Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Int J Mol Sci ; 24(21)2023 Oct 28.
Article in English | MEDLINE | ID: mdl-37958682

ABSTRACT

Needle abscission in balsam fir has been linked to both cold acclimation and changes in lipid composition. The overall objective of this research is to uncover lipid changes in balsam fir during cold acclimation and link those changes with postharvest abscission. Branches were collected monthly from September to December and were assessed for cold tolerance via membrane leakage and chlorophyll fluorescence changes at -5, -15, -25, -35, and -45 °C. Lipids were extracted and analyzed using mass spectrometry while postharvest needle abscission was determined gravimetrically. Cold tolerance and needle retention each significantly (p < 0.001) improved throughout autumn in balsam fir. There were concurrent increases in DGDG, PC, PG, PE, and PA throughout autumn as well as a decrease in MGDG. Those same lipids were strongly related to cold tolerance, though MGDG had the strongest relationship (R2 = 55.0% and 42.7% from membrane injury and chlorophyll fluorescence, respectively). There was a similar, albeit weaker, relationship between MGDG:DGDG and needle retention (R2 = 24.3%). Generally, a decrease in MGDG:DGDG ratio resulted in better cold tolerance and higher needle retention in balsam fir, possibly due to increased membrane stability. This study confirms the degree of cold acclimation in Nova Scotian balsam fir and presents practical significance to industry by identifying the timing of peak needle retention. It is suggested that MGDG:DGDG might be a beneficial tool for screening balsam fir genotypes with higher needle retention characteristics.


Subject(s)
Abies , Seasons , Plant Leaves , Lipids , Chlorophyll , Acclimatization
2.
Plants (Basel) ; 12(9)2023 Apr 30.
Article in English | MEDLINE | ID: mdl-37176921

ABSTRACT

Drought is one of the main environmental stress factors affecting plant growth and yield. The impact of different PEG concentrations on the photosynthetic performance of maize (Zea mays L. Mayflower) and sorghum (Sorghum bicolor L. Foehn) was investigated. The activity of the photosynthetic apparatus was assessed using chlorophyll fluorescence (PAM and JIP test) and photooxidation of P700. The data revealed that water deficiency decreased the photochemical quenching (qP), the ratio of photochemical to nonphotochemical processes (Fv/Fo), the effective quantum yield of the photochemical energy conversion in PSII (ΦPSII), the rate of the electron transport (ETR), and the performance indexes PItotal and PIABS, as the impact was stronger in sorghum than in maize and depended on drought level. The PSI photochemistry (P700 photooxidation) in sorghum was inhibited after the application of all studied drought levels, while in maize, it was registered only after treatment with higher PEG concentrations (30% and 40%). Enhanced regulated energy losses (ΦNPQ) and activation of the state transition under drought were also observed in maize, while in sorghum, an increase mainly in nonregulated energy losses (ΦNO). A decrease in pigment content and relative water content and an increase in membrane damage were also registered after PEG treatment. The experimental results showed better drought tolerance of maize than sorghum. This study provides new information about the role of regulated energy losses and state transition for the protection of the photosynthetic apparatus under drought and might be a practical approach to the determination of the drought tolerance of plants.

3.
Plants (Basel) ; 12(7)2023 Mar 24.
Article in English | MEDLINE | ID: mdl-37050066

ABSTRACT

Salinity is one of the major abiotic stress factors hindering crop production, including ornamental flowering plants. The present study examined the response to salt stress of Zinnia elegans 'Lilliput' supplemented with basic (150 mg·dm-3) and enhanced (300 mg·dm-3) potassium doses. Stress was imposed by adding 0.96 and 1.98 g of NaCl per dm-3 of the substrate. The substrate's electrical conductivity was 1.1 and 2.3 dS·m-1 for lower potassium levels and 1.2 and 2.4 dS·m-1 for higher potassium levels. Salt stress caused a significant and dose-dependent reduction in leaf RWC, increased foliar Na and Cl concentrations, and reduced K. About 15% and 25% of cell membrane injury at lower and higher NaCl doses, respectively, were accompanied by only slight chlorophyll reduction. Salt stress-induced proline increase was accompanied by increased P5CS activity and decreased PDH activity. More than a 25% reduction in most growth parameters at EC 1.1-1.2 dS·m-1 but only a slight decrease in chlorophyll and a 25% reduction in the decorative value (number of flowers produced, flower diameter) only at EC 2.3-2.4 dS·m-1 were found. Salt stress-induced leaf area reduction was accompanied by increased cell wall lignification. An enhanced potassium dose caused a reduction in leaf Na and Cl concentrations and a slight increase in K. It was also effective in membrane injury reduction and proline accumulation. Increasing the dose of potassium did not improve growth and flowering parameters but affected the lignification of the leaf cell walls, which may have resulted in growth retardation. Zinnia elegans 'Lilliput' may be considered sensitive to long-term salt stress.

