Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters











Publication year range
1.
Sci Rep ; 14(1): 11169, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750117

ABSTRACT

We present a new method for approximating two-body interatomic potentials from existing ab initio data based on representing the unknown function as an analytic continued fraction. In this study, our method was first inspired by a representation of the unknown potential as a Dirichlet polynomial, i.e., the partial sum of some terms of a Dirichlet series. Our method allows for a close and computationally efficient approximation of the ab initio data for the noble gases Xenon (Xe), Krypton (Kr), Argon (Ar), and Neon (Ne), which are proportional to r - 6 and to a very simple d e p t h = 1 truncated continued fraction with integer coefficients and depending on n - r only, where n is a natural number (with n = 13 for Xe, n = 16 for Kr, n = 17 for Ar, and n = 27 for Neon). For Helium (He), the data is well approximated with a function having only one variable n - r with n = 31 and a truncated continued fraction with d e p t h = 2 (i.e., the third convergent of the expansion). Also, for He, we have found an interesting d e p t h = 0 result, a Dirichlet polynomial of the form k 1 6 - r + k 2 48 - r + k 3 72 - r (with k 1 , k 2 , k 3 all integers), which provides a surprisingly good fit, not only in the attractive but also in the repulsive region. We also discuss lessons learned while facing the surprisingly challenging non-linear optimisation tasks in fitting these approximations and opportunities for parallelisation.

2.
Math Biosci Eng ; 20(12): 21467-21498, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38124606

ABSTRACT

In the current global cooperative production environment, modern industries are confronted with intricate production plans, demanding the adoption of contemporary production scheduling strategies. Within this context, distributed manufacturing has emerged as a prominent trend. Manufacturing enterprises, especially those engaged in activities like automotive mold production and welding, are facing a significant challenge in managing a significant amount of small-scale tasks characterized by short processing times. In this situation, it becomes imperative to consider the transportation time of jobs between machines. This paper simultaneously considers the transportation time of jobs between machines and the start-stop operation of the machines, which is the first time to our knowledge. An improved memetic algorithm (IMA) is proposed to solve the multi-objective distributed flexible job shop scheduling problem (MODFJSP) with the goal of minimizing maximum completion time and energy consumption. Then, a new multi-start simulated annealing algorithm is proposed and integrated into the IMA to improve the exploration ability and diversity of the algorithm. Furthermore, a new multiple-initialization rule is designed to enhance the quality of the initial population. Additionally, four improved variable neighborhood search strategies and two energy-saving strategies are designed to enhance the search ability and reduce energy consumption. To verify the effectiveness of the IMA, we conducted extensive testing and comprehensive evaluation on 20 instances. The results indicate that, when faced with the MODFJSP, the IMA can achieve better solutions in almost all instances, which is of great significance for the improvement of production scheduling in intelligent manufacturing.

3.
Math Biosci Eng ; 20(8): 15407-15430, 2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37679185

ABSTRACT

The Multi-Skill Resource-Constrained Project Scheduling Problem (MS-RCPSP) is an NP-Hard problem that involves scheduling activities while accounting for resource and technical constraints. This paper aims to present a novel hybrid algorithm called MEMINV, which combines the Memetic algorithm with the Inverse method to tackle the MS-RCPSP problem. The proposed algorithm utilizes the inverse method to identify local extremes and then relocates the population to explore new solution spaces for further evolution. The MEMINV algorithm is evaluated on the iMOPSE benchmark dataset, and the results demonstrate that it outperforms. The solution of the MS-RCPSP problem using the MEMINV algorithm is a schedule that can be used for intelligent production planning in various industrial production fields instead of manual planning.

