Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.520
Filter
1.
Curr Biol ; 2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39059393

ABSTRACT

Emotional experiences can profoundly impact our conceptual model of the world, modifying how we represent and remember a host of information even indirectly associated with that experienced in the past. Yet, how a new emotional experience infiltrates and spreads across pre-existing semantic knowledge structures (e.g., categories) is unknown. We used a modified aversive sensory preconditioning paradigm in fMRI (n = 35) to investigate whether threat memories integrate with a pre-established category to alter the representation of the entire category. We observed selective but transient changes in the representation of conceptually related items in the amygdala, medial prefrontal cortex, and occipitotemporal cortex following threat conditioning to a simple cue (geometric shape) pre-associated with a different, but related, set of category exemplars. These representational changes persisted beyond 24 h in the hippocampus and perirhinal cortex. Reactivation of the semantic category during threat conditioning, combined with activation of the hippocampus or medial prefrontal cortex, was predictive of subsequent amygdala reactivity toward novel category members at test. This provides evidence for online integration of emotional experiences into semantic categories, which then promotes threat generalization. Behaviorally, threat conditioning by proxy selectively and retroactively enhanced recognition memory and increased the perceived typicality of the semantic category indirectly associated with threat. These findings detail a complex route through which new emotional learning generalizes by modifying semantic structures built up over time and stored in memory as conceptual knowledge.

2.
Pharmacol Biochem Behav ; 242: 173824, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39002803

ABSTRACT

Adolescence is a critical period for social experience-dependent oligodendrocyte maturation and myelination. Adolescent stress predisposes to cause irreversible changes in brain structure and function with lasting effects on adulthood or beyond. However, the molecular mechanisms linking adolescent social isolation stress with emotional and social competence remain largely unknown. In our study, we found that social isolation during adolescence leads to anxiety-like behaviors, depression-like behaviors, impaired social memory and altered patterns of social ultrasonic vocalizations in mice. In addition, adolescent social isolation stress induces demyelination in the prefrontal cortex and hippocampus of mice, with decreased myelin-related gene expression and disrupted myelin structure. More importantly, clemastine was sufficient to rescue the impairment of emotional and social memory by promoting remyelination. These findings reveal the demyelination mechanism of emotional and social deficits caused by social isolation stress in adolescence, and provides potential therapeutic targets for treating stress-related mental disorders.


Subject(s)
Clemastine , Demyelinating Diseases , Social Isolation , Stress, Psychological , Animals , Social Isolation/psychology , Mice , Male , Demyelinating Diseases/psychology , Clemastine/pharmacology , Stress, Psychological/psychology , Mice, Inbred C57BL , Hippocampus , Anxiety/psychology , Prefrontal Cortex , Depression/psychology , Emotions , Social Behavior , Myelin Sheath , Behavior, Animal/drug effects
3.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 46(3): 402-408, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-38953264

ABSTRACT

There are mutual neural projections between the ventral tegmental area (VTA) and the medial prefrontal cortex (mPFC),which form a circuit.Recent studies have shown that this circuit is vital in regulating arousal from sleep and general anesthesia.This paper introduces the anatomical structures of VTA and mPFC and the roles of various neurons and projection pathways in the regulation of arousal,aiming to provide new ideas for further research on the mechanism of arousal from sleep and general anesthesia.


Subject(s)
Arousal , Prefrontal Cortex , Ventral Tegmental Area , Prefrontal Cortex/physiology , Ventral Tegmental Area/physiology , Arousal/physiology , Humans , Animals , Neural Pathways/physiology
4.
Asian J Psychiatr ; 99: 104137, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38959836

ABSTRACT

Executive impairment in schizophrenia is common, but the mechanism remains unclear. This is the first study to use simultaneously functional near-infrared spectroscopy (fNIRS) to monitor the hemodynamic response in schizophrenia during the MATRICS Consensus Cognitive Battery (MCCB). Here, we monitored relative changes in oxyhemoglobin concentration in the medial prefrontal cortex (mPFC) during Trail Making Test, Symbol Coding Test and Mazes Test of the MCCB in 63 patients (29 females) with schizophrenia and 32 healthy controls (15 females). Results showed that patients with schizophrenia scored lower than healthy controls on all three tests (P < 0.001), but mPFC activation was significantly higher during the test (P < 0.03). Higher activation of the mPFC may reflect abnormal information processing in schizophrenia. In addition, the results also showed sex differences in hemodynamic activation during the task in patients with schizophrenia, and fNIRS has the potential to be a clinical adjunct to screening for cognitive function in schizophrenia.