4.
J Microorg Control ; 28(4): 187-200, 2023.
Article in English | MEDLINE | ID: mdl-38233170

ABSTRACT

Various sterilization and disinfection processes are used to control harmful microorganisms in food, medicine, and the environment. During killing, microorganisms often remain between life and death, being called injured microorganisms. The degree of injury of the injured microorganisms depends on the load of the disinfection treatment, and the treatment conditions and varies not only quantitatively but also qualitatively. Knowing how they are injured by sublethal and lethal stresses of disinfection, how they repair themselves, what makes the difference between life and death, and their physiological characteristics, will lead to appropriate microbial testing and optimization of disinfection conditions for practical viability and growth potential, and will deepen our understanding of the effectiveness of the treatment. Focusing on mainly heat injury and using Escherichia coli as a model microorganism, in this review, I will discuss the classification of injury modes in injured microorganisms caused by disinfection treatment, including "λ injury" (delayed resumption of growth)," µ injury" (reduced growth rate injury)," ß injury" (secondary injury), and other derivatives.


Subject(s)
Disinfection , Hot Temperature , Escherichia coli
5.
Brain Commun ; 4(6): fcac306, 2022.
Article in English | MEDLINE | ID: mdl-36523267

ABSTRACT

The involvement of the complement pathway in Guillain-Barré syndrome pathogenesis has been demonstrated in both patient biosamples and animal models. One proposed mechanism is that anti-ganglioside antibodies mediate neural membrane injury through the activation of complement and the formation of membrane attack complex pores, thereby allowing the uncontrolled influx of ions, including calcium, intracellularly. Calcium influx activates the calcium-dependent protease calpain, leading to the cleavage of neural cytoskeletal and transmembrane proteins and contributing to subsequent functional failure. Complement inhibition has been demonstrated to provide effective protection from injury in anti-ganglioside antibody-mediated mouse models of axonal variants of Guillain-Barré syndrome; however, the role of complement in the pathogenesis of demyelinating variants has yet to be established. Thus, it is currently unknown whether complement inhibition would be an effective therapeutic for Guillain-Barré syndrome patients with injuries to the Schwann cell membrane. To address this, we recently developed a mouse model whereby the Schwann cell membrane was selectively targeted with an anti-GM1 antibody resulting in significant disruption to the axo-glial junction and cytoplasmic paranodal loops, presenting as conduction block. Herein, we utilize this Schwann cell nodal membrane injury model to determine the relevance of inhibiting complement activation. We addressed the early complement component C2 as the therapeutic target within the complement cascade by using the anti-C2 humanized monoclonal antibody, ARGX-117. This anti-C2 antibody blocks the formation of C3 convertase, specifically inhibiting the classical and lectin complement pathways and preventing the production of downstream harmful anaphylatoxins (C3a and C5a) and membrane attack complexes. Here, we demonstrate that C2 inhibition significantly attenuates injury to paranodal proteins at the node of Ranvier and improves respiratory function in ex vivo and in vivo Schwann cell nodal membrane injury models. In parallel studies, C2 inhibition also protects axonal integrity in our well-established model of acute motor axonal neuropathy mediated by both mouse and human anti-GM1 antibodies. These data demonstrate that complement inhibition prevents injury in a Schwann cell nodal membrane injury model, which is representative of neuropathies associated with anti-GM1 antibodies, including Guillain-Barré syndrome and multifocal motor neuropathy. This outcome suggests that both the motor axonal and demyelinating variants of Guillain-Barré syndrome should be included in future complement inhibition clinical trials.

