Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Molecules ; 29(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38930910

ABSTRACT

Alpinia zerumbet (Pers.) B.L.Burtt & R.M.Sm is a perennial plant of the Zingiberaceae family widely distributed in the subtropical and tropical areas of South America, Oceania, and Asia. Multiple plant parts of A. zerumbet have been traditionally used as medicinal sources, each with different clinical uses. These variations may arise from differences among the chemical components and/or accumulations of the active compounds in each part. Therefore, this review summarizes previous studies on the phytochemicals in A. zerumbet and reveals the similarities and differences among the chemical constituents of its multiple medicinal parts, including the leaves, rhizomes, fruits, seeds, and flowers. The results contribute to the scientific validation of the traditional understanding that A. zerumbet possesses different medicinal properties in each plant part. In addition, this review provides directions for further studies on the phytochemicals of this plant.


Subject(s)
Alpinia , Phytochemicals , Alpinia/chemistry , Phytochemicals/chemistry , Plant Extracts/chemistry , Humans , Plants, Medicinal/chemistry
2.
Molecules ; 29(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38792061

ABSTRACT

Schisandra sphenanthera Rehd. et Wils., as a traditional Chinese medicine, has important medicinal value. In the market, the availability of the fruit of S. sphenanthera mainly relies on wild picking, but many canes and leaves are discarded during wild collection, resulting in a waste of resources. The canes and leaves of S. sphenanthera contain various bioactive ingredients and can be used as spice, tea, and medicine and so present great utilization opportunities. Therefore, it is helpful to explore the effective components and biological activities of the canes and leaves to utilize S. sphenanthera fully. In this study, the response surface method with ultrasound was used to extract the total triterpenoids from the canes and leaves of S. sphenanthera at different stages. The content of total triterpenoids in the leaves at different stages was higher than that in the canes. The total triterpenoids in the canes and leaves had strong antioxidant and antibacterial abilities. At the same time, the antibacterial activity of the total triterpenoids against Bacillus subtilis and Pseudomonas aeruginosa was stronger than that against Staphylococcus aureus and Escherichia coli. This study provides the foundation for the development and utilization of the canes and leaves that would relieve the shortage of fruit resources of S. sphenanthera.


Subject(s)
Anti-Bacterial Agents , Plant Extracts , Plant Leaves , Schisandra , Triterpenes , Schisandra/chemistry , Triterpenes/chemistry , Triterpenes/pharmacology , Triterpenes/isolation & purification , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Plant Leaves/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Antioxidants/pharmacology , Antioxidants/chemistry , Microbial Sensitivity Tests , Fruit/chemistry
3.
Metabolites ; 14(1)2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38248851

ABSTRACT

The three distinct medicinal parts of Angelica sinensis (Oliv.) Diels (Ang) roots are the head, body, and tail (ARH, ARB, and ART, respectively). How endophytic fungi shape the differences in metabolic components among these parts remains unclear. We quantified the distribution of active components and endophytic fungi along the ARH, ARB, and ART and their relationships. Based on the metabolic components and their abundances detected via non-target metabolism, the different medicinal parts were distinguishable. The largest number of dominant metabolic components was present in ART. The difference between ART and ARH was the greatest, and ARB was in a transitional state. The dominant active molecules in ART highlight their effects in haemodynamics improvement, antibacterial, anti-inflammatory, and hormone regulation, while ARH and ARB indicated more haemostasis, blood enrichment, neuromodulation, neuroprotection and tranquilisation, hepatoprotection, and antitumour activities than that of ART. The ARHs, ARBs, and ARTs can also be distinguished from each other based on the endophytic fungi at the microbiome level. The most dominant endophytic fungi were distributed in ART; the differences between ART and ARH were the largest, and ARB was in a transition state, which is consistent with the metabolite distributions. Structural equation modelling showed that the endophytic fungi were highly indicative of the metabolic components. Correlation analysis further identified the endophytic fungi significantly positively correlated with important active components, including Condenascus tortuosus, Sodiomyces alcalophilus, and Pleotrichocladium opacum. The bidirectional multivariate interactions between endophytic fungi and the metabolic components shape their spatial variations along the longitudinal direction in the Ang root.

