Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 731
Filter
1.
Stem Cell Res Ther ; 15(1): 208, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992782

ABSTRACT

BACKGROUND: Mesenchymal stromal cells (MSCs) tropism for tumours allows their use as carriers of antitumoural factors and in vitro transcribed mRNA (IVT mRNA) is a promising tool for effective transient expression without insertional mutagenesis risk. Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a cytokine with antitumor properties by stimulating the specific immune response. The aim of this work was to generate modified MSCs by IVT mRNA transfection to overexpress GM-CSF and determine their therapeutic effect alone or in combination with doxorubicin (Dox) in a murine model of hepatocellular carcinoma (HCC). METHODS: DsRed or GM-CSF IVT mRNAs were generated from a cDNA template designed with specific primers followed by reverse transcription. Lipofectamine was used to transfect MSCs with DsRed (MSC/DsRed) or GM-CSF IVT mRNA (MSC/GM-CSF). Gene expression and cell surface markers were determined by flow cytometry. GM-CSF secretion was determined by ELISA. For in vitro experiments, the J774 macrophage line and bone marrow monocytes from mice were used to test GM-CSF function. An HCC model was developed by subcutaneous inoculation (s.c.) of Hepa129 cells into C3H/HeN mice. After s.c. injection of MSC/GM-CSF, Dox, or their combination, tumour size and mouse survival were evaluated. Tumour samples were collected for mRNA analysis and flow cytometry. RESULTS: DsRed expression by MSCs was observed from 2 h to 15 days after IVT mRNA transfection. Tumour growth remained unaltered after the administration of DsRed-expressing MSCs in a murine model of HCC and MSCs expressing GM-CSF maintained their phenotypic characteristic and migration capability. GM-CSF secreted by modified MSCs induced the differentiation of murine monocytes to dendritic cells and promoted a proinflammatory phenotype in the J774 macrophage cell line. In vivo, MSC/GM-CSF in combination with Dox strongly reduced HCC tumour growth in C3H/HeN mice and extended mouse survival in comparison with individual treatments. In addition, the tumours in the MSC/GM-CSF + Dox treated group exhibited elevated expression of proinflammatory genes and increased infiltration of CD8 + T cells and macrophages. CONCLUSIONS: Our results showed that IVT mRNA transfection is a suitable strategy for obtaining modified MSCs for therapeutic purposes. MSC/GM-CSF in combination with low doses of Dox led to a synergistic effect by increasing the proinflammatory tumour microenvironment, enhancing the antitumoural response in HCC.


Subject(s)
Carcinoma, Hepatocellular , Doxorubicin , Granulocyte-Macrophage Colony-Stimulating Factor , Liver Neoplasms , Mesenchymal Stem Cells , RNA, Messenger , Animals , Carcinoma, Hepatocellular/therapy , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/genetics , Mesenchymal Stem Cells/metabolism , Mice , Liver Neoplasms/therapy , Liver Neoplasms/pathology , Liver Neoplasms/genetics , RNA, Messenger/metabolism , RNA, Messenger/genetics , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Cell Line, Tumor , Mesenchymal Stem Cell Transplantation/methods , Humans , Mice, Inbred C3H , Transfection
2.
bioRxiv ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-39005342