5.
Neuropharmacology ; : 110065, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39004413

ABSTRACT

(R,S)-ketamine (ketamine) has rapid and sustained antidepressant (AD) efficacy at sub-anesthetic doses in depressed patients. A metabolite of ketamine, including (2R,6R)-hydroxynorketamine ((6)-HNKs) has been reported to exert antidepressant actions in rodent model of anxiety/depression. To further understand the specific role of ketamine's metabolism in the AD actions of the drug, we evaluated the effects of inhibiting hepatic cytochrome P450 enzymes on AD responses. We assessed whether pre-treatment with fluconazole (10 and 20 mg/kg, i.p.) 1 hour prior to ketamine or HNKs (10 mg/kg, i.p.) administration would alter behavioral and neurochemical actions of the drugs in male BALB/cJ mice with a highly anxious phenotype. Extracellular microdialysate levels of glutamate and GABA (Gluext, GABAext) were also measured in the medial prefrontal cortex (mPFC). Pre-treatment with fluconazole altered the pharmacokinetic profile of ketamine, by increasing both plasma and brain levels of ketamine and (R,S)-norketamine, while robustly reducing those of (6)-HNKs. At 24 hours post-injection (t24h), fluconazole prevented the sustained AD-like response of ketamine responses in the forced swim test and splash test, as well as the enhanced cortical GABA levels produced by ketamine. A single (2R,6R)-HNK administration resulted in prevention of the effects of fluconazole on the antidepressant-like activity of ketamine in mice. Overall, these findings are consistent with an essential contribution of (6)-HNK to the sustained antidepressant-like effects of ketamine and suggest potential interactions between pharmacological CYPIs and ketamine during antidepressant treatment in patients.

6.
NMR Biomed ; : e5220, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39054694

ABSTRACT

Posttraumatic stress disorder (PTSD) is a chronic psychiatric condition that follows exposure to a traumatic stressor. Though previous in vivo proton (1H) MRS) research conducted at 4 T or lower has identified alterations in glutamate metabolism associated with PTSD predisposition and/or progression, no prior investigations have been conducted at higher field strength. In addition, earlier studies have not extensively addressed the impact of psychiatric comorbidities such as major depressive disorder (MDD) on PTSD-associated 1H-MRS-visible brain metabolite abnormalities. Here we employ 7 T 1H MRS to examine concentrations of glutamate, glutamine, GABA, and glutathione in the medial prefrontal cortex (mPFC) of PTSD patients with MDD (PTSD+MDD+; N = 6) or without MDD (PTSD+MDD-; N = 5), as well as trauma-unmatched controls without PTSD but with MDD (PTSD-MDD+; N = 9) or without MDD (PTSD-MDD-; N = 18). Participants with PTSD demonstrated decreased ratios of GABA to glutamine relative to healthy PTSD-MDD- controls but no single-metabolite abnormalities. When comorbid MDD was considered, however, MDD but not PTSD diagnosis was significantly associated with increased mPFC glutamine concentration and decreased glutamate:glutamine ratio. In addition, all participants with PTSD and/or MDD collectively demonstrated decreased glutathione relative to healthy PTSD-MDD- controls. Despite limited findings in single metabolites, patterns of abnormality in prefrontal metabolite concentrations among individuals with PTSD and/or MDD enabled supervised classification to separate them from healthy controls with 80+% sensitivity and specificity, with glutathione, glutamine, and myoinositol consistently among the most informative metabolites for this classification. Our findings indicate that MDD can be an important factor in mPFC glutamate metabolism abnormalities observed using 1H MRS in cohorts with PTSD.