4.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1016471

ABSTRACT

ObjectiveTo investigate the correlation among the botanical characteristics, biological characteristics, chemical composition, and medicinal properties and efficacy of traditional Chinese medicines (TCM) from latex-containing plants, so as to strengthen the theory of "identifying symptoms for qualities" and provide a reference for the development and utilization of the latex-containing plant resources. MethodStatistics on the meridians for properties and tastes, efficacy, medicinal parts, family and genus, and chemical components of TCM from latex-containing plants were carried out. A total of 53 TCM from latex-containing plants included in the 2020 edition of the Chinese Pharmacopoeia were screened by mining the Chinese Botanical Journal, Chinese Materia Medica, Dictionary of Traditional Chinese Medicines, and related literature. In addition, their meridians for properties and tastes, medicinal parts, chemical components, and TCM classifications were summarized and statistically analyzed by using Excel 2013 and ChiPlot 2023.3.31 software. ResultIt was found that latex-containing plants were mainly distributed in one kingdom, one phylum, two classes, and 20 families, and most of the TCM from latex-containing plants belonged to Dicotyledonaceae under Angiosperms. In terms of properties and tastes, plain>cold>warm>cool>hot and bitter>pungent>sweet>sour>salty. In terms of meridians, liver>lung>kidney>spleen=large intestine=stomach>heart>bladder=gallbladder=small intestines. In terms of medicinal parts, roots (root, rhizomes, tuberous root, and root bark)>resin>seed>whole herb (whole herb and above-ground part)>stem (stem and branch)>fruit>leaf>flower=skin. In terms of research on chemical components, they were mostly glycosides. In terms of TCM classification, they were mostly medicines for activating blood circulation and removing blood stasis. ConclusionThe TCM from latex-containing plants is mainly plain, with a uniform warm and cold distribution. The tastes are mainly bitter and pungent, and the major meridians are the liver and lung. The roots and resins are mainly used as medicines. The components mostly contain glycosides, alkaloids, and volatile oils, and most of them are medicines for activating blood circulation and removing blood stasis, as well as for removing heat and toxins. There is a certain degree of correlation among the growth habits, medicinal parts, chemical components, and the properties, tastes, and efficacy of the TCM from latex-containing plants. It may provide a reference for resource development and utilization of TCM from latex-containing plants.

5.
Zhongguo Zhong Yao Za Zhi ; 48(17): 4589-4597, 2023 Sep.
Article in Chinese | MEDLINE | ID: mdl-37802798

ABSTRACT

The shortage of Paridis Rhizoma promotes comprehensive utilization and development research of waste aerial parts of the original plant. The chemical compositions of the aerial parts of Paris polyphylla var. chinensis were clarified based on the ultrahigh performance liquid chromatography tandem quadrupoles time of flight mass spectrometry(UPLC-QTOF-MS/MS) in the previous investigation, and a series of flavonoids and steroidal saponins were isolated. The present study continued the isolation and structure identification of the new potential compounds discovered based on UPLC-QTOF-MS/MS. By using silica gel, ODS, flash rapid preparation, and other column chromatography techniques, combined with prepared high performance liquid chromatography, five compounds were isolated from the 75% ethanol extract of the aerial parts of P. polyphylla var. chinensis, and their structures were identified by spectral data combined with chemical transformations, respectively, as(23S,25R)-23,27-dihydroxy-diosgenin-3-O-α-L-rhamnopyranosyl-(1→2)-[ß-D-glucopyranosyl-(1→3)]-ß-D-glucopyranoside(1),(25R)-26-O-ß-D-glucopyranosyl-furost-5-en-3ß,22α,26-triol-3-O-α-L-rhamnopyranosyl-(1→2)-[ß-D-glucopyranosyl-(1→4)-α-L-rhamnopyranosyl-(1→4)]-ß-D-glucopyranoside(2),(25R)-27-O-ß-D-glucopyranosyl-5-en-3ß,27-dihydroxyspirost-3-O-α-L-rhamnopyranosyl-(1→2)-[ß-D-glucopyranosyl-(1→4)-α-L-rhamnopyranosyl-(1→4)]-ß-D-glucopyranoside(3),(25R)-27-O-ß-D-glucopyranosyl-5-en-3ß,27-dihydroxyspirost-3-O-α-L-rhamnopyranosyl-(1→2)-[ß-D-glucopyranosyl-(1→3)]-ß-D-glucopyranoside(4), and aculeatiside A(5). Among them, compounds 1-4 were new ones, and compound 5 was isolated from P. polyphylla var. chinensis for the first time.