ABSTRACT

Background: Mesenchymal stromal cell derived extracellular vesicles (MSC-EVs) are a promising therapeutic for neuroinflammation. MSC-EVs can interact with microglia, the resident immune cells of the brain, to exert their immunomodulatory effects. In response to inflammatory cues, such as cytokines, microglia undergo phenotypic changes indicative of their function e.g. morphology and secretion. However, these changes in response to MSC-EVs are not well understood. Additionally, no disease-relevant screening tools to assess MSC-EV bioactivity exist, which has further impeded clinical translation. Here, we developed a quantitative, high throughput morphological profiling approach to assess the response of microglia to neuroinflammation-relevant signals and whether this morphological response can be used to indicate the bioactivity of MSC-EVs. Results: Using an immortalized human microglia cell-line, we observed increased size (perimeter, major axis length) and complexity (form factor) upon stimulation with interferon-gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α). Upon treatment with MSC-EVs, the overall morphological score (determined using principal component analysis) shifted towards the unstimulated morphology, indicating that MSC-EVs are bioactive and modulate microglia. The morphological effects of MSC-EVs in TNF-γ/IFN-α stimulated cells were concomitant with reduced secretion of 14 chemokines/cytokines (e.g. CXCL6, CXCL9) and increased secretion of 12 chemokines/cytokines (e.g. CXCL8, CXCL10). Proteomic analysis of cell lysates revealed significant increases in 192 proteins (e.g. HIBADH, MEAK7, LAMC1) and decreases in 257 proteins (e.g. PTEN, TOM1, MFF) with MSC-EV treatment. Of note, many of these proteins are involved in regulation of cell morphology and migration. Gene Set Variation Analysis revealed upregulation of pathways associated with immune response, such as regulation of cytokine production, immune cell infiltration (e.g. T cells, NK cells) and morphological changes (e.g. Semaphorin, RHO/Rac signaling). Additionally, changes in microglia mitochondrial morphology were measured suggesting that MSC-EV modulate mitochondrial metabolism. Conclusion: This study comprehensively demonstrates the effects of MSC-EVs on human microglial morphology, cytokine secretion, cellular proteome, and mitochondrial content. Our high-throughput, rapid, low-cost morphological approach enables screening of MSC-EV batches and manufacturing conditions to enhance EV function and mitigate EV functional heterogeneity in a disease relevant manner. This approach is highly generalizable and can be further adapted and refined based on selection of the disease-relevant signal, target cell, and therapeutic product.

3.
Int J Mol Sci ; 25(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38892249

ABSTRACT

Mesenchymal stromal cell (MSC)-based advanced therapy medicinal products (ATMPs) are being tried in a vast range of clinical applications. These cells can be isolated from different donor tissues by using several methods, or they can even be derived from induced pluripotent stem cells or embryonic stem cells. However, ATMP heterogeneity may impact product identity and potency, and, consequently, clinical trial outcomes. In this review, we discuss these topics and the need to establish minimal criteria regarding the manufacturing of MSCs so that these innovative therapeutics may be better positioned to contribute to the advancement of regenerative medicine.


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Regenerative Medicine , Humans , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cell Transplantation/methods , Regenerative Medicine/methods , Animals , Induced Pluripotent Stem Cells/cytology , Cell Differentiation
4.
Int J Mol Sci ; 25(12)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38927998

ABSTRACT

Mesenchymal adipose stromal cells (ASCs) are considered the most promising and accessible material for translational medicine. ASCs can be used independently or within the structure of scaffold-based constructs, as these not only ensure mechanical support, but can also optimize conditions for cell activity, as specific features of the scaffold structure have an impact on the vital activity of the cells. This manuscript presents a study of the secretion and accumulation that occur in a conditioned medium during the cultivation of human ASCs within the structure of such a partial skin-equivalent that is in contact with it. It is demonstrated that the ASCs retain their functional activity during cultivation both within this partial skin-equivalent structure and, separately, on plastic substrates: they proliferate and secrete various proteins that can then accumulate in the conditioned media. Our comparative study of changes in the conditioned media during cultivation of ASCs on plastic and within the partial skin-equivalent structure reveals the different dynamics of the release and accumulation of such secretory factors in the media under a variety of conditions of cell functioning. It is also demonstrated that the optimal markers for assessment of the ASCs' secretory functions in the studied partial skin-equivalent structure are the trophic factors VEGF-A, HGF, MCP, SDF-1α, IL-6 and IL-8. The results will help with the development of an algorithm for preclinical studies of this skin-equivalent in vitro and may be useful in studying various other complex constructs that include ASCs.