6.
Front Plant Sci ; 13: 1022167, 2022.
Article in English | MEDLINE | ID: mdl-36578327

ABSTRACT

Low-temperature stress (LTS) drastically affects vegetative and reproductive growth in fruit crops leading to a gross reduction in the yield and loss in product quality. Among the fruit crops, temperate fruits, during the period of evolution, have developed the mechanism of tolerance, i.e., adaptive capability to chilling and freezing when exposed to LTS. However, tropical and sub-tropical fruit crops are most vulnerable to LTS. As a result, fruit crops respond to LTS by inducing the expression of LTS related genes, which is for climatic acclimatization. The activation of the stress-responsive gene leads to changes in physiological and biochemical mechanisms such as photosynthesis, chlorophyll biosynthesis, respiration, membrane composition changes, alteration in protein synthesis, increased antioxidant activity, altered levels of metabolites, and signaling pathways that enhance their tolerance/resistance and alleviate the damage caused due to LTS and chilling injury. The gene induction mechanism has been investigated extensively in the model crop Arabidopsis and several winter kinds of cereal. The ICE1 (inducer of C-repeat binding factor expression 1) and the CBF (C-repeat binding factor) transcriptional cascade are involved in transcriptional control. The functions of various CBFs and aquaporin genes were well studied in crop plants and their role in multiple stresses including cold stresses is deciphered. In addition, tissue nutrients and plant growth regulators like ABA, ethylene, jasmonic acid etc., also play a significant role in alleviating the LTS and chilling injury in fruit crops. However, these physiological, biochemical and molecular understanding of LTS tolerance/resistance are restricted to few of the temperate and tropical fruit crops. Therefore, a better understanding of cold tolerance's underlying physio-biochemical and molecular components in fruit crops is required under open and simulated LTS. The understanding of LTS tolerance/resistance mechanism will lay the foundation for tailoring the novel fruit genotypes for successful crop production under erratic weather conditions.

7.
AoB Plants ; 14(3): plac015, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35558162

ABSTRACT

Salinity is a serious problem in the cultivation of ornamental plants. Chrysanthemum (Chrysanthemum × grandiflorum) 'Palisade White' was evaluated in order to examine its responses to long-term salt stress. Plants were grown in substrate supplemented with NaCl doses (g dm-3 of substrate) 0, 0.44, 0.96, 1.47, 1.98, 2.48 and 2.99. The initial electrical conductivity (EC) of the substrates was 0.3, 0.9, 1.4, 1.9, 2.6, 3.1 and 3.9 dS m-1, respectively. Plant growth, relative water content (RWC), Na, Cl, K, N and P concentrations, membrane injury (MI), chlorophyll and proline levels, as well as gas exchange parameters in leaves of chrysanthemum were determined. A dose-dependent significant reduction of growth and minor decrease of leaf RWC were observed. Foliar Na and Cl concentrations increased with the highest NaCl dose up to 6-fold. However, the concentration of K increased by about 14 %, N by about 5 % but P decreased by about 23 %. Membrane injury was rather low (11 %) even at the highest NaCl dose. Statistically significant decreases of stomatal conductance (20 %), transpiration rate (32 %) and photosynthesis (25 %) were already observed at the lowest NaCl dose and about 40 % decrease of all these parameters with the highest dose. A significant reduction in the intercellular CO2 concentration occurred at the lower NaCl doses and no changes with the highest dose. These results show that in plants grown with the highest NaCl dose, non-stomatal limitation of photosynthesis may occur. According to Maas and Hoffman tolerance assessment (1977) chrysanthemum 'Palisade White' may be considered as moderately sensitive to salt stress in terms of growth inhibition. However, it is able to cope with long-term salt stress without any signs of damage, such as chlorophyll depletion, leaf browning or necrotic spots probably due to maintenance of K homeostasis and proline accumulation, which alleviate the toxic effect of chloride.