7.
Proc Natl Acad Sci U S A ; 121(31): e2403445121, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39047041

ABSTRACT

Modulation of neuronal firing rates by the spatial locations of physical objects is a widespread phenomenon in the brain. However, little is known about how neuronal responses to the actions of biological entities are spatially tuned and whether such spatially tuned responses are affected by social contexts. These issues are of key importance for understanding the neural basis of embodied social cognition, such as imitation and perspective-taking. Here, we show that spatial representation of actions can be dynamically changed depending on others' social relevance and agents of action. Monkeys performed a turn-taking choice task with a real monkey partner sitting face-to-face or a filmed partner in prerecorded videos. Three rectangular buttons (left, center, and right) were positioned in front of the subject and partner as their choice targets. We recorded from single neurons in two frontal nodes in the social brain, the ventral premotor cortex (PMv) and the medial prefrontal cortex (MPFC). When the partner was filmed rather than real, spatial preference for partner-actions was markedly diminished in MPFC, but not PMv, neurons. This social context-dependent modulation in the MPFC was also evident for self-actions. Strikingly, a subset of neurons in both areas switched their spatial preference between self-actions and partner-actions in a diametrically opposite manner. This observation suggests that these cortical areas are associated with coordinate transformation in ways consistent with an actor-centered perspective-taking coding scheme. The PMv may subserve such functions in context-independent manners, whereas the MPFC may do so primarily in social contexts.


Subject(s)
Frontal Lobe , Animals , Male , Frontal Lobe/physiology , Macaca mulatta , Neurons/physiology , Prefrontal Cortex/physiology , Space Perception/physiology , Macaca
8.
Eur J Pharmacol ; 978: 176790, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38942263

ABSTRACT

Nicotine has been shown to enhance object recognition memory in the novel object recognition (NOR) test by activating excitatory neurons in the medial prefrontal cortex (mPFC). However, the exact neuronal mechanisms underlying the nicotine-induced activation of mPFC neurons and the resultant memory enhancement remain poorly understood. To address this issue, we performed brain-slice electrophysiology and the NOR test in male C57BL/6J mice. Whole-cell patch-clamp recordings from layer V pyramidal neurons in the mPFC revealed that nicotine augments the summation of evoked excitatory postsynaptic potentials (eEPSPs) and that this effect was suppressed by N-[3,5-Bis(trifluoromethyl)phenyl]-N'-[2,4-dibromo-6-(2H-tetrazol-5-yl)phenyl]urea (NS5806), a voltage-dependent potassium (Kv) 4.3 channel activator. In line with these findings, intra-mPFC infusion of NS5806 suppressed systemically administered nicotine-induced memory enhancement in the NOR test. Additionally, miRNA-mediated knockdown of Kv4.3 channels in mPFC pyramidal neurons enhanced object recognition memory. Furthermore, inhibition of A-type Kv channels by intra-mPFC infusion of 4-aminopyridine was found to enhance object recognition memory, while this effect was abrogated by prior intra-mPFC NS5806 infusion. These results suggest that nicotine augments the summation of eEPSPs via the inhibition of Kv4.3 channels in mPFC layer V pyramidal neurons, resulting in the enhancement of object recognition memory.


Subject(s)
Mice, Inbred C57BL , Nicotine , Prefrontal Cortex , Recognition, Psychology , Animals , Male , Prefrontal Cortex/drug effects , Prefrontal Cortex/physiology , Prefrontal Cortex/metabolism , Nicotine/pharmacology , Mice , Recognition, Psychology/drug effects , Shal Potassium Channels/metabolism , Pyramidal Cells/drug effects , Pyramidal Cells/physiology , Memory/drug effects , Excitatory Postsynaptic Potentials/drug effects
9.
bioRxiv ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38826339