Subject(s)
Chemokine CXCL12 , Interleukin-6 , Interleukin-8 , Mesenchymal Stem Cells , Vascular Endothelial Growth Factor A , Humans , Chemokine CXCL12/metabolism , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Culture Media, Conditioned , Vascular Endothelial Growth Factor A/metabolism , Interleukin-6/metabolism , Interleukin-8/metabolism , Hepatocyte Growth Factor/metabolism , Cells, Cultured , Skin/metabolism , Skin/cytology , Cell Proliferation , Chemokine CCL2/metabolism , Adipose Tissue/cytology , Adipose Tissue/metabolism
5.
Bone ; 187: 117180, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38944098

ABSTRACT

Recent research has revealed several important pathways of epigenetic regulation leading to transcriptional changes in bone cells. Rest Corepressor 2 (Rcor2) is a coregulator of Lysine-specific histone demethylase 1 (Lsd1), a demethylase linked to osteoblast activity, hematopoietic stem cell differentiation and malignancy of different neoplasms. However, the role of Rcor2 in osteoblast differentiation has not yet been examined in detail. We have previously shown that Rcor2 is highly expressed in mesenchymal stromal cells (MSC) and particularly in the osteoblastic lineage. The role of Rcor2 in osteoblastic differentiation in vitro was further characterized and we demonstrate here that lentiviral silencing of Rcor2 in MC3T3-E1 cells led to a decrease in osteoblast differentiation. This was indicated by decreased alkaline phosphatase and von Kossa stainings as well as by decreased expression of several osteoblast-related marker genes. RNA-sequencing of the Rcor2-downregulated MC3T3-E1 cells showed decreased repression of Rcor2 target genes, as well as significant upregulation of majority of the differentially expressed genes. While the heterozygous, global loss of Rcor2 in vivo did not lead to a detectable bone phenotype, conditional deletion of Rcor2 in limb-bud mesenchymal cells led to a moderate decrease in cortical bone volume. These findings were not accentuated by challenging bone formation by ovariectomy or tibial fracture. Furthermore, a global deletion of Rcor2 led to decreased white adipose tissue in vivo and decreased the capacity of primary cells to differentiate into adipocytes in vitro. The conditional deletion of Rcor2 led to decreased adiposity in fracture callus. Taken together, these results suggest that epigenetic regulation of mesenchymal stromal cell differentiation is mediated by Rcor2, which could thus play an important role in defining the MSC fate.

6.
Stem Cells Dev ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38940748

ABSTRACT

This study investigates the characteristics of cardiac mesenchymal stem cell-like cells (CMSCLCs) isolated from the right atrial appendage of human donors with ischemia and a young patient with endocarditis (NE-CMSCLCs). Typical CMSCLCs from ischemic heart patients were derived from coronary artery bypass grafting procedures and compared against bone marrow mesenchymal stromal cells (BM-MSCs). NE-CMSCLCs had a normal immunophenotype, but exhibited enhanced osteogenic differentiation potential, rapid proliferation, reduced senescence, reduced glycolysis, and lower reactive oxygen species generation after oxidative stress compared with typical ischemic CMSCLCs. These differences suggest a unique functional status of NE-CMSCLCs, influenced by the donor health condition. Despite large variances in their paracrine secretome, NE-CMSCLCs retained therapeutic potential, as indicated by their ability to protect hypoxia/reoxygenation-injured human cardiomyocytes, albeit less effectively than typical CMSCLCs. This research describes a unique cell phenotype and underscores the importance of donor health status in the therapeutic efficacy of autologous cardiac cell therapy.