4.
Sensors (Basel) ; 23(14)2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37514611

ABSTRACT

Accurate localization is a critical task in underwater navigation. Typical localization methods use a set of acoustic sensors and beacons to estimate relative position, whose geometric configuration has a significant impact on the localization accuracy. Although there is much effort in the literature to define optimal 2D or 3D sensor placement, the optimal sensor placement in irregular and constrained 3D surfaces, such as autonomous underwater vehicles (AUVs) or other structures, is not exploited for improving localization. Additionally, most applications using AUVs employ commercial acoustic modems or compact arrays, therefore the optimization of the placement of spatially independent sensors is not a considered issue. This article tackles acoustic sensor placement optimization in irregular and constrained 3D surfaces, for inverted ultra-short baseline (USBL) approaches, to improve localization accuracy. The implemented multi-objective memetic algorithm combines an evaluation of the geometric sensor's configuration, using the Cramer-Rao Lower Bound (CRLB), with the incidence angle of the received signal. A case study is presented over a simulated homing and docking scenario to demonstrate the proposed optimization algorithm.

5.
Sensors (Basel) ; 23(7)2023 Mar 30.
Article in English | MEDLINE | ID: mdl-37050681

ABSTRACT

In this paper, a novel modified auto disturbance rejection control (ADRC) design of a permanent magnet synchronous motor based on the improved memetic algorithm (IMA) is proposed. Firstly, there is an obvious system ripple caused by the defect that the optimal control function used in traditional ADRC cannot be differentiable and smooth at the segment point; aiming at weakening the system ripple effectively, the proposed method constructs a novel differentiable and smooth optimal control function to modify the ADRC design. Furthermore, aiming at improving the integration parameters optimization effect effectively, a novel improved memetic algorithm is proposed for obtaining the optimal parameters of ADRC. Specifically, an IMA with high-quality balance based on an adaptive nonlinear decreasing strategy for the convergence factor, Gaussian mutation mechanism, improved learning mechanism with the high-quality balance between competitive and opposition-based learning (OBL) and an elite set maintenance mechanism based on fusion distance is proposed so that these strategies can improve the optimization precision by a large margin. Finally, the experiment results of the PMSM speed control practical cases show that the ADRC based on IMA has an apparent better optimization effect than that of fuzzy PI, traditional ADRC based on the genetic algorithm and an improved ADRC based on improved moth-flame optimization.

6.
Structure ; 30(11): 1550-1558.e3, 2022 11 03.
Article in English | MEDLINE | ID: mdl-36265485

ABSTRACT

Protein complex formation is encoded by specific interactions at the atomic scale, but the computational cost of modeling proteins at this level often requires use of simplified energy models and limited conformational flexibility. In particular, use of all-atom energy functions and backbone and side-chain flexibility results in rugged energy landscapes that are difficult to explore. In this study, we develop a protein-protein docking algorithm, EvoDOCK, that combines the strength of a differential evolution algorithm for efficient exploration of the global search space with the benefits of a local optimization method to refine detailed atomic interactions. EvoDOCK enabled accurate and fast local and global protein-protein docking using an all-atom energy function with side-chain flexibility. Comparison with a standard method built on Monte Carlo optimization demonstrated improved accuracy and increases in computational speed of up to 35 times. The evolutionary algorithm also enabled efficient atomistic docking with backbone flexibility.


Subject(s)
Algorithms , Proteins , Models, Molecular , Proteins/metabolism , Monte Carlo Method , Molecular Conformation , Protein Conformation
7.
Sensors (Basel) ; 22(6)2022 Mar 11.
Article in English | MEDLINE | ID: mdl-35336362

ABSTRACT

Many transport systems in the real world can be modeled as networked systems. Due to limited resources, only a few nodes can be selected as seeds in the system, whose role is to spread required information or control signals as widely as possible. This problem can be modeled as the influence maximization problem. Most of the existing selection strategies are based on the invariable network structure and have not touched upon the condition that the network is under structural failures. Related studies indicate that such strategies may not completely tackle complicated diffusion tasks in reality, and the robustness of the information diffusion process against perturbances is significant. To give a numerical performance criterion of seeds under structural failure, a measure has been developed to define the robust influence maximization (RIM) problem. Further, a memetic optimization algorithm (MA) which includes several problem-orientated operators to improve the search ability, termed RIMMA, has been presented to deal with the RIM problem. Experimental results on synthetic networks and real-world networks validate the effectiveness of RIMMA, its superiority over existing approaches is also shown.