ABSTRACT

Rationale: Adolescent cannabis use is linked to later-life changes in cognition, learning, and memory. Rodent experimental studies suggest Δ9-tetrahydrocannabinol (THC) influences development of circuits underlying these processes, especially in the prefrontal cortex, which matures during adolescence. Objective: We determined how 14 daily THC injections (5mg/kg) during adolescence persistently impacts medial prefrontal cortex (mPFC) dopamine-dependent cognition. Methods: In adult Long Evans rats treated as adolescents with THC (AdoTHC), we quantify performance on two mPFC dopamine-dependent reward-based tasks-strategy set shifting and probabilistic discounting. We also determined how acute dopamine augmentation with amphetamine (0, 0.25, 0.5 mg/kg), or specific chemogenetic stimulation of ventral tegmental area (VTA) dopamine neurons and their projections to mPFC impacts probabilistic discounting. Results: AdoTHC sex-dependently impacts acquisition of cue-guided instrumental reward seeking, but has minimal effects on set-shifting or probabilistic discounting in either sex. When we challenged dopamine circuits acutely with amphetamine during probabilistic discounting, we found reduced discounting of improbable reward options, with AdoTHC rats being more sensitive to these effects than controls. In contrast, neither acute chemogenetic stimulation of VTA dopamine neurons nor pathway-specific chemogenetic stimulation of their projection to mPFC impacted probabilistic discounting in control rats, although stimulation of this cortical dopamine projection slightly disrupted choices in AdoTHC rats. Conclusions: These studies confirm a marked specificity in the cognitive processes impacted by AdoTHC exposure. They also suggest that some persistent AdoTHC effects may alter amphetamine-induced cognitive changes in a manner independent of VTA dopamine projections to mPFC, or via alterations of non-VTA dopamine neurons.

10.
Neurosci Bull ; 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38850386

ABSTRACT

Nicotine addiction is a concern worldwide. Most mechanistic investigations are on nicotine substance dependence properties based on its pharmacological effects. However, no effective therapeutic treatment has been established. Nicotine addiction is reinforced by environments or habits. We demonstrate the neurobiological basis of the behavioural aspect of nicotine addiction. We utilized the conditioned place preference to establish nicotine-associated behavioural preferences (NABP) in rats. Brain-wide neuroimaging analysis revealed that the medial prefrontal cortex (mPFC) was activated and contributed to NABP. Chemogenetic manipulation of µ-opioid receptor positive (MOR+) neurons in the mPFC or the excitatory outflow to the nucleus accumbens shell (NAcShell) modulated the NABP. Electrophysiological recording confirmed that the MOR+ neurons directly regulate the mPFC-NAcShell circuit via GABAA receptors. Thus, the MOR+ neurons in the mPFC modulate the formation of behavioural aspects of nicotine addiction via direct excitatory innervation to the NAcShell, which may provide new insight for the development of effective therapeutic strategies.

11.
J Pers Med ; 14(6)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38929883

ABSTRACT

Fibromyalgia and osteoarthritis are among the most prevalent rheumatic conditions worldwide. Nonpharmacological interventions have gained scientific endorsements as the preferred initial treatments before resorting to pharmacological modalities. Repetitive transcranial magnetic stimulation (rTMS) is among the most widely researched neuromodulation techniques, though it has not yet been officially recommended for fibromyalgia. This review aims to summarize the current evidence supporting rTMS for treating various fibromyalgia symptoms. Recent findings: High-frequency rTMS directed at the primary motor cortex (M1) has the strongest support in the literature for reducing pain intensity, with new research examining its long-term effectiveness. Nonetheless, some individuals may not respond to M1-targeted rTMS, and symptoms beyond pain can be prominent. Ongoing research aims to improve the efficacy of rTMS by exploring new brain targets, using innovative stimulation parameters, incorporating neuronavigation, and better identifying patients likely to benefit from this treatment. Summary: Noninvasive brain stimulation with rTMS over M1 is a well-tolerated treatment that can improve chronic pain and overall quality of life in fibromyalgia patients. However, the data are highly heterogeneous, with a limited level of evidence, posing a significant challenge to the inclusion of rTMS in official treatment guidelines. Research is ongoing to enhance its effectiveness, with future perspectives exploring its impact by targeting additional areas of the brain such as the medial prefrontal cortex, anterior cingulate cortex, and inferior parietal lobe, as well as selecting the right patients who could benefit from this treatment.

12.
Front Neurosci ; 18: 1412509, 2024.
Article in English | MEDLINE | ID: mdl-38903603

ABSTRACT

Reward-seeking behavior is frequently associated with risk of punishment. There are two types of punishment: positive punishment, which is defined as addition of an aversive stimulus, and negative punishment, involves the omission of a rewarding outcome. Although the medial prefrontal cortex (mPFC) is important in avoiding punishment, whether it is important for avoiding both positive and negative punishment and how it contributes to such avoidance are not clear. In this study, we trained male mice to perform decision-making tasks under the risks of positive (air-puff stimulus) and negative (reward omission) punishment, and modeled their behavior with reinforcement learning. Following the training, we pharmacologically inhibited the mPFC. We found that pharmacological inactivation of mPFC enhanced the reward-seeking choice under the risk of positive, but not negative, punishment. In reinforcement learning models, this behavioral change was well-explained as an increase in sensitivity to reward, rather than a decrease in the strength of aversion to punishment. Our results suggest that mPFC suppresses reward-seeking behavior by reducing sensitivity to reward under the risk of positive punishment.