Subject(s)
Liliaceae , Melanthiaceae , Saponins , Tandem Mass Spectrometry , Saponins/analysis , Liliaceae/chemistry , Chromatography, High Pressure Liquid , Rhizome/chemistry , Molecular Structure
6.
Heliyon ; 9(6): e17027, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37342581

ABSTRACT

A novel PANI@CS solid-phase dispersive extractant combined with ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) was developed for the first time, which was used for high-throughput, multi-component, real-time online rapid pretreatment and quantitative classification of 16 mycotoxins from five different medicinal parts of 13 genuine traditional Chinese medicines (TCMs). Ultra performance liquid chromatography combined with triple quadrupole mass spectrometry was used for separation and ESI detection. An internal standard isotope matching calibration was used for quantification purposes to compensate for matrix effects. The limits of detection (LOD) of 16 mycotoxins ranged from 0.1 to 6.0 µg/kg. The linear coefficients (R2) were ≥0.996 in the linear range from 10.0 to 200 µg/L. The recoveries of the 16 mycotoxins ranged from 90.1% to 105.8%, and the relative standard deviations (RSDs) ranged from 1.3% to 4.1%. Thirteen TCMs from five representative medicinal parts were selected and tested under the best sample preparation procedure and chromatographic analysis conditions. The results showed that the method could improve the sensitivity and accuracy of the sample analysis, improve the selectivity and reproducibility of the decolorization and purification of TCMs, which is suitable for the practical application of mycotoxin in trace analysis. This method can also provide a new idea for accurate, efficient, rapid and multi-component online detection of mycotoxins for quality and safety control of TCMs.

7.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-962642

ABSTRACT

ObjectiveThe relevant laws among the growth habits, habitat, medicinal site and sex, taste and efficacy of rattan derived traditional Chinese medicine(TCM) were explored to strengthen the demonstration of the quality theory and to provide theoretical basis for the clinical use and resource development of rattan. MethodThe characteristics, effects, parts, families and growth habits of some TCM from rattan were analyzed. By referring to Chinese Flora, Chinese Materia Medica, Chinese Materia Medica Dictionary and other literature, a total of 48 kinds of Rattan from Chinese medicines included in the 2020 edition of Chinese Pharmacopoeia were screened out, and their property and meridian tropism, medicinal parts, habitat and classification of TCM were statistically analyzed. Excel 2013 and SPSS Statistics 26.0 were employed for statistical research. ResultThe results of the analysis of rattan derived Chinese medicine showed that in the families and genera, Tetrandaceae > Dioscorea > Leguminoa > Cucurbitaceae > Woodtonaceae, etc. In the nature, cold > warm > flat > cool > hot; Bitter > sweet > octane > acid. In the liver meridian, liver > lung > heart > spleen > stomach = bladder = kidney > large intestine. In medicinal parts, root and rhizome > vine stem > fruit seed > flower > vascular bundle = whole grass. In terms of habitat distribution, Guangdong > Guangxi > Yunnan > Fujian > Zhejiang, et al. In the classification of TCM, dispelling wind and dampness > clearing heat > improving water and dampness > promoting blood circulation and removing blood stasis. ConclusionRattan from TCM are mainly cold in nature, bitter in flavors, and entered liver meridian, and the root and stem of Rattan are mainly used in medicine, mostly distributed in the southeast coast of China. The main effects are to channel and activate collaterals, dispel wind and dehumidification, promote blood circulation and relieve pain, clear heat and detoxify. The morphology habit, growth environment and medicinal parts of Rattan from Chinese medicine were correlated with the property and efficacy. There was a certain correlation between the growth habits, habitat and medicinal site of rattan derived Chinese medicine and its sexual and taste effect, which provided reference for the development and utilization of rattan derived Chinese medicine resources.

