Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 91
Filter
1.
Article in English | MEDLINE | ID: mdl-38967073

ABSTRACT

Since ancient times, plants have been used as a remedy for numerous diseases. The pharmacological properties of plants are due to the presence of secondary metabolites like terpenoids, flavonoids, alkaloids, etc. Anthraquinones represent a group of naturally occurring quinones found generously across various plant species. Anthraquinones attract a significant amount of attention due to their reported efficacy in treating a wide range of diseases. Their complex chemical structures, combined with inherent medicinal properties, underscore their potential as agents for therapy. They demonstrate several therapeutic properties such as laxative, antitumor, antimalarial, antibacterial, antifungal, antioxidant, etc. Anthraquinones are found in different forms (derivatives) in plants, and they exhibit various medicinal properties due to their structure and chemical nature. The precursors for the biosynthesis of anthraquinones in higher plants are provided by different pathways such as plastidic hemiterpenoid 2-C-methyl-D-erthriol4-phosphate (MEP), mevalonate (MVA), isochorismate synthase and polyketide. By conducting a thorough analysis of scientific literature, this review provides insights into the intricate interplay between anthraquinone biosynthesis and its broad-ranging contributions to human health.

2.
Antioxidants (Basel) ; 13(6)2024 May 21.
Article in English | MEDLINE | ID: mdl-38929063

ABSTRACT

Ugni candollei, commonly known as white murta, is a native Chilean berry with a polyphenol composition that has been underexplored. This study aimed to establish a comprehensive profile of white murta polyphenols using ultra-performance liquid chromatography electrospray ionization Orbitrap mass spectrometry (UPLC-ESI-ORBITRAP MS). Additionally, it compared the efficacy of conventional extraction methods with emerging techniques such as deep eutectic solvent (DES) extraction and hot pressurized water extraction (HPWE). The analysis tentatively identified 107 phenolic compounds (84 of them reported for the first time for this cultivar), including 25 phenolic acids, 37 anthocyanins, and 45 flavonoids. Among the prominent and previously unreported polyphenols are ellagic acid acetyl-xyloside, 3-p-coumaroylquinic acid, cyanidin 3-O-(6'-caffeoyl-glucoside, and phloretin 2'-O-xylosyl-glucoside. The study found HPWE to be a promising alternative to traditional extraction of hydroxybenzoic acids, while DES extraction was less effective across all categories. The findings reveal that white murta possesses diverse phenolic compounds, potentially linked to various biological activities.

3.
Int J Mol Sci ; 25(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38892183

ABSTRACT

Baccharis macraei Hook. & Arn (Asteraceae), commonly known as Vautro, is found in the coastal areas of central-southern Chile, including the industrial zone of Quintero-Puchuncaví, known for the contamination of its soils with heavy metals, which together with other factors generate abiotic stress in plant species, against which they present defensive mechanisms. For this reason, the objective was to evaluate the effect of abiotic stress generated by the proximity of B. macraei to the industrial complex by assessing the physiological and metabolic states reported by the extracts and compounds isolated from the species, as well as the photosynthetic capacity, metal content and production, and antioxidant activity and cytotoxicity against tumorigenic cell lines of the phytoconstituents. To this end, B. macraei was collected at two different distances from the industrial complex, observing that the closer the species is, the greater the concentration of copper in the soil, generating a decrease in the rate of electron transport in situ, but an increase in antioxidant activity with low cytotoxicity. This activity could be due to the presence of flavonoids such as Hispidulin, Cirsimaritina, and Isokaempferida, as well as monoterpenes, oxygenated and non-oxygenated sesquiterpenes identified in this study.


Subject(s)
Antioxidants , Baccharis , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification , Baccharis/chemistry , Humans , Plant Extracts/pharmacology , Plant Extracts/chemistry , Cell Line, Tumor , Chile , Photosynthesis/drug effects , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification
4.
Arch Microbiol ; 206(5): 229, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38647675

