Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Molecules ; 28(17)2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37687016

ABSTRACT

To promote the practical application of TiO2 in photocatalytic toluene oxidation, the honeycomb aluminum plates were selected as the metal substrate for the loading of TiO2 powder. Surface-etching treatment was performed and titanium tetrachloride was selected as the binder to strengthen the loading stability. The loading stability and photocatalytic activity of the monolithic catalyst were further investigated, and the optimal surface treatment scheme (acid etching with 15.0 wt.% HNO3 solution for 15 min impregnation) was proposed. Therein, the optimal monolithic catalyst could achieve the loading efficiency of 42.4% and toluene degradation efficiencies of 76.2%. The mechanism for the stable loading of TiO2 was revealed by experiment and DFT calculation. The high surface roughness of metal substrate and the strong chemisorption between TiO2 and TiCl4 accounted for the high loading efficiency and photocatalytic activity. This work provides the pioneering exploration for the practical application of TiO2 catalysts loaded on the surface of metal substrate for VOCs removal, which is of significance for the large-scaled application of photocatalytic technology.

2.
J Sci Food Agric ; 103(14): 6849-6860, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37293782

ABSTRACT

BACKGROUND: There are few reports on the breeding of high-yielding tetramethylpyrazine (TTMP) strains in strong-flavor Daqu. In addition, studies on the mechanism of TTMP production in strains are mostly based on common physiological and biochemical indicators, and there is no report on RNA level. Therefore, in this study, a strain with high production of TTMP was screened out from strong-flavor liquor, and transcriptome sequencing analysis was performed to analyze its key metabolic pathways and key genes, and to infer the mechanism of TTMP production in the strain. RESULTS: In this study, a strain with a high yield of tetramethylpyrazine (TTMP) was screened out, and the yield was 29.83 µg mL-1 . The identified strain was Bacillus velezensis, which could increase the content of TTMP in liquor by about 88%. After transcriptome sequencing, a total of 1851 differentially expressed genes were screened, including 1055 up-regulated genes and 796 down-regulated genes. Three pathways related to the production of TTMP were identified by gene ontology (GO) annotation and COG annotation, including carbohydrate metabolism, cell movement and amino acid metabolism. The key genes of TTMP were analyzed, and the factors that might regulate the production of TTMP, such as the transfer of uracil phosphate ribose and glycosyltransferase, were obtained. CONCLUSIONS: A strain of B. velezensis with high TTMP production was screened and identified in strong-flavor Daqu for the first time. The yield of TTMP was 29.83 µg mL-1 , which increased the TTMP content in liquor by 88%. The key metabolic pathways of TTMP production in the strain were obtained: carbohydrate metabolism, cell movement and amino acid metabolism, and the key regulatory genes of each pathway were found, which complemented the gap in gene level in the production regulation of the strain, and provided a theoretical basis for the subsequent study of TTMP in liquor. © 2023 Society of Chemical Industry.


Subject(s)
Carbohydrate Metabolism , Pyrazines , Fermentation , Pyrazines/metabolism , Amino Acids/metabolism
3.
J Hazard Mater ; 454: 131452, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37104955

ABSTRACT

In the study, a novel ENR-degrading microorganism, Microbacterium proteolyticum GJEE142 was isolated from aquaculture wastewater for the first time. The ENR removal of strain GJEE142 was reliant upon the provision of limited additional carbon source, and was adaptative to low temperature (13 â„ƒ) and high salinity (50‰). The ENR removal process, to which intracellular enzymes made more contributions, was implemented in three proposed pathways. During the removal process, oxidative stress response of strain GJEE142 was activated and the bacterial toxicity of ENR was decreased. Strain GJEE142 could also achieve the synchronous removal of ammonium, nitrite, nitrate and phosphorus with the nitrogen removal pathways of nitrate → nitrite → ammonium → glutamine → glutamate → glutamate metabolism and nitrate → nitrite → gaseous nitrogen. The phosphorus removal was implemented under complete aerobic conditions with the assistance of polyphosphate kinase and exopolyphosphatase. Genomic analysis provided corresponding genetic insights for deciphering removal mechanisms of ENR, nitrogen and phosphorus. ENR, nitrogen and phosphorus in both actual aquaculture wastewater and domestic wastewater could be desirably removed. Desirable adaptation, excellent performance and wide distribution will make strain GJEE142 the hopeful strain in wastewater treatment.