8.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1008626

ABSTRACT

The shortage of Paridis Rhizoma promotes comprehensive utilization and development research of waste aerial parts of the original plant. The chemical compositions of the aerial parts of Paris polyphylla var. chinensis were clarified based on the ultrahigh performance liquid chromatography tandem quadrupoles time of flight mass spectrometry(UPLC-QTOF-MS/MS) in the previous investigation, and a series of flavonoids and steroidal saponins were isolated. The present study continued the isolation and structure identification of the new potential compounds discovered based on UPLC-QTOF-MS/MS. By using silica gel, ODS, flash rapid preparation, and other column chromatography techniques, combined with prepared high performance liquid chromatography, five compounds were isolated from the 75% ethanol extract of the aerial parts of P. polyphylla var. chinensis, and their structures were identified by spectral data combined with chemical transformations, respectively, as(23S,25R)-23,27-dihydroxy-diosgenin-3-O-α-L-rhamnopyranosyl-(1→2)-[β-D-glucopyranosyl-(1→3)]-β-D-glucopyranoside(1),(25R)-26-O-β-D-glucopyranosyl-furost-5-en-3β,22α,26-triol-3-O-α-L-rhamnopyranosyl-(1→2)-[β-D-glucopyranosyl-(1→4)-α-L-rhamnopyranosyl-(1→4)]-β-D-glucopyranoside(2),(25R)-27-O-β-D-glucopyranosyl-5-en-3β,27-dihydroxyspirost-3-O-α-L-rhamnopyranosyl-(1→2)-[β-D-glucopyranosyl-(1→4)-α-L-rhamnopyranosyl-(1→4)]-β-D-glucopyranoside(3),(25R)-27-O-β-D-glucopyranosyl-5-en-3β,27-dihydroxyspirost-3-O-α-L-rhamnopyranosyl-(1→2)-[β-D-glucopyranosyl-(1→3)]-β-D-glucopyranoside(4), and aculeatiside A(5). Among them, compounds 1-4 were new ones, and compound 5 was isolated from P. polyphylla var. chinensis for the first time.


Subject(s)
Tandem Mass Spectrometry , Saponins/analysis , Liliaceae/chemistry , Chromatography, High Pressure Liquid , Rhizome/chemistry , Melanthiaceae , Molecular Structure
9.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-979452

ABSTRACT

By reviewing the ancient and modern literature, the name, origin, medicinal parts and other aspects of Linderae Radix in famous classical formulas were systematically sorted out, so as to provide a basis for development of famous classical formulas containing this herb. Linderae Radix was first recorded in Bencao Shiyi in the Tang dynasty under name of Pangqi, and since Rihuazi Bencao of the Five dynasties, all generations of materia medica have used Wuyao as its proper name of the herb. The mainstream source of Linderae Radix used in the past dynasties is dried tuberous roots of Lindera aggregata contained in the 2020 edition of Chinese Pharmacopoeia. The origins of Linderae Radix recorded in the past dynasties are mainly Guangdong, Guangxi, Hunan, Zhejiang, Anhui and others, since the Song dynasty, Tiantai county in Zhejiang province has been regarded as the authentic producing place, in modern times, it is still the authentic place of origin. At harvesting, in ancient times, the harvesting time of the roots was mostly in August, while in modern times, Linderae Radix is mostly harvested in winter and spring or throughout the year, and is dried directly after harvesting or cut thin slices and dried in the place of production. At processing, Linderae Radix was processed by removing the peel and heart, wine roasting, vinegar roasting and other methods in ancient times, and in modern times, it is mostly used in raw form as medicine. In conclusion, it is suggested that the processing method of fresh slicing and drying in the place of origin in the 2020 edition of Chinese Pharmacopoeia should be adopted if Linderae Radix is involved in the development of famous classical formulas.

10.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-964952

ABSTRACT

In this paper, the name, origin, quality evaluation, producing area and processing methods of Lablab Semen Album in the famous classical formulas were researched by reviewing the ancient materia medica, medical books, prescription books and modern literature. The results showed that the name of Lablab Semen Album in the past dynasties was mostly derived from its shape and color, called Biandou and Baibiandou. The mainstream origin used in the past dynasties was Lablab purpureus, the medicinal parts were mainly white mature seeds, with the addition of the leaves in the Song dynasty and the flowers in the Ming dynasty. Since modern times, the authentic producing areas of Lablab Semen Album are Suzhou, Zhejiang and other places, and now mainly produced in Chuxiong and Xinping, Yunnan and Panzhihua, Sichuan. The traditional quality evaluation of Lablab Semen Album is evaluated as large, solid, full and white. The harvesting time of this herb is recorded from the eighth to the ninth lunar month in related literature, the pods are picked when the seeds are ripe, and the seeds are dried in the sun. In ancient times, the processing of Lablab Semen Album mainly consisted of frying the seeds with skin and then pulverizing for use, or soaking and peeling seeds for raw use. Based on the conclusion of the textual research, it is recommended that the seeds or flowers of the white flowering plants of L. purpureus, a member of the leguminosae, should be used in the famous classical formulas, and the dried seeds or dried flowers of Lablab Semen Album can be used as medicine if the formula did not clearly indicate processing requirements.