7.
Tissue Eng Regen Med ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842768

ABSTRACT

BACKGROUND: The therapeutic potential of exosomes from human umbilical cord mesenchymal stem cells (HUMSCs-Exo) for delivering specific circular RNAs (circRNAs) in treating premature ovarian failure (POF) is not well understood. This study aimed to explore the efficacy of HUMSCs-Exo in delivering hsa_circ_0002021 for POF treatment, focusing on its effects on granulosa cell (GC) senescence and ovarian function. METHODS: Bioinformatic analysis was conducted on circRNA profiles using the GSE97193 dataset from GEO, targeting granulosa cells from varied age groups. To simulate granulosa cell senescence, KGN cells were treated with cyclophosphamide (CTX). HUMSCs were transfected with pcDNA 3.1 vectors to overexpress hsa_circ_0002021, and the HUMSCs-Exo secreted were isolated. These exosomes were characterized by transmission electron microscopy (TEM) and Western blotting to confirm exosomal markers CD9 and CD63. Co-culture of these exosomes with CTX-treated KGN cells was performed to assess ß-galactosidase activity, oxidative stress markers, ROS levels, and apoptosis via flow cytometry. Interaction between hsa_circ_0002021, microRNA-125a-5p (miR-125a-5p), and cyclin-dependent kinase 6 (CDK6) was investigated using dual-luciferase assays and RNA immunoprecipitation (RIP). A POF mouse model was induced with CTX, treated with HUMSCs-Exo, and analyzed histologically and via immunofluorescence staining. Gene expression was quantified using RT-qPCR and Western blot. RESULTS: hsa_circ_0002021 was under expressed in both in vivo and in vitro POF models and was effectively delivered by HUMSCs-Exo to KGN cells, showing a capability to reduce GC senescence. Overexpression of hsa_circ_0002021 in HUMSCs-Exo significantly enhanced these anti-senescence effects. This circRNA acts as a competitive adsorbent of miR-125a-5p, regulating CDK6 expression, which is crucial in modulating cell cycle and apoptosis. Enhanced expression of hsa_circ_0002021 in HUMSCs-Exo ameliorated GC senescence in vitro and improved ovarian function in POF models by modulating oxidative stress and cellular senescence markers. CONCLUSION: This study confirms that hsa_circ_0002021, when delivered through HUMSCs-Exo, can significantly mitigate GC senescence and restore ovarian function in POF models. These findings provide new insights into the molecular mechanisms of POF and highlight the therapeutic potential of circRNA-enriched exosomes in treating ovarian aging and dysfunction.

8.
Cytotherapy ; 2024 May 19.
Article in English | MEDLINE | ID: mdl-38904585

ABSTRACT

Despite the potential of mesenchymal stromal cells (MSCs) in osteoarthritis (OA) treatment, the challenge lies in addressing their therapeutic inconsistency. Clinical trials revealed significantly varied therapeutic outcomes among patients receiving the same allogenic MSCs but different treatment regimens. Therefore, optimizing personalized treatment strategies is crucial to fully unlock MSCs' potential and enhance therapeutic consistency. We employed the XGBoost algorithm to train a self-collected database comprising 37 published clinical reports to create a model capable of predicting the probability of effective pain relief and Western Ontario and McMaster Universities (WOMAC) index improvement in OA patients undergoing MSC therapy. Leveraging this model, extensive in silico simulations were conducted to identify optimal personalized treatment strategies and ideal patient profiles. Our in silico trials predicted that the individually optimized MSC treatment strategies would substantially increase patients' chances of recovery compared to the strategies used in reported clinical trials, thereby potentially benefiting 78.1%, 47.8%, 94.4% and 36.4% of the patients with ineffective short-term pain relief, short-term WOMAC index improvement, long-term pain relief and long-term WOMAC index improvement, respectively. We further recommended guidelines on MSC number, concentration, and the patients' appropriate physical (body mass index, age, etc.) and disease states (Kellgren-Lawrence grade, etc.) for OA treatment. Additionally, we revealed the superior efficacy of MSC in providing short-term pain relief compared to platelet-rich plasma therapy for most OA patients. This study represents the pioneering effort to enhance the efficacy and consistency of MSC therapy through machine learning applied to clinical data. The in silico trial approach holds immense potential for diverse clinical applications.