Subject(s)
Ammonium Compounds , Wastewater , Phosphorus , Nitrites/metabolism , Nitrates/metabolism , Denitrification , Enrofloxacin , Nitrogen/metabolism , Ammonium Compounds/metabolism , Bioreactors , Nitrification
4.
Chemphyschem ; 24(11): e202300033, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-36912200

ABSTRACT

The development of industry and the increase in population have caused energy shortages and environmental pollution problems. Developing clean and storable new energy is identified as a key way to solve the problems above. Hydrogen is viewed as the most potential energy carrier due to its high calorific value and pollution-free. To convert solar energy into hydrogen energy, three nickel-based catalysts, Ni(aps)(pys)2 (aps=2-amino-2-phenylacetic salicylaldehyde) (1), Ni(ads)(pys)2 (ads=aniline salicylaldehyde, pys=pyridine-2-thiolate) (2), Ni(acs)(pys)2 (acs=aniline 5-chlorosalicylaldehyde) (3), were synthesized and explored as photocatalysts for hydrogen production. A three-component photocatalytic system for hydrogen production was constructed using target complex as photocatalyst, triethanolamine (TEOA) as electron sacrificial agent and fluorescein (FL) as photosensitizer. Under the optimum conditions, about 1504 µmol of H2 can be obtained with 25 mg catalyst 2 after 3 hours of irradiation. Finally, the hydrogen-production mechanism was discussed by experimental and theoretical methods.

5.
Environ Res ; 217: 114911, 2023 01 15.
Article in English | MEDLINE | ID: mdl-36427641

ABSTRACT

Nonthermal plasma (NTP) irradiation was employed to adjust the morphological structures and valence distribution of ferromanganese (Fe-Mn)-based binary hydro (oxide) to enhance the heterogeneous adsorption of uranyl ions. The output voltage and the liquid-plate distance played a more vital role among the NTP factors in the irradiation system in influencing the polyvalent Fe-Mn binary hydro (oxide) (poly-Fe-Mn). The formation of plates, flakes, and nanoscale nodules was specifically observed, which caused more pores and fractures in the poly-Fe-Mn binary hydro (oxide). The poly-Fe-Mn performed explicitly better in the adsorption of uranium ions in comparison with the counterpart of the Fe-Mn, which was appropriately fitted by the pseudofirst-order kinetic and Elovich models. Maximum equilibrium adsorption capacities of 663.92 and 923.45 mg/g were obtained for the Fe-Mn and poly-Fe-Mn binary hydro (oxides) toward U ions in the orthogonal design, respectively. The maximum monolayer adsorption capacity achieved by the fitting of the Langmuir model was 1091.10 mg/g. Both physisorption and chemisorption contributed to the heterogeneous process of the poly-Fe-Mn toward uranium ions. The employment of NTP irradiation changed the monolayer adsorption of the traditional Fe-Mn materials and diversified the reaction mechanisms between the interface of the Fe-Mn materials and uranium ions. The elements, including O, N, and U exhibited higher compatibility and overlapped in the samples. The highly effective capture of uranium ions from the solution by the poly-Fe-Mn binary hydro (oxide) was mainly related to the chemical deposition of O and N radicals.


Subject(s)
Uranium , Water Purification , Oxides/chemistry , Wastewater , Hydrogen-Ion Concentration , Adsorption , Ions , Kinetics
6.
Front Pharmacol ; 13: 1011333, 2022.
Article in English | MEDLINE | ID: mdl-36278210

ABSTRACT

Background: Ischemic stroke is a leading cause of mortality and disability worldwide. Microcirculatory dysfunction is the foremost hindrance for a good clinical prognosis in ischemic stroke patients. Clinical researches show that Chuanzhitongluo capsule (CZTL) has a curative effect during the recovery period of ischemic stroke, which contributes to a good prognosis. However, it is not known whether CZTL treats ischemic stroke by ameliorating microcirculation dysfunction. Objective: In this study, we investigated the influence of CZTL on microcirculation and its underlying mechanism. Methods: A rat model of acute microcirculatory dysfunction was established by stimuli of adrenaline and ice water. The microcirculatory damage in model rats and the efficacy of CZTL were assessed by detecting laser speckle contrast imaging, coagulation function, hemorheology, vasomotor factor and microcirculation function. The potential mechanism of CZTL action was explored by the untargeted metabolomic analysis based on ultra-performance liquid chromatography-quadrupole-time of flight-mass spectrometry. Results: Laser speckle contrast imaging showed that model rats suffered low perfusion in ears, feet and tails, and CZTL treatment increased microcirculatory blood flow. Coagulation function detection results showed that CZTL diminished the reduction of thrombin time, prothrombin time, activated partial thromboplastin time and the elevated fibrinogen level caused by acute microcirculatory dysfunction. Furthermore, CZTL could recover the increased blood viscosity as well as the abnormal vasomotor and microcirculation function in rats with acute microcirculatory dysfunction. Metabolomics analysis indicated that CZTL might regulate sphingolipid metabolism and arachidonic acid metabolism to exert protective effects on microcirculation. Conclusion: These results elucidated that CZTL was highly effective against microcirculatory dysfunction and its potential mechanisms related with the modulation of sphingolipid and arachidonic acid metabolic pathways. The present study provided a new perspective on the clinical application of CZTL, and it contribute to explore novel therapeutic drug against microcirculatory dysfunction.