ABSTRACT

In modern times, medicine is predominantly based on evidence-based practices, whereas in ancient times, indigenous people relied on plant-based medicines with factual evidence documented in ancient books or folklore that demonstrated their effectiveness against specific infections. Plants and microbes account for 70% of drugs approved by the USFDA (U.S. Food and Drug Administration). Stilbenes, polyphenolic compounds synthesized by plants under stress conditions, have garnered significant attention for their therapeutic potential, bridging ancient wisdom with modern healthcare. Resveratrol, the most studied stilbene, initially discovered in grapes, red wine, peanuts, and blueberries, exhibits diverse pharmacological properties, including cardiovascular protection, antioxidant effects, anticancer activity, and neuroprotection. Traditional remedies, documented in ancient texts like the Ayurvedic Charak Samhita, foreshadowed the medicinal properties of stilbenes long before their modern scientific validation. Today, stilbenes are integral to the booming wellness and health supplement market, with resveratrol alone projected to reach a market value of 90 million US$ by 2025. However, challenges in stilbene production persist due to limited natural sources and costly extraction methods. Bioprospecting efforts reveal promising candidates for stilbene production, particularly endophytic fungi, which demonstrate high-yield capabilities and genetic modifiability. However, the identification of optimal strains and fermentation processes remains a critical consideration. The current review emphasizes the knowledge of the medicinal properties of Stilbenes (i.e., cardiovascular, antioxidant, anticancer, anti-inflammatory, etc.) isolated from plant and microbial sources, while also discussing strategies for their commercial production and future research directions. This also includes examples of novel stilbenes compounds reported from plant and endophytic fungi.


Subject(s)
Resveratrol , Stilbenes , Stilbenes/chemistry , Stilbenes/pharmacology , Humans , Resveratrol/pharmacology , Resveratrol/chemistry , Fungi/drug effects , Endophytes/chemistry , Endophytes/metabolism , Endophytes/isolation & purification , Antioxidants/chemistry , Antioxidants/pharmacology , Medicine, Traditional , Plants/chemistry
5.
Bioresour Bioprocess ; 11(1): 18, 2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38647851

ABSTRACT

This comprehensive review systematically examines the multifarious aspects of Nelumbo nucifera, elucidating its ecological, nutritional, medicinal, and biomimetic significance. Renowned both culturally and scientifically, Nelumbo nucifera manifests remarkable adaptability, characterized by its extensive distribution across varied climatic regions, underpinned by its robust rhizome system and prolific reproductive strategies. Ecologically, this species plays a crucial role in aquatic ecosystems, primarily through biofiltration, thereby enhancing habitat biodiversity. The rhizomes and seeds of Nelumbo nucifera are nutritionally significant, being rich sources of dietary fiber, essential vitamins, and minerals, and have found extensive culinary applications. From a medicinal perspective, diverse constituents of Nelumbo nucifera exhibit therapeutic potential, including anti-inflammatory, antioxidant, and anti-cancer properties. Recent advancements in preservation technology and culinary innovation have further underscored its role in the food industry, highlighting its nutritional versatility. In biomimetics, the unique "lotus effect" is leveraged for the development of self-cleaning materials. Additionally, the transformation of Nelumbo nucifera into biochar is being explored for its potential in sustainable environmental practices. This review emphasizes the critical need for targeted conservation strategies to protect Nelumbo nucifera against the threats posed by climate change and habitat loss, advocating for its sustainable utilization as a species of significant value.

6.
3 Biotech ; 14(4): 94, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38444785

ABSTRACT

We analyzed here the in silico biological activities of caffeine, (+)-catechin, and theobromine. For this, the PubChem database of the NIH (National Institutes of Health) was used to obtain the SMILE canonical form of the bioactive molecules, and the free software PASS Online (Prediction of Activity Spectra for Substances) from the Way2Drug portal. Also, we conducted an in vitro experiment using a chronic myeloid leukemia (CML) cell line (K562) to confirm some results found in in silico investigation. These cells were exposed to different concentrations of caffeine, (+)-catechin, and theobromine for 72 h. The results found in this in silico study suggested that caffeine, (+)-catechin, and theobromine showed excellent biological properties, such as antioxidant, anti-inflammatory, and anticarcinogenic, as well as protection against cardiovascular, diabetes, neurological, allergic, respiratory, and other therapeutic activities. These findings can be elucidated through the modulation exerted by these bioactive molecules in many biochemical pathways involved in organism homeostasis, such as free radical scavenger action, oxidoreductase inhibitor, membrane permeability inhibitor, and lipid peroxidase inhibitor. In addition, we have found here that caffeine, (+)-catechin, and theobromine have a remarkable anti-inflammatory activity which plays an important role in the therapeutic approach of COVID-19. Moreover, our in vitro findings confirmed the in silico results regarding anticancer activity since these molecules reduce cell proliferation at all tested concentrations. Therefore, since these molecules exhibit important medicinal activities, further investigations should be conducted to reveal new therapies to improve the treatments and prevention of numerous disorders and, consequently, promote human health.