11.
Molecules ; 27(14)2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35889489

ABSTRACT

The chemical components and medicinal properties of different medicinal parts of Angelica sinensis are often used as medicine after being divided into the head, body and tail of Angelica sinensis. In this study, the chemical components of different medicinal parts in different periods were analyzed by GC-MS for the first time, and the differences of the accumulation rules of chemical components in different medicinal parts of Angelica sinensis were obtained. This study demonstrated that the differences of composition accumulation in different medicinal parts of Angelica sinensis were mainly reflected in the types and relative contents of compounds. The study found that the number of compounds in different medicinal parts of Angelica sinensis in each period were different and the change rules of the same compound in different medicinal parts were also different. The number of compounds in the tail of Angelica sinensis was the least in April, and the largest in October. The content of ligustilide in the body of Angelica sinensis was higher in April and was the highest in the tail in October. The relative content of butylidenephthalide in the head was the highest in October. The relative contents of senkyunolide A and butylphthalide in the head were decreased in October, while the contents in the body and tail increased, indicating that the compounds that accumulate in the head may transfer to the body and tail in later stages of growth. This study clarified the differences in the accumulation of chemical components in different medicinal parts of Angelica sinensis, which could provide a theoretical basis for the reasons for the differences of chemical components in the different medicinal parts.


Subject(s)
Angelica sinensis , Plants, Medicinal , Angelica sinensis/chemistry , Gas Chromatography-Mass Spectrometry , Plants, Medicinal/chemistry
12.
Nat Prod Res ; 36(17): 4498-4501, 2022 Sep.
Article in English | MEDLINE | ID: mdl-34629007

ABSTRACT

Rhododendron Molle G. Don belongs to Ericaceae family. As a toxic traditional Chinese medicine, its roots, flowers, and fruit are often mixed and substituted arbitrarily to treat rheumatoid arthritis in clinic. To clarify the main chemical basis of each medicinal part, and provide sufficient scientific basis for clinical application, analysis using HPLC-ELSD of the roots, flowers, and fruit from R. molle was established, and characteristic chemical constituents of them were separated by tracking. The structures were determined by NMR methods. Finally, 16, 21, and 18 compounds were obtained from the roots, flowers, and fruit, respectively. Overall, 49 compounds were obtained, of which 25 were identified for the first time in R. molle. Meanwhile, among the obtained compounds, 12, 11, and 6 characteristic peaks were identified from the roots, flowers, and fruit, respectively. Thus, the basic chemical substances of the medicinal parts of R. molle were determined initially.


Subject(s)
Rhododendron , Chromatography, High Pressure Liquid , Flowers/chemistry , Medicine, Chinese Traditional , Plant Roots , Rhododendron/chemistry
13.
Zhongguo Zhong Yao Za Zhi ; 47(23): 6431-6437, 2022 Dec.
Article in Chinese | MEDLINE | ID: mdl-36604889

ABSTRACT

To explore the effect of the granules made by new-medicinal parts of Crocus sativus(NMPCS) on hyperuricemia(HUA) in rats, the rat model of HUA was established by intramuscular injection of 3% potassium oxonate and intraperitoneal injection of 4% pyrazinamide. The content of serum uric acid was monitored every week for 3 consecutive weeks. After the experiment, the levels of serum uric acid, urine uric acid, serum creatinine, blood urea nitrogen(BUN), and xanthine oxidase(XOD) were determined. The protein and gene expressions of XOD were determined by Western blot method and fluorescence quantitative polymerase chain reaction(qPCR), and the morphological changes in the liver tissue were performed by hematoxylin-eosin(HE) staining. The results showed that as compared with the model group, the levels of serum uric acid in the positive drug group and the low, medium, and high-dose NMPCS groups were lower(P<0.05), the levels of urine uric acid in the high-dose NMPCS group were decreased(P<0.01), and there was no statistical difference in the medium and low-dose NMPCS groups. The levels of BUN in the high and low-dose NMPCS groups were decreased(P<0.05), and the levels of serum creatinine did not change in the administration groups. The positive drug group and the low, medium, and high-dose NMPCS groups significantly reduced the liver damage, with only a few hepatocytes vacuolization and a small number of red blood cells in the central venous area. The nephridial tissue structure was slightly abnormal, with a small number of red blood cell infiltration, and no obvious inflammatory cell infiltration was found in the glomerulus in these groups. No degeneration was found in renal tubular epithelial cells, with mild glomerular and tubular lesions and a small amount of sodium urate deposition and crystallization in the positive drug group and the low, medium, and high-dose NMPCS groups. The relative protein expressions of XOD in the positive drug group and the high dose NMPCS group were decreased(P<0.05), and the relative mRNA expressions of XOD in the positive drug group and the high and low-dose NMPCS groups were decreased as well(P<0.05). The above results show that NMPCS reduces uric acid in rats with HUA by regulating XOD, which provides a certain experimental basis for the development of NMPCS as a new medicine for the treatment of HUA.