9.
J Clin Med ; 13(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38731011

ABSTRACT

Background/Objective: Mesenchymal Stromal Cells (MSCs) have been considered a promising treatment for several diseases, such as cardiac injuries. Many studies have analyzed their functional properties; however, few studies have characterized MSCs through successive culture passages. The main objective of this work was to analyze the phenotype and functionality of MSCs isolated from two different sources in five culture passages to determine if the culture passage might influence the efficacy of MSCs as a cell therapy treatment. Methods: Bone Marrow (BM)-MSCs were harvested from the femur of Wistar rats (n = 17) and Adipose Tissue(AT)-MSCs were isolated from inguinal fat (n = 17). MSCs were cultured for five culture passages, and the immunophenotype was analyzed by flow cytometry, the functionality was characterized by adipogenic, osteogenic, and chondrogenic differentiation assays, and cytokine secretion capacity was determined through the quantification of the Vascular Endothelial Growth-Factor, Fibroblast Growth-Factor2, and Transforming Growth-Factorß1 in the cell supernatant. The ultrastructure of MSCs was analyzed by transmission electron microscopy. Results: BM-MSCs exhibited typical phenotypes in culture passages two, four, and five, and their differentiation capacity showed an irregular profile throughout the five culture passages analyzed. AT-MSCs showed a normal phenotype and differentiation capacity in all the culture passages. BM- and AT-MSCs did not modify their secretion ability or ultrastructural morphology. Conclusions: Throughout the culture passages, BM-MSCs, but not AT-MSCs, exhibited changes in their functional and phenotypic characteristic that might affect their efficacy as a cell therapy treatment. Therefore, the culture passage selected should be considered for the application of MSCs as a cell therapy treatment.

10.
J Nanobiotechnology ; 22(1): 255, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755672

ABSTRACT

Age is the most important risk factor in degenerative diseases such as osteoarthritis (OA), which is associated with the accumulation of senescent cells in the joints. Here, we aimed to assess the impact of senescence on the therapeutic properties of extracellular vesicles (EVs) from human fat mesenchymal stromal cells (ASCs) in OA. We generated a model of DNA damage-induced senescence in ASCs using etoposide and characterized EVs isolated from their conditioned medium (CM). Senescent ASCs (S-ASCs) produced 3-fold more EVs (S-EVs) with a slightly bigger size and that contain 2-fold less total RNA. Coculture experiments showed that S-ASCs were as efficient as healthy ASCs (H-ASCs) in improving the phenotype of OA chondrocytes cultured in resting conditions but were defective when chondrocytes were proliferating. S-EVs were also impaired in their capacity to polarize synovial macrophages towards an anti-inflammatory phenotype. A differential protein cargo mainly related to inflammation and senescence was detected in S-EVs and H-EVs. Using the collagenase-induced OA model, we found that contrary to H-EVs, S-EVs could not protect mice from cartilage damage and joint calcifications, and were less efficient in protecting subchondral bone degradation. In addition, S-EVs induced a pro-catabolic and pro-inflammatory gene signature in the joints of mice shortly after injection, while H-EVs decreased hypertrophic, catabolic and inflammatory pathways. In conclusion, S-EVs are functionally impaired and cannot protect mice from developing OA.


Subject(s)
Cellular Senescence , Chondrocytes , Extracellular Vesicles , Mesenchymal Stem Cells , Osteoarthritis , Mesenchymal Stem Cells/metabolism , Extracellular Vesicles/metabolism , Osteoarthritis/metabolism , Osteoarthritis/pathology , Animals , Humans , Mice , Chondrocytes/metabolism , Cells, Cultured , Male , Mice, Inbred C57BL , DNA Damage
11.
Biodes Manuf ; 7(3): 277-291, 2024.
Article in English | MEDLINE | ID: mdl-38818303