7.
Nat Prod Res ; : 1-15, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38534057

ABSTRACT

Cereus jamacaru, popularly known as mandacaru, is a Cacactacea native to the Caatinga of Brazil, but it is distributed in arid and semiarid regions worldwide. This plant is used for various purposes, such as food, animal fodder, civil construction, and as an ornamental and medicinal plant. Traditional medicine uses the cladodes, roots, and seeds of C. jamacaru to treat various diseases. This review discusses the ethnobotanical uses, phytochemical composition, and biological properties of C. jamacaru. The data demonstrate that C. jamacaru produces a wide range of secondary metabolites involved in the defense mechanism against biotic agents and abiotic stresses. Carbohydrate polymers, phenolic compounds, terpenes, and bioactive nitrogen compounds, have been identified and linked to this plant's biological properties. The present review will support future scientific research in identifying new bioproducts and demonstrating the potential of C. jamacaru as a food and medicinal plant.

8.
J Fluoresc ; 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38416283

ABSTRACT

Metal ion recognition is one of the most prospective research topics in the field of chemical sensors due to its wide range of clinical, biological and environmental applications. In this context, hydrazones are well known compounds that exhibit metal sensing and several biological properties due to the presence of N=CH- bond. Some of the biological properties includes anti-cancer, anti-tumor, anti-oxidant, anti-microbial activities. Hydrazones are also used as a ligand to detect metal ion as well as to generate metal complexes that exhibit medicinal properties. Thus, in recent years, many attempts were made to develop novel ligands with enhanced metal sensing and medicinal properties. In this review, some of the recent development on the hydrazones and their copper complexes are covered from the last few years from 2015-2023. These includes significance of copper ions, synthesis, biological properties, mechanism and metal sensing properties of some of the copper complexes were discussed.

9.
Article in English | MEDLINE | ID: mdl-38258787

ABSTRACT

The genus Anabasis has long been used in phytomedicine. The studied parts of Anabasis species are used as antirheumatic, diuretic, antidotes against poison, anti-erosion, anti-ulcer, and antidiabetic agents, as well as against headache and skin diseases. The objective of the present review was to summarize the phytochemical and pharmacological aspects related to the genus Anabasis. The results of this literature analysis show that among all the species of the Anabasis (A) family, A. aphylla, A. Iranica, A. aretioides, and A. articulata showed antibacterial activity; A. aretioides and A. articulata have antioxidant activity, A. aretioides and A. articulata have antidiabetic activity, A. articulata has cytotoxic activity and A. setifera, A. aretioides, and A. articulata exhibit anti-inflammatory activity. The Anabasis genus contains saponins, and alkaloids, such as anabasine, anabasamine, lupinine, jaxartinine, and triterpenic sapogenins. The study of 15 Anabasis plants has identified 70 compounds with an array of pharmacological activities especially antibacterial, antioxidant, antidiabetic, cytotoxic, and anti-inflammatory activities. However, there is a need for further studies on Anabasis plants before they can be fully used clinically as a potential drug.

