the obtained protein fraction was analyzed by matrix-assisted laser desorption/ionization mass spectrometry. Principal component analysis of mass spectrometric datasets was used to visualize the taxonomical distance among the analyzed 13 seafood species. The results were illustrated using treemaps where the fish relationship distance can be visualized. The obtained mass spectral results can be taken as reference and successfully used for the identification of unknown fish fillet samples. It is promising to utilize the present strategy to provide clues for the taxonomy study among ambiguous species and identify fish species.


Subject(s)
Classification/methods , Fish Products/analysis , Fishes/classification , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Animals , Fish Products/classification , Phylogeny
4.
Macromol Rapid Commun ; 38(19)2017 Oct.
Article in English | MEDLINE | ID: mdl-28837760

ABSTRACT

Detailed kinetic studies during the cationic ring-opening polymerization (CROP) of 2-ethyl-2-oxazoline (EtOx) are conducted using four bifunctional bromo-type initiators in N,N-dimethylformamide (DMF) at 140 °C. Serving as models to quantify chain transfer to monomer occurring during the CROP initiated by monofunctional initiators, size exclusion chromatography (SEC) resolves a second molar mass distribution with lower molar mass at initial [monomer] to [initiation site] ratios ([M]0 /[I]0 ) of 25, while the resolution is insufficient at [M]0 /[I]0 of 10. Slightly slow initiation is revealed at [M]0 /[I]0 = 25, which prohibits the derivation of chain transfer rates by fitting of the size exclusion chromatography (SEC) data. Although conventional kinetic plots give no indication of significant amounts of chain transfer, the molar mass distributions resolved by SEC can unambiguously be identified as such by matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) in both the high as well as the low m/z regions of the mass spectra.


Subject(s)
Dimethylformamide/chemistry , Macromolecular Substances/chemistry , Oxazoles/chemistry , Polymers/chemistry , Cations/chemistry , Chromatography, Gel , Kinetics , Molecular Weight , Polymerization
5.
Macromol Rapid Commun ; 37(4): 318-22, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26676283

ABSTRACT

A combination of a thiol-Michael addition reaction and a free radical mediated thiol-ene reaction is employed as a facile and efficient approach to carbosiloxane dendrimer synthesis. For the first time, carbosiloxane dendrimers are constructed rapidly by an orthogonal click strategy without protection/deprotection procedures. The chemoselectivity of these two thiol-ene click reactions leads to a design of a new monomer containing both electron-deficient carbon-carbon double bonds and unconjugated carbon-carbon double bonds. Siloxane bonds are introduced as the linker between these two kinds of carbon-carbon double bonds. Starting from a bifunctional thiol core, the dendrimers are constructed by iterative thiol-ene click reactions under different but both mild reaction conditions. After simple purification steps the fifth dendrimer with 54 peripheral functional groups is obtained with an excellent overall yield in a single day. Furthermore, a strong blue glow is observed when the dendrimer is excited by a UV lamp.


Subject(s)
Dendrimers/chemical synthesis , Siloxanes/chemistry , Sulfhydryl Compounds/chemistry , Click Chemistry , Dendrimers/chemistry , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...