7.
Food Chem ; 395: 133530, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-35777209

ABSTRACT

The ultrasound-assisted aqueous two-phase extraction (UA-ATPE) was employed to develop an effective technique for the extraction of flavonoids from jujube peels (JPs). The extraction conditions were further optimized as K2HPO4 35% (w/w), ethanol 20% (w/w), solid-liquid ratio 1:30 g/mL (w/v), ultrasonic power 200 W, and extraction time 50 min. Moreover, rutin, quercetin 3-ß-d-glucoside, and kaempferol-3-O-rutinosid were identified as the main flavonoids by UPLC-MS/MS. Finally, the extraction mechanism of UA-ATPE was explored, which is salting out effect, hydrogen bonding, van der Waals force, and ultrasound promoted the mass transfer of solvent to cells of JPs, then extraction behavior occurred. The mechanical destruction of JPs cells by ultrasound also further accelerated the release of flavonoids. Flavonoids were captured by W/W emulsion in the bottom phase and distributed to the top phase. Overall, this study proposes a green and clean method, UA-ATPE, to extract flavonoids from JPs, while revealing the mechanism of UA-ATPE.


Subject(s)
Biological Products , Ziziphus , Chromatography, Liquid , Flavonoids , Plant Extracts , Tandem Mass Spectrometry , Water
8.
Biodegradation ; 33(5): 461-476, 2022 10.
Article in English | MEDLINE | ID: mdl-35729449

ABSTRACT

In order to enhance the degradation effect of microorganisms on crude oil in the existence of chlorophenol compounds, oil-degrading bacteria C4 (Alcaligenes faecails), C5 (Bacillus sp.) and 2,4-dichlorophenol (2,4-DCP) degrading bacteria L3 (Bacillus marisflavi), L4 (Bacillus aquimaris) were isolated to construct a highly efficient consortium named (C4C5 + L3L4). When the compound bacteria agent combination by VC4: VC5: VL3: VL4 = 1:2:2:1, the crude oil degradation efficiency of 7 days was stable at 50.63% ~ 55.43% under different conditions. Degradation mechanism was analyzed by FTIR, GC-MS and IC technology and the following conclusions showed that in the system of adding consortium (C4C5 + L3L4), the heavy components were converted into saturated and unsaturated components. The bacterial consortium could first degrade medium and long chain alkanes into short chain hydrocarbons and then further degrade. And the dechlorination efficiency of 2,4-DCP in the degradation system reached 73.83%. The results suggested that the potential applicability and effectiveness of the selected bacteria consortium for the remediation of oil-contaminated water or soil with the existence of chlorophenol compound.


Subject(s)
Chlorophenols , Petroleum , Soil Pollutants , Bacteria/metabolism , Biodegradation, Environmental , Chlorophenols/metabolism , Hydrocarbons/metabolism , Petroleum/analysis , Soil Microbiology , Soil Pollutants/metabolism
9.
ACS Appl Mater Interfaces ; 14(15): 17486-17499, 2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35389211

ABSTRACT

Understanding the nickel-based molecular catalyst structure and functional relationship is crucial for catalytic hydrogen production in aqueous solutions. Density functional theory (DFT) provides mature theoretical knowledge for efficient catalyst design, significantly reducing catalyst synthesis time and energy consumption. In the present work, three molecular catalysts, Ni(qbz)(pys)2 (qbz = 2-quinoline benzimidazole) (NQP 1), Ni(qbo)(pys)2 (qbo = 2-quinoline benzothiazole) (NQP 2), and Ni(pbz)(pys)2 (pbz = 4-chloro-2,2-pyridylbenzimidazole) (NQP 3) (pys = 2-mercaptopyridine), were designed and synthesized and exhibit a high performance for H2 generation in aqueous solution with a lamp (λ ≥ 400 nm) under visible light irradiation. Under the optimal conditions, a H2 evolution rate as high as 1190 µmol h-1 can be obtained over 25 mg of NQP 1 with the best catalytic performance. DFT has been adopted in this study to unveil the relationship between the ligand qbz and catalyst NQP 1─an efficient step in the design of catalysts with an excellent catalytic performance. We show that, in addition to the presence of the triphenyl ring increasing the overall electron density, rapid electron transfer (ET) from excited fluorescein (Fl) to NQP 1 significantly improves the chance of photogenerated electrons transferring to the active site, ultimately increasing the catalytic activity for H2 production. This work on understanding the correlation between structures and properties of complexes provides a new idea for manufacturing high-performance photocatalysts.