13.
Philos Trans R Soc Lond B Biol Sci ; 379(1906): 20230238, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-38853571

ABSTRACT

Schemas are foundational mental structures shaped by experience. They influence behaviour, guide the encoding of new memories and are shaped by associated information. The adaptability of memory schemas facilitates the integration of new information that aligns with existing knowledge structures. First, we discuss how novel information consistent with an existing schema can be swiftly assimilated when presented. This cognitive updating is facilitated by the interaction between the hippocampus and the prefrontal cortex. Second, when novel information is inconsistent with the schema, it likely engages the hippocampus to encode the information as part of an episodic memory trace. Third, novelty may enhance hippocampal dopamine through either the locus coeruleus or ventral tegmental area pathways, with the pathway involved potentially depending on the type of novelty encountered. We propose a gradient theory of schema and novelty to elucidate the neural processes by which schema updating or novel memory traces are formed. It is likely that experiences vary along a familiarity-novelty continuum, and the degree to which new experiences are increasingly novel will guide whether memory for a new experience either integrates into an existing schema or prompts the creation of a new cognitive framework. This article is part of the theme issue 'Long-term potentiation: 50 years on'.


Subject(s)
Hippocampus , Memory , Humans , Hippocampus/physiology , Memory/physiology , Animals , Memory, Episodic , Prefrontal Cortex/physiology
14.
Hum Brain Mapp ; 45(8): e26710, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38853713

ABSTRACT

Cross-situational inconsistency is common in the expression of honesty traits; yet, there is insufficient emphasis on behavioral dishonesty across multiple contexts. The current study aimed to investigate behavioral dishonesty in various contexts and reveal the associations between trait honesty, behavioral dishonesty, and neural patterns of observing others behave honestly or dishonestly in videos (abbr.: (dis)honesty video-watching). First, the results revealed limitations in using trait honesty to reflect variations in dishonest behaviors and predict behavioral dishonesty. The finding highlights the importance of considering neural patterns in understanding and predicting dishonest behaviors. Second, by comparing the predictive performance of seven types of data across three neural networks, the results showed that functional connectivity in the hypothesis-driven network during (dis)honesty video-watching provided the highest predictive power in predicting multitask behavioral dishonesty. Last, by applying the feature elimination method, the midline self-referential regions (medial prefrontal cortex, posterior cingulate cortex, and anterior cingulate cortex), anterior insula, and striatum were identified as the most informative brain regions in predicting behavioral dishonesty. In summary, the study offered insights into individual differences in deception and the intricate connections among trait honesty, behavioral dishonesty, and neural patterns during (dis)honesty video-watching.


Subject(s)
Deception , Magnetic Resonance Imaging , Nerve Net , Humans , Male , Female , Adult , Young Adult , Nerve Net/physiology , Nerve Net/diagnostic imaging , Connectome , Cerebral Cortex/physiology , Cerebral Cortex/diagnostic imaging , Video Recording , Social Behavior
15.
Neurobiol Dis ; 199: 106584, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38945496

ABSTRACT

The temporal component of episodic memory has been recognized as a sensitive behavioral marker in early stage of Alzheimer's disease (AD) patients. However, parallel studies in AD animals are currently lacking, and the underlying neural circuit mechanisms remain poorly understood. Using a novel AppNL-G-F knock-in (APP-KI) rat model, the developmental changes of temporal order memory (TOM) and the relationship with medial prefrontal cortex and perirhinal cortex (mPFC-PRH) circuit were determined through in vivo electrophysiology and microimaging technique. We observed a deficit in TOM performance during the object temporal order memory task (OTOMT) in APP-KI rats at 6 month old, which was not evident at 3 or 4 months of age. Alongside behavioral changes, we identified a gradually extensive and aggravated regional activation and functional alterations in the mPFC and PRH during the performance of OTOMT, which occurred prior to the onset of TOM deficits. Moreover, coherence analysis showed that the functional connectivity between the mPFC and PRH could predict the extent of future behavioral performance. Further analysis revealed that the aberrant mPFC-PRH interaction mainly attributed to the progressive deterioration of synaptic transmission, information flow and network coordination from mPFC to PRH, suggesting the mPFC dysfunction maybe the key area of origin underlying the early changes of TOM. These findings identify a pivotal role of the mPFC-PRH circuit in mediating the TOM deficits in the early stage of AD, which holds promising clinical translational value and offers potential early biological markers for predicting AD memory progression.