ABSTRACT

Melt extrusion-based additive manufacturing (ME-AM) is a promising technique to fabricate porous scaffolds for tissue engineering applications. However, most synthetic semicrystalline polymers do not possess the intrinsic biological activity required to control cell fate. Grafting of biomolecules on polymeric surfaces of AM scaffolds enhances the bioactivity of a construct; however, there are limited strategies available to control the surface density. Here, we report a strategy to tune the surface density of bioactive groups by blending a low molecular weight poly(ε-caprolactone)5k (PCL5k) containing orthogonally reactive azide groups with an unfunctionalized high molecular weight PCL75k at different ratios. Stable porous three-dimensional (3D) scaffolds were then fabricated using a high weight percentage (75 wt.%) of the low molecular weight PCL5k. As a proof-of-concept test, we prepared films of three different mass ratios of low and high molecular weight polymers with a thermopress and reacted with an alkynated fluorescent model compound on the surface, yielding a density of 201-561 pmol/cm2. Subsequently, a bone morphogenetic protein 2 (BMP-2)-derived peptide was grafted onto the films comprising different blend compositions, and the effect of peptide surface density on the osteogenic differentiation of human mesenchymal stromal cells (hMSCs) was assessed. After two weeks of culturing in a basic medium, cells expressed higher levels of BMP receptor II (BMPRII) on films with the conjugated peptide. In addition, we found that alkaline phosphatase activity was only significantly enhanced on films containing the highest peptide density (i.e., 561 pmol/cm2), indicating the importance of the surface density. Taken together, these results emphasize that the density of surface peptides on cell differentiation must be considered at the cell-material interface. Moreover, we have presented a viable strategy for ME-AM community that desires to tune the bulk and surface functionality via blending of (modified) polymers. Furthermore, the use of alkyne-azide "click" chemistry enables spatial control over bioconjugation of many tissue-specific moieties, making this approach a versatile strategy for tissue engineering applications. Supplementary Information: The online version contains supplementary material available at 10.1007/s42242-024-00286-2.

12.
Am J Stem Cells ; 13(2): 37-58, 2024.
Article in English | MEDLINE | ID: mdl-38765802

ABSTRACT

Recent studies demonstrated that mesenchymal stem cells (MSCs) are important for the cell-based therapy of diseased or injured lung due to their immunomodulatory and regenerative properties as well as limited side effects in experimental animal models. Preclinical studies have shown that MSCs have also a remarkable effect on the immune cells, which play major roles in the pathogenesis of multiple lung diseases, by modulating their activity, proliferation, and functions. In addition, MSCs can inhibit both the infiltrated immune cells and detrimental immune responses in the lung and can be used in treating lung diseases caused by a virus infection such as Tuberculosis and SARS-COV-2. Moreover, MSCs are a source for alveolar epithelial cells such as type 2 (AT2) cells. These MSC-derived functional AT2-like cells can be used to treat and diminish serious lung disorders, including acute lung injury, asthma, chronic obstructive pulmonary disease (COPD), and pulmonary fibrosis in animal models. As an alternative MSC-based therapy, extracellular vesicles that are derived from MSC-derived can be employed in regenerative medicine. Herein, we discussed the key research findings from recent clinical and preclinical studies on the functions of MSCs in treating some common and well-studied lung diseases. We also discussed the mechanisms underlying MSC-based therapy of well-studied lung diseases, and the recent employment of MSCs in both the attenuation of lung injury/inflammation and promotion of the regeneration of lung alveolar cells after injury. Finally, we described the role of MSC-based therapy in treating major pulmonary diseases such as pneumonia, COPD, asthma, and idiopathic pulmonary fibrosis (IPF).