8.
Plants (Basel) ; 11(10)2022 May 17.
Article in English | MEDLINE | ID: mdl-35631749

ABSTRACT

Drought is an abiotic stress that decreases crop photosynthesis, growth, and yield. Ascorbic acid has been used as a seed preconditioning agent to help mitigate drought in some species, but not yet in broccoli (Brassica oleracea var. italica). The objective was to investigate the effect of ascorbic acid on growth, photosynthesis, and related parameters in watered and drought-stressed broccoli seedlings. A 2 × 4 factorial experiment was designed where stress (watered or drought) was the first factor and ascorbic acid preconditioning (untreated, 0 ppm, 1 ppm, or 10 ppm) was the second factor. Positioning within the greenhouse was included as a blocking factor and the experiment was replicated three times. All seedlings were watered for 8 weeks and then half had water withheld for 7 days to impose drought while the other half continued to be watered. Ascorbic acid preconditioning increased shoot dry mass, root dry mass, water use efficiency, and photosynthesis in all seedlings while also increasing chlorophyll, relative water content, and leaf area in droughted seedlings. Ascorbic acid preconditioning also decreased membrane injury in droughted seedlings to the point that membrane injury was not significantly different than the watered control. There was strong evidence to support ascorbic acid as a successful seed preconditioning agent in watered and droughted broccoli.

9.
Physiol Mol Biol Plants ; 28(2): 391-409, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35400884

ABSTRACT

Nanotechnology has become one of the several approaches attempting to ameliorate the severe effect of drought on plant's production and to increase the plants tolerance against water deficit for the water economy. In this research, the effect of foliar application of TiO2, nanoparticles or ordinary TiO2, on Helianthus annuus subjected to different levels of water deficit was studied. Cell membrane injury increased by increasing the level of water deficit and TiO2 concentration, and both types of TiO2 affected the leaves in analogous manner. Ord-TiO2 increased H2O2 generation by 67-240% and lipid peroxidation by 4-67% in leaves. These increases were more than that induced by Nano-TiO2 and the effect was concentration dependent. Proline significantly increased in leaves by water deficit stress, reaching at 25% field capacity (FC) to more than fivefold compared to that in plants grown on full FC. Spraying plants with water significantly decreased the activities of enzymes in the water deficit stressed roots. The water deficit stress exerted the highest magnitude of effect on the changes of cell membrane injury, MDA, proline content, and activities of CAT and GPX. Nano-TiO2 was having the highest effect on contents of H2O2 and GPX activity. In roots, the level of water deficit causes highest effect on enzyme activities, but TiO2 influenced more on the changes of MDA and H2O2 contents. GPX activity increased by 283% in leaves of plants treated with 50 and 150 ppm Nano-TiO2, while increased by 170% in those treated with Ord-TiO2, but APX and CAT activities increased by 17-197%, in average, with Ord-TiO2. This study concluded that Nano-TiO2 didn't ameliorate the effects of drought stress on H. annuus but additively increased the stress, so its use in nano-phytotechnology mustn't be expanded without extensive studies. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-022-01153-z.

10.
Int J Mol Sci ; 22(19)2021 Oct 08.
Article in English | MEDLINE | ID: mdl-34639226

ABSTRACT

The plasma membrane protects the eukaryotic cell from its surroundings and is essential for cell viability; thus, it is crucial that membrane disruptions are repaired quickly to prevent immediate dyshomeostasis and cell death. Accordingly, cells have developed efficient repair mechanisms to rapidly reseal ruptures and reestablish membrane integrity. The cortical actin cytoskeleton plays an instrumental role in both plasma membrane resealing and restructuring in response to damage. Actin directly aids membrane repair or indirectly assists auxiliary repair mechanisms. Studies investigating single-cell wound repair have often focused on the recruitment and activation of specialized repair machinery, despite the undeniable need for rapid and dynamic cortical actin modulation; thus, the role of the cortical actin cytoskeleton during wound repair has received limited attention. This review aims to provide a comprehensive overview of membrane repair mechanisms directly or indirectly involving cortical actin cytoskeletal remodeling.