16.
Biol Res ; 57(1): 40, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890753

ABSTRACT

BACKGROUND: The brain cortex is responsible for many higher-level cognitive functions. Disruptions during cortical development have long-lasting consequences on brain function and are associated with the etiology of brain disorders. We previously found that the protein tyrosine phosphatase receptor delta Ptprd, which is genetically associated with several human neurodevelopmental disorders, is essential to cortical brain development. Loss of Ptprd expression induced an aberrant increase of excitatory neurons in embryonic and neonatal mice by hyper-activating the pro-neurogenic receptors TrkB and PDGFRß in neural precursor cells. However, whether these alterations have long-lasting consequences in adulthood remains unknown. RESULTS: Here, we found that in Ptprd+/- or Ptprd-/- mice, the developmental increase of excitatory neurons persists through adulthood, affecting excitatory synaptic function in the medial prefrontal cortex. Likewise, heterozygosity or homozygosity for Ptprd also induced an increase of inhibitory cortical GABAergic neurons and impaired inhibitory synaptic transmission. Lastly, Ptprd+/- or Ptprd-/- mice displayed autistic-like behaviors and no learning and memory impairments or anxiety. CONCLUSIONS: These results indicate that loss of Ptprd has long-lasting effects on cortical neuron number and synaptic function that may aberrantly impact ASD-like behaviors.


Subject(s)
Autistic Disorder , Neurons , Receptor-Like Protein Tyrosine Phosphatases, Class 2 , Animals , Receptor-Like Protein Tyrosine Phosphatases, Class 2/metabolism , Receptor-Like Protein Tyrosine Phosphatases, Class 2/genetics , Mice , Autistic Disorder/genetics , Autistic Disorder/physiopathology , Disease Models, Animal , Male , Cerebral Cortex/metabolism , Mice, Knockout , Synaptic Transmission/physiology , Mice, Inbred C57BL , Female
17.
Proc Natl Acad Sci U S A ; 121(25): e2321614121, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38857401

ABSTRACT

The medial prefrontal cortex (mPFC) is a key brain structure for higher cognitive functions such as decision-making and goal-directed behavior, many of which require awareness of spatial variables including one's current position within the surrounding environment. Although previous studies have reported spatially tuned activities in mPFC during memory-related trajectory, the spatial tuning of mPFC network during freely foraging behavior remains elusive. Here, we reveal geometric border or border-proximal representations from the neural activity of mPFC ensembles during naturally exploring behavior, with both allocentric and egocentric boundary responses. Unlike most of classical border cells in the medial entorhinal cortex (MEC) discharging along a single wall, a large majority of border cells in mPFC fire particularly along four walls. mPFC border cells generate new firing fields to external insert, and remain stable under darkness, across distinct shapes, and in novel environments. In contrast to hippocampal theta entrainment during spatial working memory tasks, mPFC border cells rarely exhibited theta rhythmicity during spontaneous locomotion behavior. These findings reveal spatially modulated activity in mPFC, supporting local computation for cognitive functions involving spatial context and contributing to a broad spatial tuning property of cortical circuits.