8.
Animals (Basel) ; 12(2)2022 Jan 15.
Article in English | MEDLINE | ID: mdl-35049823

ABSTRACT

Selecting the minimal best subset out of a huge number of factors for influencing the response is a fundamental and very challenging NP-hard problem because the presence of many redundant genes results in over-fitting easily while missing an important gene can more detrimental impact on predictions, and computation is prohibitive for exhaust search. We propose a modified memetic algorithm (MA) based on an improved splicing method to overcome the problems in the traditional genetic algorithm exploitation capability and dimension reduction in the predictor variables. The new algorithm accelerates the search in identifying the minimal best subset of genes by incorporating it into the new local search operator and hence improving the splicing method. The improvement is also due to another two novel aspects: (a) updating subsets of genes iteratively until the no more reduction in the loss function by splicing and increasing the probability of selecting the true subsets of genes; and (b) introducing add and del operators based on backward sacrifice into the splicing method to limit the size of gene subsets. Additionally, according to the experimental results, our proposed optimizer can obtain a better minimal subset of genes with a few iterations, compared with all considered algorithms. Moreover, the mutation operator is replaced by it to enhance exploitation capability and initial individuals are improved by it to enhance efficiency of search. A dataset of the body weight of Hu sheep was used to evaluate the superiority of the modified MA against the genetic algorithm. According to our experimental results, our proposed optimizer can obtain a better minimal subset of genes with a few iterations, compared with all considered algorithms including the most advanced adaptive best-subset selection algorithm.

9.
Entropy (Basel) ; 25(1)2022 Dec 31.
Article in English | MEDLINE | ID: mdl-36673228

ABSTRACT

The quadratic minimum spanning tree problem (QMSTP) is a spanning tree optimization problem that considers the interaction cost between pairs of edges arising from a number of practical scenarios. This problem is NP-hard, and therefore there is not a known polynomial time approach to solve it. To find a close-to-optimal solution to the problem in a reasonable time, we present for the first time a clustering-enhanced memetic algorithm (CMA) that combines four components, i.e., (i) population initialization with clustering mechanism, (ii) a tabu-based nearby exploration phase to search nearby local optima in a restricted area, (iii) a three-parent combination operator to generate promising offspring solutions, and (iv) a mutation operator using Lévy distribution to prevent the population from premature. Computational experiments are carried on 36 benchmark instances from 3 standard sets, and the results show that the proposed algorithm is competitive with the state-of-the-art approaches. In particular, it reports improved upper bounds for the 25 most challenging instances with unproven optimal solutions, while matching the best-known results for all but 2 of the remaining instances. Additional analysis highlights the contribution of the clustering mechanism and combination operator to the performance of the algorithm.

10.
Appl Soft Comput ; 116: 108264, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34903957

ABSTRACT

The speed by which the COVID-19 pandemic spread throughout the world makes the emergency services unprepared to answer all the patients' requests. The Tunisian ministry of health established a protocol planning the sample collection from the patients at their location. A triage score is first assigned to each patient according to the symptoms he is showing, and his health conditions. Then, given the limited number of the available ambulances in each area, the location of the patients and the capacity of the nearby hospitals for receiving the testing samples, an ambulance scheduling and routing plan needs to be established so that specimens can be transferred to hospitals in short time. In this paper, we propose to model this problem as a Multi-Origin-Destination Team Orienteering Problem (MODTOP). The objective is to find the optimal one day tour plan for the available ambulances that maximizes the collected scores of visited patients while respecting duration and capacity constraints. To solve this NP-hard problem, two highly effective approaches are proposed which are Hybrid Genetic Algorithm (HGA) and Memetic Algorithm (MA). The HGA combines (i) a k-means construction method for initial population generation and (ii) a one point crossover operator for solution recombination. The MA is an improvement of HGA that integrates an effective local search based on three different neighborhood structures. Computational experiments, supported by a statistical analysis on benchmark data sets, illustrate the efficiency of the proposed approaches. HGA and MA reached the best known solutions in 54.7% and 73.5% of instances, respectively. Likewise, MA reached a relative error of 0.0675% and performed better than four existing approaches. Real-case instances derived from the city of Tunis were also solved and compared with the results of an exact solver Cplex to validate the effectiveness of our algorithm.