Subject(s)
Actin Cytoskeleton/physiology , Cell Membrane/physiology , Cell Physiological Phenomena , Wound Healing , Animals , Humans , Single-Cell Analysis
11.
J Biol Chem ; 297(2): 101012, 2021 08.
Article in English | MEDLINE | ID: mdl-34324830

ABSTRACT

Repair of damaged plasma membrane in eukaryotic cells is largely dependent on the binding of annexin repair proteins to phospholipids. Changing the biophysical properties of the plasma membrane may provide means to compromise annexin-mediated repair and sensitize cells to injury. Since, cancer cells experience heightened membrane stress and are more dependent on efficient plasma membrane repair, inhibiting repair may provide approaches to sensitize cancer cells to plasma membrane damage and cell death. Here, we show that derivatives of phenothiazines, which have widespread use in the fields of psychiatry and allergy treatment, strongly sensitize cancer cells to mechanical-, chemical-, and heat-induced injury by inhibiting annexin-mediated plasma membrane repair. Using a combination of cell biology, biophysics, and computer simulations, we show that trifluoperazine acts by thinning the membrane bilayer, making it more fragile and prone to ruptures. Secondly, it decreases annexin binding by compromising the lateral diffusion of phosphatidylserine, inhibiting the ability of annexins to curve and shape membranes, which is essential for their function in plasma membrane repair. Our results reveal a novel avenue to target cancer cells by compromising plasma membrane repair in combination with noninvasive approaches that induce membrane injuries.


Subject(s)
Annexins/antagonists & inhibitors , Cell Membrane/drug effects , Molecular Dynamics Simulation , Neoplasms/drug therapy , Phenothiazines/pharmacology , Annexins/metabolism , Antipsychotic Agents/pharmacology , Calcium/metabolism , Cell Line, Tumor , Cell Membrane/metabolism , Humans , Neoplasms/metabolism , Neoplasms/pathology , Phosphatidylserines/metabolism , Phospholipids/metabolism
12.
Front Microbiol ; 12: 796754, 2021.
Article in English | MEDLINE | ID: mdl-35058913

ABSTRACT

Cinnamic acid (CA) is a safe and effective antimicrobial agent. The objective of this study was to reveal the antibacterial mechanism of CA against a food-derived Pseudomonas fragi 38-8, from the aspects of bacterial growth kinetics, cell membrane homeostasis, cell microstructure, and transcription. The minimum inhibitory concentration (MIC) of CA against P. fragi 38-8 was 0.25 mg/ml. CA retarded bacterial growth and induced a series of cell membrane changes. After CA treatment, cell membrane homeostasis was destroyed, which was evidenced by cell membrane depolarization, intracellular pH reduction, and intracellular ATPase activity decrease. Field emission scanning electron microscope (FESEM), transmission electron microscope (TEM), and confocal laser scanning fluorescence microscope (CLSM) realized the visualization of cell microstructure changes, showing cell death and morphological changes, such as cell rupture, shrinkage, and hollowness. RNA sequencing analysis further confirmed the effects of CA to the cell membrane, because of the significant enrichment of differentially expressed genes (DEGs) related to membrane. The results of the phenotype tests and RNA-seq both focused on cell membrane damage, which showed that CA exerted antibacterial effect mainly by acting on cell membrane.

13.
Saudi J Biol Sci ; 27(8): 2010-2017, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32714025

ABSTRACT

Plant growth is often affected with hampered physiological and cellular functioning due to salinity and drought stress. To assess the effectiveness of plant bioregulators (PBRs) in mitigating abiotic stresses, a double spilt plot field study was conducted with three replications at ICAR-CSSRI, research farm, Nain, Panipat. The study comprised of three deficit irrigation regimes viz., 100, 80 and 60% of crop evapo-transpiration (ETc) (I1, I2 and I3), four levels of irrigation water salinity i.e. 2, 4, 8, 12 dS m-1 (S0, S1, S2 and S3) and two PBRs salicylic acid (SA; G1) and thiourea (TU; G2). Irrigations, as per regimes and salinity, were applied at identified critical stages of wheat and if needed in pearl millet. PBRs were applied as seed priming and foliar sprays at two sensitive stages of respective crops. The trend of plant height, and physiological and biochemical traits was similar under different treatments at both stages, but differed significantly only at reproductive stage. Water deficit caused significant reduction in pearl millet (5.1%) and wheat (6.7%) grain yields. The reduction in grain yield under 8 and 12 dS m-1 was 12.90 and 22.43% in pearl millet and 7.68 and 32.93% in wheat, respectively compared to 2 dS m-1. Application of either SA (G1) or TU (G2) significantly enhanced plant height and grain yield, but magnitude of the increment was higher with SA in pearl millet and with TU in wheat. Application of SA and TU increased grain yield by 14.42 and 12.98 in pearl millet, and 12.90 and 17.36% in wheat, respectively. The plant height, RWC, TC, MI, LP, proline, Fv/Fm and Na/K ratio significantly reduced by salinity stress in pearl millet and both water and salinity stress in wheat. Application of both PBRs proved beneficial to mitigate adverse effect of water deficit and salt stress by significantly improving physiological traits, biochemical traits and ultimately grain yield in both crops.