10.
Article in English | MEDLINE | ID: mdl-38243976

ABSTRACT

AIMS: This review aimed to review the biological, pharmacological, and phytochemical aspects of the genus Haloxylon. BACKGROUND: Plants of the genus Haloxylon have been used for a long time in traditional medicine, and they are distributed in the western Mediterranean region to the Middle East, Iran, Mongolia, Burma, and southwest China. The studied parts of Haloxylon species include aerial parts, leaves, branches, seeds, roots, rhizosphere, soil, and whole plants, used to treat several diseases, including sexual disorders, hepatobiliary disorders, eye disorders, skin diseases and hemorrhoids, diarrhea, and effective in the treatment of various ailments such as snake bite, stomach ache, diabetes, wounds, earache and sciatica pain, windbreak dune fixation, feeding of livestock and firewood. OBJECTIVES: Till now, no review on the genus Haloxylon has been conducted. This review aimed to provide updated information on the genus Haloxylon, including traditional medicinal uses, valorization and exploitation of medicinal plants, phytochemistry, botanical characterization, pharmacological and toxicological research focusing on the medicinal properties of several Haloxylon species, especially their antioxidant, antibacterial, anti-inflammatory, cytotoxic and antifungal activities, as well as the effect of each bioactive molecule isolated from these species and their pharmacological use, including the preclinical evaluation of new drugs. MATERIALS AND METHODS: The present work was conducted using various scientific databases, including Science Direct, Scopus, PubMed, Google Scholar, etc. Correct plant names were verified from plantlist.org. The results of this search were interpreted, analyzed, and documented based on the obtained bibliographic information. RESULTS: Among all species of the Chenopodiaceae family, 6 species of the Haloxylon genus have approved antioxidant activity, 5 species have antibacterial activity, 3 species have anti-inflammatory activity, 2 species have cytotoxic activity, and 3 species have antifungal activity. The majority of the chemical constituents of this plant include flavonoids, alkaloids, phenols, saponins, glycosides, and tannins. Among them, the main bioactive constituents would be present in the alkaloid fraction. The study of more than 9 Haloxylon plants has identified more than 46 compounds. Pharmacological research proved that crude extracts and some pure compounds obtained from Haloxylon had activities for the treatment of different diseases. The objective of the present study was focused on antioxidant, antibacterial, anti-inflammatory, cytotoxic and antifungal diseases. From the study of the phytochemistry of the Haloxylon family, it was concluded that all studied plants had active compounds. Among them, 11 isolated molecules have medicinal activities with antioxidant properties, 10 molecules showed antibacterial effects, more than 6 molecules have anti-inflammatory properties, more than 9 isolated molecules have medicinal activities against cytotoxic diseases, and more than 28 molecules have antifungal effects. Therefore, the safety of Haloxylon herbal medicine should be considered a top priority in the early stages of development and clinical trials. CONCLUSION: Several previously conducted studies have validated multiple traditional uses of Haloxylon species. Further research is needed on Haloxylon plants before they can be fully utilized in the clinic as a potent drug candidate, as researchers are mainly focusing on alkaloids, diterpenoids, and triterpenoids, whereas there are many other types of compounds that may possess novel biological activities.

11.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1016471

ABSTRACT

ObjectiveTo investigate the correlation among the botanical characteristics, biological characteristics, chemical composition, and medicinal properties and efficacy of traditional Chinese medicines (TCM) from latex-containing plants, so as to strengthen the theory of "identifying symptoms for qualities" and provide a reference for the development and utilization of the latex-containing plant resources. MethodStatistics on the meridians for properties and tastes, efficacy, medicinal parts, family and genus, and chemical components of TCM from latex-containing plants were carried out. A total of 53 TCM from latex-containing plants included in the 2020 edition of the Chinese Pharmacopoeia were screened by mining the Chinese Botanical Journal, Chinese Materia Medica, Dictionary of Traditional Chinese Medicines, and related literature. In addition, their meridians for properties and tastes, medicinal parts, chemical components, and TCM classifications were summarized and statistically analyzed by using Excel 2013 and ChiPlot 2023.3.31 software. ResultIt was found that latex-containing plants were mainly distributed in one kingdom, one phylum, two classes, and 20 families, and most of the TCM from latex-containing plants belonged to Dicotyledonaceae under Angiosperms. In terms of properties and tastes, plain>cold>warm>cool>hot and bitter>pungent>sweet>sour>salty. In terms of meridians, liver>lung>kidney>spleen=large intestine=stomach>heart>bladder=gallbladder=small intestines. In terms of medicinal parts, roots (root, rhizomes, tuberous root, and root bark)>resin>seed>whole herb (whole herb and above-ground part)>stem (stem and branch)>fruit>leaf>flower=skin. In terms of research on chemical components, they were mostly glycosides. In terms of TCM classification, they were mostly medicines for activating blood circulation and removing blood stasis. ConclusionThe TCM from latex-containing plants is mainly plain, with a uniform warm and cold distribution. The tastes are mainly bitter and pungent, and the major meridians are the liver and lung. The roots and resins are mainly used as medicines. The components mostly contain glycosides, alkaloids, and volatile oils, and most of them are medicines for activating blood circulation and removing blood stasis, as well as for removing heat and toxins. There is a certain degree of correlation among the growth habits, medicinal parts, chemical components, and the properties, tastes, and efficacy of the TCM from latex-containing plants. It may provide a reference for resource development and utilization of TCM from latex-containing plants.