Subject(s)
Prefrontal Cortex , Theta Rhythm , Prefrontal Cortex/physiology , Prefrontal Cortex/cytology , Animals , Theta Rhythm/physiology , Male , Mice , Entorhinal Cortex/physiology , Neurons/physiology , Hippocampus/physiology , Spatial Memory/physiology , Mice, Inbred C57BL , Memory, Short-Term/physiology
18.
Mol Neurobiol ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829510

ABSTRACT

The prevalence of depression in women increases during the postpartum period. We previously reported that subchronic exposure to social stress decreased passive coping in postpartum female mice. This study aimed to investigate whether noradrenaline regulation might regulate coping styles in mice. We first determined whether a different type of stress, subchronic physical stress, decreases passive coping in postpartum females. Postpartum female, virgin female, and male mice were exposed to subchronic restraint stress (restraint stress for 4 h for 5 consecutive days). Subchronic restraint stress decreased passive coping in postpartum females but not in virgin females and males in the forced swim and tail suspension tests. We next examined the neuronal mechanism by which subchronic stress decreases passive coping in postpartum female mice. Neuronal activity and expression of noradrenergic receptors in the medial prefrontal cortex (mPFC) were analyzed using immunohistochemistry and reverse transcription-quantitative polymerase chain reaction, respectively. The mPFC was manipulated using chemogenetics, knockdown, or an α2A adrenergic receptor (AR) antagonist. Immunohistochemistry revealed that subchronic restraint stress increased glutamatergic neuron activation in the mPFC via forced swim stress and decreased α2A AR expression in postpartum females. Chemogenetic activation of glutamatergic neurons in the mPFC, knockdown of α2AAR in the mPFC, and the α2A AR receptor antagonist atipamezole treatment decreased passive coping in postpartum females. Subchronic restraint stress decreased passive coping in postpartum females by increasing glutamatergic neuron activity in the mPFC through α2A AR attenuation. The noradrenergic regulation of the mPFC may be a new target for treating postpartum depression.

19.
Cereb Cortex ; 34(5)2024 May 02.
Article in English | MEDLINE | ID: mdl-38798002

ABSTRACT

Creative idea generation plays an important role in promoting successful memory formation. Yet, its underlying neural correlates remain unclear. We investigated the self-generated learning of creative ideas motivated by the schema-linked interactions between medial prefrontal and medial temporal regions framework. This was achieved by having participants generate ideas in the alternative uses task, self-evaluating their ideas based on novelty and source (i.e. new or old), and then later being tested on the recognition performance of the generated ideas. At the behavioral level, our results indicated superior performances in discriminating novel ideas, highlighting the novelty effect on memory. At the neural level, the regions-of-interest analyses revealed that successful recognition of novel ideas was associated with greater activations in the hippocampus (HPC) and medial prefrontal cortex (mPFC) during ideation. However, only activation in the right HPC was positively related to the successful recognition of novel ideas. Importantly, the weaker the connection between the right HPC and left mPFC, the higher the recognition accuracy of novel ideas. Moreover, activations in the right HPC and left mPFC were both effective predictors of successful recognition of novel ideas. These findings uniquely highlight the role of novelty in promoting self-generated learning of creative ideas.


Subject(s)
Creativity , Hippocampus , Learning , Magnetic Resonance Imaging , Prefrontal Cortex , Recognition, Psychology , Prefrontal Cortex/physiology , Humans , Male , Hippocampus/physiology , Female , Young Adult , Learning/physiology , Adult , Recognition, Psychology/physiology , Brain Mapping/methods
20.
Acta Pharmacol Sin ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811774

ABSTRACT

Exercise training effectively relieves anxiety disorders via modulating specific brain networks. The role of post-translational modification of proteins in this process, however, has been underappreciated. Here we performed a mouse study in which chronic restraint stress-induced anxiety-like behaviors can be attenuated by 14-day persistent treadmill exercise, in association with dramatic changes of protein phosphorylation patterns in the medial prefrontal cortex (mPFC). In particular, exercise was proposed to modulate the phosphorylation of Nogo-A protein, which drives the ras homolog family member A (RhoA)/ Rho-associated coiled-coil-containing protein kinases 1(ROCK1) signaling cascade. Further mechanistic studies found that liver-derived kynurenic acid (KYNA) can affect the kynurenine metabolism within the mPFC, to modulate this RhoA/ROCK1 pathway for conferring stress resilience. In sum, we proposed that circulating KYNA might mediate stress-induced anxiety-like behaviors via protein phosphorylation modification within the mPFC, and these findings shed more insights for the liver-brain communications in responding to both stress and physical exercise.

SELECTION OF CITATIONS
SEARCH DETAIL
...