14.
Am J Physiol Cell Physiol ; 318(6): C1226-C1237, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32348180

ABSTRACT

The ubiquitous calpains, calpain-1 and -2, play important roles in Ca2+-dependent membrane repair. Mechanically active tissues like skeletal muscle are particularly reliant on mechanisms to repair and remodel membrane injury, such as those caused by eccentric damage. We demonstrate that calpain-1 and -2 are master effectors of Ca2+-dependent repair of mechanical plasma membrane scrape injuries, although they are dispensable for repair/removal of small wounds caused by pore-forming agents. Using CRISPR gene-edited human embryonic kidney 293 (HEK293) cell lines, we established that loss of both calpains-1 and -2 (CAPNS1-/-) virtually ablates Ca2+-dependent repair of mechanical scrape injuries but does not affect injury or recovery from perforation by streptolysin-O or saponin. In contrast, cells with targeted knockout of either calpain-1 (CAPN1-/-) or -2 (CAPN2-/-) show near-normal repair of mechanical injuries, inferring that both calpain-1 and calpain-2 are equally capable of conducting the cascade of proteolytic cleavage events to reseal a membrane injury, including that of the known membrane repair agent dysferlin. A severe muscular dystrophy in a murine model with skeletal muscle knockout of Capns1 highlights vital roles for calpain-1 and/or -2 for health and viability of skeletal muscles not compensated for by calpain-3 (CAPN3). We propose that the dystrophic phenotype relates to loss of maintenance of plasma membrane/cytoskeletal networks by calpains-1 and -2 in response to directed and dysfunctional Ca2+-signaling, pathways hyperstimulated in the context of membrane injury. With CAPN1 variants associated with spastic paraplegia, a severe dystrophy observed with muscle-specific loss of calpain-1 and -2 activity identifies CAPN2 and CAPNS1 as plausible candidate neuromuscular disease genes.


Subject(s)
Calpain/deficiency , Cell Membrane/enzymology , Muscle, Skeletal/enzymology , Muscular Dystrophies, Limb-Girdle/enzymology , Muscular Dystrophy, Animal/enzymology , Animals , Bacterial Proteins/pharmacology , Calcium Signaling , Calpain/genetics , Cell Membrane/drug effects , Cell Membrane/pathology , Disease Models, Animal , Dysferlin/deficiency , Dysferlin/genetics , Female , HEK293 Cells , Humans , Male , Mice, Knockout , Muscle, Skeletal/pathology , Muscular Dystrophies, Limb-Girdle/genetics , Muscular Dystrophies, Limb-Girdle/pathology , Muscular Dystrophy, Animal/genetics , Muscular Dystrophy, Animal/pathology , Saponins/pharmacology , Severity of Illness Index , Streptolysins/pharmacology
15.
Physiol Mol Biol Plants ; 26(2): 233-245, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32158131