12.
Front Plant Sci ; 14: 1260414, 2023.
Article in English | MEDLINE | ID: mdl-38046611

ABSTRACT

Syzygium cumini, also known as jambolan or jamun, is an evergreen tree widely known for its medicinal properties, fruits, and ornamental value. To understand the genomic and evolutionary basis of its medicinal properties, we sequenced S. cumini genome for the first time from the world's largest tree genus Syzygium using Oxford Nanopore and 10x Genomics sequencing technologies. We also sequenced and assembled the transcriptome of S. cumini in this study. The tetraploid and highly heterozygous draft genome of S. cumini had a total size of 709.9 Mbp with 61,195 coding genes. The phylogenetic position of S. cumini was established using a comprehensive genome-wide analysis including species from 18 Eudicot plant orders. The existence of neopolyploidy in S. cumini was evident from the higher number of coding genes and expanded gene families resulting from gene duplication events compared to the other two sequenced species from this genus. Comparative evolutionary analyses showed the adaptive evolution of genes involved in the phenylpropanoid-flavonoid (PF) biosynthesis pathway and other secondary metabolites biosynthesis such as terpenoid and alkaloid in S. cumini, along with genes involved in stress tolerance mechanisms, which was also supported by leaf transcriptome data generated in this study. The adaptive evolution of secondary metabolism pathways is associated with the wide range of pharmacological properties, specifically the anti-diabetic property, of this species conferred by the bioactive compounds that act as nutraceutical agents in modern medicine.

13.
J Educ Health Promot ; 12: 361, 2023.
Article in English | MEDLINE | ID: mdl-38144022

ABSTRACT

The jackfruit (Artocarpus heterophyllus) is one of the natural remedies significantly used in folk medicine. The ethnopharmacological applications of jackfruit are mainly concerned with the management of inflammation, diarrhea, and diabetes mellitus. Flavonoids, stilbenoids, aryl benzofurans, and lectin jacalin are abundant in jackfruit species. Jacalin is a good indicator for evaluating the immunological state of HIV-1 patients. The extracts and metabolites of jackfruit, particularly those from the leaves, bark, stem, and fruit, contain several beneficial bioactive mixtures. New studies are focused on exploring these bioactive compounds used in various biological activities such as antiviral, antiplatelet, anticancer, antiatherosclerotic, immunomodulatory effects, inhibitors of 5-alpha reductase activity, and the formulation of fast-dissolving tablets (orodispersible, rapid melts porous). Multidisciplinary programs that integrate traditional and modern technology play a crucial role in the lies ahead expansion of jackfruit as the prospective inception of therapeutic compounds. This review aims to highlight significant results on the identification, production, and bioactivity of metabolites found in jackfruit, with current developments in jackfruit research in the control and prevention of human diseases.

14.
Malays J Med Sci ; 30(5): 23-39, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37928797

ABSTRACT

Background: Malay medical manuscripts have deciphered the medicinal value of Piper betle (sirih) enormously. In this review, an effort was made to explore the medicinal use of P. betle and correlate this information with the scientific evidence. Methods: The information regarding the use of P. betle was retrieved from the books consisting of a Malay medical manuscript with an identification number MSS 2219 from the National Library of Malaysia. PubMed, ScienceDirect and Scopus databases were used to collect information regarding the scientific evidence for the medicinal use of P. betle. This review was written following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The keywords used for searching the articles included P. betle, antimicrobial, analgaesic, haepatic and gastric. Results: MSS 2219 showed that P. betle has varied medicinal uses and based on that, it can be grouped into six categories. P. betle application method was different in different conditions. In terms of the literature search, 226 articles were found, 75 articles were extracted for detailed analysis and only 23 met the inclusion criteria. The information was related to the chemical assays, in vivo and in vitro studies. Conclusion: In summary, P. betle has the potential to treat medical conditions in various types of categories as recorded in the Malay medical manuscripts and also based on scientific publications. For clinical purposes, more information is required, such as the specific mechanism involved, the best extraction method and the best dosage for treatment.