10.
Food Chem ; 353: 129485, 2021 Aug 15.
Article in English | MEDLINE | ID: mdl-33714117

ABSTRACT

Current work proposed a novel quantitative method of volatile aldehydes (VAs) using chemoselective response dyes (CRDs) combined with multivariate data analysis. Multivariate spectral data of selected CRDs was obtained by visible near-infrared spectroscopy. The Synergy-interval Partial Least Squares (Si-PLS) algorithm processed multivariate spectral data to establish VAs quantitative prediction models at the level of 0.0002 v/v to 0.18 v/v. The prediction coefficient (Rp) values of models ranged from 0.8399 to 0.9886, and the Root Mean Square Error of Prediction (RMSEP) values were less than 0.01. These models were verified by classification of aging rice samples, and 93% samples were correctly identified in prediction set. In addition, Density Functional Theory (DFT) calculations explored the interaction mechanism between selected CRDs and VAs. The optimized Highest Occupied Molecular Orbital-Lowest Unoccupied Molecular Orbital (HOMO-LUMO) energy levels, dipole moment, distance between molecules were found to have strong correlations with the interaction.


Subject(s)
Aldehydes/analysis , Algorithms , Coloring Agents/chemistry , Aldehydes/chemistry , Colorimetry , Density Functional Theory , Least-Squares Analysis , Oryza/chemistry , Oryza/metabolism , Time Factors
11.
J Drug Target ; 28(9): 904-912, 2020 11.
Article in English | MEDLINE | ID: mdl-32314601

ABSTRACT

Necrosis-avid agents possess exploitable theragnostic utilities including evaluation of tissue viability, monitoring of therapeutic efficacy as well as diagnosis and treatment of necrosis-related disorders. Rhein (4,5-dihydroxyl-2-carboxylic-9,10-dihydrodiketoanthracene), a naturally occurring monomeric anthraquinone compound extensively found in medicinal herbs, was recently demonstrated to have a newly discovered necrosis-avid trait and to show promising application in necrosis imaging. In this overview, we present the discovering process of rhein as a new necrosis-avid agent as well as its potential imaging applications in visualisation of myocardial necrosis and early evaluation of tumour response to therapy. Moreover, the molecular mechanism exploration of necrosis avidity behind rhein are also presented. The discovery of necrosis avidity with rhein and the development of rhein-based molecular probes may further expand the scope of necrosis-avid compounds and highlight the potential utility of necrosis-avid molecular probes in necrosis imaging.


Subject(s)
Anthraquinones/pharmacokinetics , Diagnostic Imaging/methods , Necrosis/diagnostic imaging , Necrosis/pathology , Anthraquinones/chemistry , Myocardial Infarction/diagnosis , Myocardial Infarction/pathology , Neoplasms/diagnostic imaging
12.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-482743

ABSTRACT

On the basis of pre-experiment research and the hypothesis of“amputated lumbricus”, this research was aimed to explore mechanism of active components of the amputated lumbricus to promote wound healing. Skin excision was used to establish the mice model. The amputated lumbricus extract was prepared. HE staining and immunohistochemistry techniques were used in the determination of the wound healing rate and changes of VEGF, bFGF, TGF-β1 expression during wound healing period. The results showed that compared with the blank control group, the healing rate of the amputated lumbricus extract group was better. And the HE staining showed better improvement of traumatic tissues. There was no statistic differences on the expression of VEGF and TGF-β1 between the amputated lumbricus extract group and the normal saline group (P> 0.05). The expression of bFGF in amputated lumbricus extract group reached peak earlier than the control group and also lasted a longer time. The amputated lumbricus extract group reached peak on the first day, which had a significant difference (P < 0.05) compared with the control group at the same timepoint. It was concluded that the external application of amputated lumbricus extract had wound healing effect on traumatic skin of mice. Its mechanism may be irrelevant to the expression of VEGF and TGF-β1. However, it may be related to the increasing of bFGF expression in the injured regions during the inflammation stage and proliferation stage.

SELECTION OF CITATIONS
SEARCH DETAIL
...