Subject(s)
Crocus , Hyperuricemia , Kidney Diseases , Rats , Animals , Hyperuricemia/drug therapy , Hyperuricemia/genetics , Uric Acid , Creatinine , Xanthine Oxidase , Kidney
14.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-940321

ABSTRACT

In this paper, the name, origin, medicinal properties, specifications, clinical efficacy, producing area, quality evaluation and processing methods of Forsythiae Fructus in the famous classical formulas are researched by consulting related herbal literature, medical books and prescription books. The results showed that Forsythiae Fructus was sourced from Hypericum ascyron and its genus plants before Song dynasty, and it is used as medicine in many parts. After Song dynasty, Forsythiae Fructus is sourced from the fruit of Forsythia suspensa. Since the Ming dynasty, Forsythiae Fructus is divided into Qingqiao and Laoqiao according to different harvesting time. According to the research results, it is suggested to refer to the following suggestions for the application of Forsythiae Fructus in the development of famous classical formulas:①F. suspensa should be chosen as the origin since the Ming and Qing dynasties. ②If there is no special requirement for the source of prescriptions, it is recommended that Laoqiao be used in famous classical formulas since the Ming and Qing dynasties. ③The harvest time of Qingqiao should be from July 15th to August 15th, and Laoqiao should be in September, and it should be the husk after the seeds have been removed.

15.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-930166

ABSTRACT

Objective:To analyze the differences of Saponins in different parts of Panax ginseng, which couldprovide reference for a comprehensive quality evaluation.Methods:UFLC- Triple-TOF-MS/MS was used to analyze the Saponins in Ginseng Radix et Rhizoma, Ginseng Folium and Ginseng Flos,The analysis was carried out on a SynergiTM Hydro-RP 100A column, Gradient elution of water (containing 0.1% formic acid) (A)-acetonitrile (B). Principal component analysis (PCA) was used to analyze the grouping of samples, and partial least squares regression (PLS-DA) was used to classify the samples to find the differences of chemical components in different medicinal parts of Panax ginseng. Significant differences in saponins and its rules were found by multivariate statistical analysis.Results:PCA indicated that there was remarkable difference in saponins of Ginseng Radix et Rhizoma, Ginseng Folium and Ginseng Flos, ten different components were found by PLS-DA. Conclusion:There exists obvious differences of different medicinal parts of Panax Ginseng which could provide foundation for the further research and rathional use of Panax ginseng.