15.
Foods ; 12(21)2023 Oct 29.
Article in English | MEDLINE | ID: mdl-37959074

ABSTRACT

Nam Wah banana (Musa paradisiaca L.) is the most common banana cultivar in Thailand. Large amounts of its non-consumable byproducts are considered undervalued and thrown as waste. Exploring the potential utilization and application of banana byproducts for human benefit can add to their value and minimize the risk of threats. This study aimed to investigate phytochemicals, antioxidant and anti-inflammatory activities, and toxicity of Nam Wah banana byproducts. Five banana plant parts, including the midrib, leaf, peduncle, unripe and ripe peels, were extracted using hexane, ethyl acetate, ethanol, and water. Among the extracts tested, the ethyl acetate leaf extract showed the strongest antioxidant capacity and anti-inflammatory activity, probably through the inhibition of inducible nitric oxide synthase (iNOS) and 15-lipoxygenase (15-LOX). Positive correlations existed between the activities and the total phenolic/flavonoid content of banana byproducts. An in silico docking analysis demonstrated that flavonoid glycosides in banana byproducts, such as kaempferol-3-O-rutinoside and rutin, may bind to inducible iNOS, whereas omega-3-polyunsaturated fatty acids, such as eicosapentaenoic acid, may bind to 15-LOX and cyclooxygenase-2 (COX-2). The extracts showed either low or no toxicity. These findings suggest that banana byproducts are a natural source of antioxidant and anti-inflammatory compounds. It is recommended that additional investigations be conducted to explore their potential therapeutic applications in treating disorders linked with oxidative stress or inflammation. This research has the potential to enhance the value of banana byproducts.

16.
Heliyon ; 9(11): e22013, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38034740

ABSTRACT

The environmental and health-related impacts of synthetic dyes have led to growing interest in natural dyes as sustainable and eco-friendly alternatives. However, natural dyes have been used to dye textiles with limited color shade and poor fastness properties, and little research has been conducted in this field. Additionally, natural dyes also have the potential to provide added functionalities to textiles, such as antibacterial and anti-UV properties. A systematic literature review of 38 studies was conducted to analyze the use of six natural dyes derived from eucalyptus (Eucalyptus globulus Labill.), weld (Reseda luteola L.), madder (Rubia tinctorum L.), annatto (Bixa Orellana L.), true indigo (Indigofera tinctoria L.) and woad (Isatis tinctoria L.). These dyes were selected after a preliminary analysis of studies on plant-based natural dyes with primary colors, considering their chromatic and potential medicinal properties. This study explores the influence of different dyeing parameters and auxiliary products in these properties. The research discussed how the chromatic and medicinal properties of natural dyes can be affected by various factors and provides a summary table with the chromatic palette possibilities according to the different materials and processes relationships. Exploring the combination of natural dyes with environmentally friendly auxiliary products can be a promising development area for creating a wide range of color shades. Further research is also needed to optimize the dyeing processes with natural dyes, towards more sustainable textile dyeing possibilities.

17.
Antibiotics (Basel) ; 12(7)2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37508253

ABSTRACT

Broccoli, Brassica oleracea var. italica, has recently gained considerable attention due to its remarkable nutritional composition and numerous health benefits. In this review, the nutritional aspects of broccoli are examined, highlighting its rich nutrient content and essential bioactive compounds. The cruciferous vegetable broccoli is a rich source of several important nutrients, including fiber, vitamins (A, C, and K), minerals (calcium, potassium, and iron), and antioxidants. It has also been shown to contain bioactive compounds such as glucosinolates, sulforaphane, and indole-3-carbinol, all of which have been shown to have significant health-promoting effects. These chemicals are known to have potent antioxidant, anti-inflammatory, and anticancer effects. This review article aims to comprehensively examine the diverse spectrum of nutrients contained in broccoli and explore its medicinal potential to promote human health.