11.
Front Genet ; 12: 794354, 2021.
Article in English | MEDLINE | ID: mdl-34970305

ABSTRACT

Identifying the protein complexes in protein-protein interaction (PPI) networks is essential for understanding cellular organization and biological processes. To address the high false positive/negative rates of PPI networks and detect protein complexes with multiple topological structures, we developed a novel improved memetic algorithm (IMA). IMA first combines the topological and biological properties to obtain a weighted PPI network with reduced noise. Next, it integrates various clustering results to construct the initial populations. Furthermore, a fitness function is designed based on the five topological properties of the protein complexes. Finally, we describe the rest of our IMA method, which primarily consists of four steps: selection operator, recombination operator, local optimization strategy, and updating the population operator. In particular, IMA is a combination of genetic algorithm and a local optimization strategy, which has a strong global search ability, and searches for local optimal solutions effectively. The experimental results demonstrate that IMA performs much better than the base methods and existing state-of-the-art techniques. The source code and datasets of the IMA can be found at https://github.com/RongquanWang/IMA.

12.
Sensors (Basel) ; 21(7)2021 Apr 02.
Article in English | MEDLINE | ID: mdl-33918199

ABSTRACT

Local Positioning Systems (LPS) have become an active field of research in the last few years. Their application in harsh environments for high-demanded accuracy applications is allowing the development of technological activities such as autonomous navigation, indoor localization, or low-level flights in restricted environments. LPS consists of ad-hoc deployments of sensors which meets the design requirements of each activity. Among LPS, those based on temporal measurements are attracting higher interest due to their trade-off among accuracy, robustness, availability, and costs. The Time Difference of Arrival (TDOA) is extended in the literature for LPS applications and consequently we perform, in this paper, an analysis of the optimal sensor deployment of this architecture for achieving practical results. This is known as the Node Location Problem (NLP) and has been categorized as NP-Hard. Therefore, heuristic solutions such as Genetic Algorithms (GA) or Memetic Algorithms (MA) have been applied in the literature for the NLP. In this paper, we introduce an adaptation of the so-called MA-Solis Wets-Chains (MA-SW-Chains) for its application in the large-scale discrete discontinuous optimization of the NLP in urban scenarios. Our proposed algorithm MA-Variable Neighborhood Descent-Chains (MA-VND-Chains) outperforms the GA and the MA of previous proposals for the NLP, improving the accuracy achieved by 17% and by 10% respectively for the TDOA architecture in the urban scenario introduced.

13.
ISA Trans ; 117: 16-27, 2021 Nov.
Article in English | MEDLINE | ID: mdl-33581890

ABSTRACT

This paper proposes a novel method for offline outlier detection in nonlinear dynamical systems using an input-output dataset of a Topical Negative Pressure Wound Therapy Device, NPWT. The fundamental characteristics of an NPWT describe a chaotic system whose states vary over time and may result in unpredictable and possibly anomalous divergent behavior in the presence of perturbations and other unmodeled system dynamics, despite a quasi-stable controller. Bacterial Memetic Algorithm, BMA, is used to generate fuzzy rule-based models of the input-output dataset. The error definition in the fuzzy rule extraction features a novel application of the Canberra Distance. The optimal number of rules for identifying the outliers, validated against both artificial and real system datasets, is calculated from the sample of inferred fuzzy models. The optimal number of rules is two in both cases based on the maximum average-error-drop. Using three or more rules results in better error performance; however, the algorithm learns the nuances of the outlier patterns instead. Novel methods for creating the outlier list and determining the optimal number of rules for the outlier detection problem are proposed.