ABSTRACT

Polyamines (PAs) are positively charged molecules known to mitigate drought stress; however, little is known about their mechanism of alleviating drought stress. We investigated the effects of PAs exogenously applied as a seed primer and as a foliar spray on the growth, membrane stability (MS), electrolyte leakage (EL), Na+ and K+ cations, reactive oxygen species (ROS), catalase (CAT; EC 1.11.1.6) and guaiacol peroxidase (GPX; EC 1.11.1.7) activity and chloroplast ultra-structure in wheat (Triticum aestivum L.; cv. Sakha-94) under drought stress. Three PA solutions, namely, putrescine, spermine and a mixture of the two (Mix), were each applied at a concentration of 100 µM. Our study demonstrated that the retardation of chlorophyll loss and elevation of Rubisco levels were involved in PA-enhanced growth under drought stress. These relationships were mainly reflected in elevated fresh weight and dry weight in response to foliar spraying with all PA solutions and seed priming with the Mix solution. The elevated growth seemed to be due to increased photosynthetic pigments, protein and Rubisco. In contrast, drought decreased growth, photosynthetic pigments, protein and Rubisco. MS was enhanced by PAs applied as a seed primer or foliar spray, as shown by clear reductions in EL %, malondialdehyde (MDA) content and the Na+/K+ ratio as well as reduced ROS markers and elevated CAT (but not GPX) activity. Further study showed that the Mix solution of PAs, applied either during seed priming or as a foliar spray, improved chloroplast ultra-structure, suggesting that improvements in Rubisco and photosynthetic pigments were involved in PA maintenance of chloroplast stability. Therefore, the present study showed that elevated CAT activity is the main mechanism through which PAs reduce ROS and MDA, thereby improving MS and protecting mesophyll cells structurally and functionally under drought stress in wheat.

16.
J Food Sci Technol ; 57(2): 588-594, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32116368

ABSTRACT

Temperature-dependency on cell membrane injury and inactivation of Saccharomyces pastorianus by low-pressure carbon dioxide microbubbles (MBCO2) was investigated. The number of surviving S. pastorianus cells after MBCO2 treatment detected with yeast and mould agar (YMA, an optimum agar) was higher than that with YMA adding 2.5 g/L sodium chloride and yeast nitrogen base agar (a minimum agar). However, the decrease of the surviving number by thermal treatment was not changed among above agars used. The fluorescence polarization (FP), which indicated the phase transition of the membrane of S. pastorianus cells treated with MBCO2 increased with increasing temperature. The activity of the alkaline phosphatase (AP), a periplasmic enzyme, in S. pastorianus cells after MBCO2 and thermal treatments increased with the FP but was reduced by further increasing temperature. The FP and AP activities after MBCO2 treatment increased at a temperature lower than the temperature of the thermal treatment. In addition, intracellular pH of S. pastorianus decreased by the MBCO2 treatment at lower temperature with increasing pressure. Therefore, it was revealed that phase transition of the cell membrane and inactivation of S. pastorianus was caused by MBCO2 treatment at lower temperature than thermal treatment and that the effect was induced by the dissolved CO2 and increased with increasing pressure.

17.
Curr Med Chem ; 27(22): 3600-3610, 2020.
Article in English | MEDLINE | ID: mdl-30663559

ABSTRACT

The plasma membrane of eukaryotic cells defines the boundary to the extracellular environment and, thus provides essential protection from the surroundings. Consequently, disruptions to the cell membrane triggered by excessive mechanical or biochemical stresses pose fatal threats to cells, which they need to cope with to survive. Eukaryotic cells cope with these threats by activating their plasma membrane repair system, which is shared by other cellular functions, and includes mechanisms to remove damaged membrane by internalization (endocytosis), shedding, reorganization of cytoskeleton and membrane fusion events to reseal the membrane. Members of the annexin protein family, which are characterized by their Ca2+-dependent binding to anionic phospholipids, are important regulators of plasma membrane repair. Recent studies based on cellular and biophysical membrane models show that they have more distinct functions in the repair response than previously assumed by regulating membrane curvature and excision of damaged membrane. In cells, plasma membrane injury and flux of Ca2+ ions into the cytoplasm trigger recruitment of annexins including annexin A4 and A6 to the membrane wound edges. Here, they induce curvature and constriction force, which help pull the wound edges together for eventual fusion. Cancer cells are dependent on efficient plasma membrane repair to counteract frequent stress-induced membrane injuries, which opens novel avenues to target cancer cells through their membrane repair system. Here, we discuss mechanisms of single cell wound healing implicating annexin proteins and membrane curvature.