18.
Biomolecules ; 13(7)2023 06 25.
Article in English | MEDLINE | ID: mdl-37509074

ABSTRACT

The seminal discovery of paclitaxel from endophytic fungus Taxomyces andreanae was a milestone in recognizing the immense potential of endophytic fungi as prolific producers of bioactive secondary metabolites of use in medicine, agriculture, and food industries. Following the discovery of paclitaxel, the research community has intensified efforts to harness endophytic fungi as putative producers of lead molecules with anticancer, anti-inflammatory, antimicrobial, antioxidant, cardio-protective, and immunomodulatory properties. Endophytic fungi have been a valuable source of bioactive compounds over the last three decades. Compounds such as taxol, podophyllotoxin, huperzine, camptothecin, and resveratrol have been effectively isolated and characterized after extraction from endophytic fungi. These findings have expanded the applications of endophytic fungi in medicine and related fields. In the present review, we systematically compile and analyze several important compounds derived from endophytic fungi, encompassing the period from 2011 to 2022. Our systematic approach focuses on elucidating the origins of endophytic fungi, exploring the structural diversity and biological activities exhibited by these compounds, and giving special emphasis to the pharmacological activities and mechanism of action of certain compounds. We highlight the tremendous potential of endophytic fungi as alternate sources of bioactive metabolites, with implications for combating major global diseases. This underscores the significant role that fungi can play in the discovery and development of novel therapeutic agents that address the challenges posed by prevalent diseases worldwide.


Subject(s)
Endophytes , Fungi , Endophytes/chemistry , Fungi/metabolism , Paclitaxel , Podophyllotoxin , Biology
19.
J Public Health Res ; 12(2): 22799036231181226, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37440795

ABSTRACT

Toxicity arising from environmental contaminants has attracted global interest in the last few decades, due to the high morbidity and mortality associated with them. Efforts have been made to combat the consequential outcomes of environmental toxicity in humans through traditional remediation techniques and therapeutic measures which have been hampered by one or more limitations. Consequently, this scenario has triggered interest in the medicinal properties of phytochemicals. Thus, this review gives a succinct and in-depth elucidation of the various environmental contaminants and their toxicity effects on humans. It delves into the various classes of phytochemicals and their intervention roles. The study adopted a desk review of existing literatures from scientific reports and peer reviewed articles through triangulation of data sources. "Phytochemicals" are group of secondary metabolites obtained from plants with medicinal properties. These groups of compounds are included but not limited to flavonoids, tannins, saponins, alkaloids, cardenoloids, terpenoids, and phytosteroids. This review corroborates the prophylactic and therapeutics efficacy of these phytochemicals as anti-metastatic, anti-inflammatory, anti-aging, anti-oxidant, anti-microbial and live saving substances with empirical findings from several laboratory, clinical trials and epidemiologic studies. It conclude that given the wide range of medicinal properties of phytochemicals, there is an urgent need for its full optimization in the pharmaceutical industry and future studies should focus on identifying the bioactive molecules in these compounds and its effectiveness against mixer toxicity.

20.
Metabolites ; 13(5)2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37233638

ABSTRACT

The present study was conducted to assess the effect of elevated ozone stress on the development and metabolite contents of lemongrass, a medicinal plant. The experimental plant was exposed to two elevated ozone concentrations (ambient + 15 ppb, and ambient + 30 ppb) using open-top chambers. Samplings were carried out at 45 and 90 days after transplantation (DAT), for the analysis of different characteristics, while the metabolite contents of leaves and essential oils were analyzed at 110 DAT. Both the doses of elevated ozone had notable negative effects on the carbon fixation efficiency of plants, resulting in a significant reduction in plant biomass. Enzymatic antioxidant activity increased during the second sampling, which suggests that the scavenging of reactive oxygen species was more prominent in lemongrass during the later developmental stage. The results of the present study showed a stimulated diversion of resources towards the phenylpropanoid pathway, which is made evident by the increase in the number and contents of metabolites in foliar extract and essential oils of plants grown at elevated ozone doses, as compared to ambient ozone. Elevated ozone not only upregulated the contents of medicinally important components of lemongrass, it also induced the formation of some pharmaceutically active bio compounds. On the basis of this study, it is expected that increasing ozone concentrations in near future will enhance the medicinal value of lemongrass. However, more experiments are required to validate these findings.

SELECTION OF CITATIONS
SEARCH DETAIL
...