Subject(s)
Fuzzy Logic , Negative-Pressure Wound Therapy , Algorithms , Nonlinear Dynamics
14.
Sensors (Basel) ; 20(19)2020 Sep 24.
Article in English | MEDLINE | ID: mdl-32987872

ABSTRACT

Local Positioning Systems (LPS) have shown excellent performance for applications that demand high accuracy. They rely on ad-hoc node deployments which fit the environment characteristics in order to reduce the system uncertainties. The obtainment of competitive results through these systems requires the solution of the Node Location Problem (finding the optimal cartesian coordinates of the architecture sensors). This problem has been assigned as NP-Hard, therefore a heuristic solution is recommended for addressing this complex problem. Genetic Algorithms (GA) have shown an excellent trade-off between diversification and intensification in the literature. However, in Non-Line-of-Sight (NLOS) environments in which there is not continuity in the fitness function evaluation of a particular node distribution among contiguous solutions, challenges arise for the GA during the exploration of new potential regions of the space of solutions. Consequently, in this paper, we first propose a Hybrid GA with a combination of the GA operators in the evolutionary process for the Node Location Problem. Later, we introduce a Memetic Algorithm (MA) with a Local Search (LS) strategy for exploring the most different individuals of the population in search of improving the previous results. Finally, we combine the Hybrid Genetic Algorithm (HGA) and Memetic Algorithm (MA), designing an enhanced novel methodology for solving the Node Location Problem, a Hybrid Memetic Algorithm (HMA). Results show that the HMA proposed in this article outperforms all of the individual configurations presented and attains an improvement of 14.2% in accuracy for the Node Location Problem solution in the scenario of simulations with regards to the previous GA optimizations of the literature.

15.
Front Genet ; 11: 567, 2020.
Article in English | MEDLINE | ID: mdl-32676097

ABSTRACT

Detecting protein complexes from the Protein-Protein interaction network (PPI) is the essence of discovering the rules of the cellular world. There is a large amount of PPI data available, generated from high throughput experimental data. The enormous size of the data persuaded us to use computational methods instead of experimental methods to detect protein complexes. In past years, many researchers presented their algorithms to detect protein complexes. Most of the presented algorithms use current static PPI networks. New researches proved the dynamicity of cellular systems, and so, the PPI is not static over time. In this paper, we introduce DPCT to detect protein complexes from dynamic PPI networks. In the proposed method, TAP and GO data are used to make a weighted PPI network and to reduce the noise of PPI. Gene expression data are also used to make dynamic subnetworks from PPI. A memetic algorithm is used to bicluster gene expression data and to create a dynamic subnetwork for each bicluster. Experimental results show that DPCT can detect protein complexes with better correctness than state-of-the-art detection algorithms. The source code and datasets of DPCT used can be found at https://github.com/alisn72/DPCT.

16.
Sensors (Basel) ; 19(14)2019 Jul 23.
Article in English | MEDLINE | ID: mdl-31340577

ABSTRACT

Node localization, which is formulated as an unconstrained NP-hard optimization problem, is considered as one of the most significant issues of wireless sensor networks (WSNs). Recently, many swarm intelligent algorithms (SIAs) were applied to solve this problem. This study aimed to determine node location with high precision by SIA and presented a new localization algorithm named LMQPDV-hop. In LMQPDV-hop, an improved DV-Hop was employed as an underground mechanism to gather the estimation distance, in which the average hop distance was modified by a defined weight to reduce the distance errors among nodes. Furthermore, an efficient quantum-behaved particle swarm optimization algorithm (QPSO), named LMQPSO, was developed to find the best coordinates of unknown nodes. In LMQPSO, the memetic algorithm (MA) and Lévy flight were introduced into QPSO to enhance the global searching ability and a new fast local search rule was designed to speed up the convergence. Extensive simulations were conducted on different WSN deployment scenarios to evaluate the performance of the new algorithm and the results show that the new algorithm can effectively improve position precision.