16.
Zhongguo Zhong Yao Za Zhi ; 46(20): 5436-5442, 2021 Oct.
Article in Chinese | MEDLINE | ID: mdl-34738447

ABSTRACT

Liangmianzhen(Zanthoxyli Radix) has long been used as medicine. The current medicinal parts are different from those in the ancient. As recorded in the Chinese Pharmacopeia, the medicinal part is root. However, in ancient works, the medicinal parts include root, stem, leaf, and fruit. In an attempt to find the historical basis that stem is a reasonable medicinal part, the herbalogical study was carried out on this medicinal based on the formal names, synonyms, original plant, medicinal parts, habitat of the medicinal plant, producing area, processing and preparation methods, efficacy, and indications recorded in ancient Chinese materia medica and local gazetteers. The results showed that Liangmianzhen was firstly recorded as a medicinal in Shennong's Classic of Materia Medica with the formal name of "Manjiao". "Manjiao" was adopted from the Han Dynasty to the Qing Dynasty when it was changed to "Rudijinniu", the name originating from the folk in the south of the Five Ridges. Now, the formal name is "Liangmianzhen", which was firstly recorded in Wuxuan County Gazetteer in 1914 and then as a synonym in the Updated Records of Picking Herbs in the South of the Five Ridges. According to the formal names, synonyms, and the descriptions of the original plant, the medicinal plants of Liang-mianzhen have the characteristics of shrub-like young seedlings, vine adult seedlings, corymbiform thyrsus, stems with thorns, amphitropous golden-yellow roots with horn-like branches, and thorns on both sides of the leaves. Thus, "Manjiao", "Rudijinniu", and "Liangmianzhen" were from the same species of Zanthoxylum nitidum(Rutaceae), which was also verified based on the growth environment, habitat, processing and preparation methods, efficacy, and indications. In ancient times, the stem and root were the main medicinal parts and leaves and fruits were also used. However, in the Chinese Pharmacopeia, root is recorded as the only medicinal part, which is obviously inconsistent with the records in the ancient classics. In light of the limited medicinal resources for Liang-mianzhen, other medicinal parts of Z. nitidum is recommended. This study clarified the medicinal parts of Z. nitidum in history. It is recommended that the stem be added to the medicinal parts of Z. nitidum in the next edition of Chinese Pharmacopeia.


Subject(s)
Drugs, Chinese Herbal , Materia Medica , Plants, Medicinal , China , Fruit , Medicine, Chinese Traditional
17.
Zhongguo Zhong Yao Za Zhi ; 46(12): 2900-2911, 2021 Jun.
Article in Chinese | MEDLINE | ID: mdl-34467680

ABSTRACT

Paridis Rhizoma(PR) is prepared from the dried rhizome of Paris polyphylla var. yunnanensis(PPY) or P. polyphylla var. chinensis(PPC) in Liliaceae family. The rapid development of PPY or PPC planting industry resulted from resource shortage has caused the waste of a large number of non-medicinal resources. To clarify the chemical compositions in rhizomes, fibrous roots, stems, leaves, seeds and pericarps of PPC, and explore the comprehensive application value and development prospect of these parts, the qualitative and quantitative analyses on the different parts of PPC were carried out by ultra-high performance liquid chromatography tandem quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF-MS/MS) and high performance liquid chromatography(HPLC). A total of 136 compounds were identified, including 112 steroidal saponins, 6 flavonoids, 11 nitrogen-containing compounds and 7 phytosterols. Rhizomes, fibrous roots, and seeds mainly contained protopennogenyl glycosides and pennogenyl glycosides; leaves and stems mainly contained protodiosgenyl glycosides and diosgenyl glycosides; pericarps mainly contained pennogenyl glycosides, followed by diosgenyl glycosides. The total level of four saponins was the highest in fibrous roots and rhizomes, followed by those in the pericarps and arillate seeds, and the lowest in the stems and exarillate seeds. This study can provide data support for the comprehensive development and rational application of non-medicinal parts of PPC.


Subject(s)
Liliaceae , Melanthiaceae , Saponins , Chromatography, High Pressure Liquid , Rhizome , Tandem Mass Spectrometry
18.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-888028

ABSTRACT

Paridis Rhizoma(PR) is prepared from the dried rhizome of Paris polyphylla var. yunnanensis(PPY) or P. polyphylla var. chinensis(PPC) in Liliaceae family. The rapid development of PPY or PPC planting industry resulted from resource shortage has caused the waste of a large number of non-medicinal resources. To clarify the chemical compositions in rhizomes, fibrous roots, stems, leaves, seeds and pericarps of PPC, and explore the comprehensive application value and development prospect of these parts, the qualitative and quantitative analyses on the different parts of PPC were carried out by ultra-high performance liquid chromatography tandem quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF-MS/MS) and high performance liquid chromatography(HPLC). A total of 136 compounds were identified, including 112 steroidal saponins, 6 flavonoids, 11 nitrogen-containing compounds and 7 phytosterols. Rhizomes, fibrous roots, and seeds mainly contained protopennogenyl glycosides and pennogenyl glycosides; leaves and stems mainly contained protodiosgenyl glycosides and diosgenyl glycosides; pericarps mainly contained pennogenyl glycosides, followed by diosgenyl glycosides. The total level of four saponins was the highest in fibrous roots and rhizomes, followed by those in the pericarps and arillate seeds, and the lowest in the stems and exarillate seeds. This study can provide data support for the comprehensive development and rational application of non-medicinal parts of PPC.