Subject(s)
Cell Membrane , Annexins , Calcium , Cytoskeleton , Phospholipids , Wound Healing
18.
Curr Top Membr ; 84: 187-216, 2019.
Article in English | MEDLINE | ID: mdl-31610863

ABSTRACT

Eukaryotic cells have developed a litany of conserved mechanisms to deal with membrane injuries. The first line of defense consists of homeostatic regulation of membrane tension as a preventative measure against the occurrence of injury. When these measures fail, cells can engage in elaborate signaling mechanisms aimed at quickly restoring integrity. Based on the overall direction of membrane lipid trafficking, these repair mechanisms can be divided into three broad categories: exocytosis, endocytosis, and ectocytosis. For alveolar epithelial cells (AECs), repair of endogenous cell populations is especially important for the prevention of severe lung pathologies. We provide a focus on the pulmonary setting within this chapter while incorporating relevant findings from other cell types. We emphasize the signals and molecular moieties that have demonstrated critical involvement in the repair process within AECs and other cell types that constantly encounter threats to their membrane integrity.


Subject(s)
Alveolar Epithelial Cells/cytology , Cell Membrane/metabolism , Lung/cytology , Alveolar Epithelial Cells/metabolism , Animals , Humans , Signal Transduction
19.
Curr Top Membr ; 84: 67-98, 2019.
Article in English | MEDLINE | ID: mdl-31610866

ABSTRACT

The plasma membrane forms the physical barrier between the cytoplasm and extracellular space, allowing for biochemical reactions necessary for life to occur. Plasma membrane damage needs to be rapidly repaired to avoid cell death. This relies upon the coordinated action of the machinery that polarizes the repair response to the site of injury, resulting in resealing of the damaged membrane and subsequent remodeling to return the injured plasma membrane to its pre-injury state. As lipids comprise the bulk of the plasma membrane, the acts of injury, resealing, and remodeling all directly impinge upon the plasma membrane lipids. In addition to their structural role in shaping the physical properties of the plasma membrane, lipids also play an important signaling role in maintaining plasma membrane integrity. While much attention has been paid to the involvement of proteins in the membrane repair pathway, the role of lipids in facilitating plasma membrane repair remains poorly studied. Here we will discuss the current knowledge of how lipids facilitate plasma membrane repair by regulating membrane structure and signaling to coordinate the repair response, and will briefly note how lipid involvement extends beyond plasma membrane repair to the tissue repair response.


Subject(s)
Cell Membrane/chemistry , Cell Membrane/metabolism , Membrane Lipids/chemistry , Membrane Lipids/metabolism , Signal Transduction , Animals , Humans , Molecular Structure
20.
Pestic Biochem Physiol ; 159: 59-67, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31400785

ABSTRACT

Phytophthora capsici is a plant oomycete pathogen, which causes many devastating diseases on a broad range of hosts. Zedoary turmeric oil (ZTO) is a kind of natural plant essential oil that has been widely used in pharmaceutical applications. However, the antifungal activity of ZTO against phytopathogens remains unknown. In this study, we found ZTO could inhibit P. capsici growth and development in vitro and in detached cucumber and Nicotiana benthamiana leaves. Besides, ZTO treatment resulted in severe damage to the cell membrane of P. capsici, leading to the leakage of intracellular contents. ZTO also induced a significant increase in relative conductivity, malondialdehyde concentration and glycerol content. Furthermore, we identified 50 volatile organic compounds from ZTO, and uncovered Curcumol, ß-elemene, curdione and curcumenol with strong inhibitory activities against mycelial growth of P. capsici. Overall, our results not only shed new light on the antifungal mechanism of ZTO, but also imply a promising alternative for the control of phytophthora blight caused by P. capsici.


Subject(s)
Antifungal Agents/pharmacology , Cell Membrane/drug effects , Oils, Volatile/pharmacology , Phytophthora/drug effects , Plant Extracts/pharmacology , Plant Oils/pharmacology , Curcuma , Phytophthora/metabolism , Sesquiterpenes/pharmacology , Sesquiterpenes, Germacrane/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...