17.
Front Neurosci ; 13: 1408, 2019.
Article in English | MEDLINE | ID: mdl-31992969

ABSTRACT

Different from conventional single-task optimization, the recently proposed multitasking optimization (MTO) simultaneously deals with multiple optimization tasks with different types of decision variables. MTO explores the underlying similarity and complementarity among the component tasks to improve the optimization process. The well-known multifactorial evolutionary algorithm (MFEA) has been successfully introduced to solve MTO problems based on transfer learning. However, it uses a simple and random inter-task transfer learning strategy, thereby resulting in slow convergence. To deal with this issue, this paper presents a two-level transfer learning (TLTL) algorithm, in which the upper-level implements inter-task transfer learning via chromosome crossover and elite individual learning, and the lower-level introduces intra-task transfer learning based on information transfer of decision variables for an across-dimension optimization. The proposed algorithm fully uses the correlation and similarity among the component tasks to improve the efficiency and effectiveness of MTO. Experimental studies demonstrate the proposed algorithm has outstanding ability of global search and fast convergence rate.

18.
Sensors (Basel) ; 18(8)2018 Aug 01.
Article in English | MEDLINE | ID: mdl-30071667

ABSTRACT

Coverage maintenance is a bottleneck restricting the development of underwater acoustic sensor networks (UASNs). Since the energy of the nodes is limited, the coverage of UASNs may gradually decrease as the network operates. Thus, energy-saving coverage control is crucial for UASNs. To solve the above problems, this paper proposes a coverage-control strategy (referred to as ESACC) that establishes a sleep⁻wake scheduling mechanism based on the redundancy of deployment nodes. The strategy has two main parts: (1) Node sleep scheduling based on a memetic algorithm. To ensure network monitoring performance, only some nodes are scheduled to work, with redundant nodes in a low-power hibernation state, reducing energy consumption and prolonging the network lifetime. The goal of node scheduling is to find a minimum set of nodes that can cover the monitoring area, and a memetic algorithm can solve this problem. (2) Wake-up scheme. During network operation, sleeping nodes are woken to cover the dead nodes and maintain high coverage. This scheme not only reduces the network energy consumption but takes into account the monitoring coverage of the network. The experimental data show that ESACC performs better than current algorithms, and can improve the network life cycle while ensuring high coverage.

19.
BMC Genomics ; 18(Suppl 2): 209, 2017 03 14.
Article in English | MEDLINE | ID: mdl-28361692

ABSTRACT

BACKGROUND: Active modules are connected regions in biological network which show significant changes in expression over particular conditions. The identification of such modules is important since it may reveal the regulatory and signaling mechanisms that associate with a given cellular response. RESULTS: In this paper, we propose a novel active module identification algorithm based on a memetic algorithm. We propose a novel encoding/decoding scheme to ensure the connectedness of the identified active modules. Based on the scheme, we also design and incorporate a local search operator into the memetic algorithm to improve its performance. CONCLUSION: The effectiveness of proposed algorithm is validated on both small and large protein interaction networks.


Subject(s)
Algorithms , Gene Regulatory Networks , Protein Interaction Maps , Humans , Protein Interaction Mapping/statistics & numerical data , Signal Transduction
20.
Springerplus ; 5: 78, 2016.
Article in English | MEDLINE | ID: mdl-26844025

ABSTRACT

In the era of Big Data, it is almost impossible to completely restrict access to primary non-aggregated statistical data. However, risk of violating privacy of individual respondents and groups of respondents by analyzing primary data has not been reduced. There is a need in developing subtler methods of data protection to come to grips with these challenges. In some cases, individual and group privacy can be easily violated, because the primary data contain attributes that uniquely identify individuals and groups thereof. Removing such attributes from the dataset is a crude solution and does not guarantee complete privacy. In the field of providing individual data anonymity, this problem has been widely recognized, and various methods have been proposed to solve it. In the current work, we demonstrate that it is possible to violate group anonymity as well, even if those attributes that uniquely identify the group are removed. As it turns out, it is possible to use third-party data to build a fuzzy model of a group. Typically, such a model comes in a form of a set of fuzzy rules, which can be used to determine membership grades of respondents in the group with a level of certainty sufficient to violate group anonymity. In the work, we introduce an evolutionary computing based method to build such a model. We also discuss a memetic approach to protecting the data from group anonymity violation in this case.

SELECTION OF CITATIONS
SEARCH DETAIL