Subject(s)
Chromatography, High Pressure Liquid , Liliaceae , Melanthiaceae , Rhizome , Saponins , Tandem Mass Spectrometry
19.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-921690

ABSTRACT

Liangmianzhen(Zanthoxyli Radix) has long been used as medicine. The current medicinal parts are different from those in the ancient. As recorded in the Chinese Pharmacopeia, the medicinal part is root. However, in ancient works, the medicinal parts include root, stem, leaf, and fruit. In an attempt to find the historical basis that stem is a reasonable medicinal part, the herbalogical study was carried out on this medicinal based on the formal names, synonyms, original plant, medicinal parts, habitat of the medicinal plant, producing area, processing and preparation methods, efficacy, and indications recorded in ancient Chinese materia medica and local gazetteers. The results showed that Liangmianzhen was firstly recorded as a medicinal in Shennong's Classic of Materia Medica with the formal name of "Manjiao". "Manjiao" was adopted from the Han Dynasty to the Qing Dynasty when it was changed to "Rudijinniu", the name originating from the folk in the south of the Five Ridges. Now, the formal name is "Liangmianzhen", which was firstly recorded in Wuxuan County Gazetteer in 1914 and then as a synonym in the Updated Records of Picking Herbs in the South of the Five Ridges. According to the formal names, synonyms, and the descriptions of the original plant, the medicinal plants of Liang-mianzhen have the characteristics of shrub-like young seedlings, vine adult seedlings, corymbiform thyrsus, stems with thorns, amphitropous golden-yellow roots with horn-like branches, and thorns on both sides of the leaves. Thus, "Manjiao", "Rudijinniu", and "Liangmianzhen" were from the same species of Zanthoxylum nitidum(Rutaceae), which was also verified based on the growth environment, habitat, processing and preparation methods, efficacy, and indications. In ancient times, the stem and root were the main medicinal parts and leaves and fruits were also used. However, in the Chinese Pharmacopeia, root is recorded as the only medicinal part, which is obviously inconsistent with the records in the ancient classics. In light of the limited medicinal resources for Liang-mianzhen, other medicinal parts of Z. nitidum is recommended. This study clarified the medicinal parts of Z. nitidum in history. It is recommended that the stem be added to the medicinal parts of Z. nitidum in the next edition of Chinese Pharmacopeia.


Subject(s)
China , Drugs, Chinese Herbal , Fruit , Materia Medica , Medicine, Chinese Traditional , Plants, Medicinal
20.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-905977

ABSTRACT

The recycling of traditional Chinese medicine (TCM) wastes is an important research topic to be solved urgently in the industrialization of TCM resources. Rhei Radix et Rhizoma is a bulk Chinese herb mainly derived from Rheum palmatum,R. tanguticum,and R. officinale. At present,these three medicinal plants have been cultivated on a large scale and widely used in the fields of medicine,health care,food,cosmetics,and veterinary medicine,with an annual demand of more than 5 500 tons(1 ton=1 000 kg). However,a large number of wastes such as non-medicinal parts and residues produced in the production and deep processing are discarded because there is no effective way of utilization,resulting in serious waste of resources and environmental pollution. The non-medicinal parts contain not only the chemical components and pharmacological effects similar to those of roots and rhizomes but also a variety of amino acids,mineral elements,and conventional nutrients. They have a long history of use,and the content of some resource components is higher than that in roots and rhizomes. In particular,their stems and leaves exhibit great potential to be consumed as food and medicine due to high safety. Besides,the content of anthraquinones in Rhei Radix et Rhizoma residue is high and it possesses good antibacterial activity. It can be seen that the waste from the industrialization of Rhei Radix et Rhizoma has high utilization value. Hence,based on the relevant literature and investigation on the application of producing areas in China and abroad,the paper summarized the utilization status of their medicinal and non-medicinal parts,the waste production in the industrialization,as well as the active substances and utilization ways and put forward the multi-level and multi-path utilization strategy of Rhei Radix et Rhizoma wastes,in order to provide reference for the rational development and application of Rhei Radix et Rhizoma resources and promote the effective utilization and green development of the corresponding wastes.

SELECTION OF CITATIONS
SEARCH DETAIL
...