13.
Vet Sci ; 11(5)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38787159

ABSTRACT

Canine mesenchymal stromal cells (MSCs) possess the capacity to differentiate into a variety of cell types and secrete a wide range of bioactive molecules in the form of soluble and membrane-bound exosomes. Extracellular vesicles/exosomes are nano-sized vesicles that carry proteins, lipids, and nucleic acids and can modulate recipient cell response in various ways. The process of exosome formation is a physiological interaction between cells. With a significant increase in basic research over the last two decades, there has been a tremendous expansion in research in MSC exosomes and their potential applications in canine disease models. The characterization of exosomes has demonstrated considerable variations in terms of source, culture conditions of MSCs, and the inclusion of fetal bovine serum or platelet lysate in the cell cultures. Furthermore, the amalgamation of exosomes with various nano-materials has become a novel approach to the fabrication of nano-exosomes. The fabrication of exosomes necessitates the elimination of extrinsic proteins, thus enhancing their potential therapeutic uses in a variety of disease models, including spinal cord injury, osteoarthritis, and inflammatory bowel disease. This review summarizes current knowledge on the characteristics, biological functions, and clinical relevance of canine MSC exosomes and their potential use in human and canine research. As discussed, exosomes have the ability to control lethal vertebrate diseases by administration directly at the injury site or through specific drug delivery mechanisms.

14.
Kaohsiung J Med Sci ; 40(6): 520-529, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38712483

ABSTRACT

Autoimmune disease is characterized by the proliferation of harmful immune cells, inducing tissue inflammation and ultimately causing organ damage. Current treatments often lack specificity, necessitating high doses, prolonged usage, and high recurrence rates. Therefore, the identification of innovative and safe therapeutic strategies is urgently required. Recent preclinical studies and clinical trials on inflammatory and autoimmune diseases have evidenced the immunosuppressive properties of mesenchymal stromal cells (MSCs). Studies have demonstrated that extracellular vesicles (EV) derived from MSCs can mitigate abnormal autoinflammation while maintaining safety within the diseased microenvironment. This study conducted a systematic review to elucidate the crucial role of MSC-EVs in alleviating autoimmune diseases, particularly focusing on their impact on the underlying mechanisms of autoimmune conditions such as rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), and inflammatory bowel disease (IBD). By specifically examining the regulatory functions of microRNAs (miRNAs) derived from MSC-EVs, the comprehensive study aimed to enhance the understanding related to disease mechanisms and identify potential diagnostic markers and therapeutic targets for these diseases.


Subject(s)
Autoimmune Diseases , Extracellular Vesicles , Mesenchymal Stem Cells , MicroRNAs , Humans , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/immunology , Extracellular Vesicles/metabolism , Extracellular Vesicles/transplantation , Autoimmune Diseases/therapy , Autoimmune Diseases/immunology , Autoimmune Diseases/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Lupus Erythematosus, Systemic/therapy , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/pathology , Arthritis, Rheumatoid/therapy , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/pathology , Animals , Inflammatory Bowel Diseases/therapy , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/immunology , Inflammatory Bowel Diseases/pathology , Immunomodulation
15.
Biol Open ; 13(5)2024 May 15.
Article in English | MEDLINE | ID: mdl-38742438

ABSTRACT

Bone is increasingly recognized as a target for diabetic complications. In order to evaluate the direct effects of high glucose on bone, we investigated the global transcriptional changes induced by hyperglycemia in osteoblasts in vitro. Rat bone marrow-derived mesenchymal stromal cells were differentiated into osteoblasts for 10 days, and prior to analysis, they were exposed to hyperglycemia (25 mM) for the short-term (1 or 3 days) or long-term (10 days). Genes and pathways regulated by hyperglycemia were identified using mRNA sequencing and verified with qPCR. Genes upregulated by 1-day hyperglycemia were, for example, related to extracellular matrix organization, collagen synthesis and bone formation. This stimulatory effect was attenuated by 3 days. Long-term exposure impaired osteoblast viability, and downregulated, for example, extracellular matrix organization and lysosomal pathways, and increased intracellular oxidative stress. Interestingly, transcriptional changes by different exposure times were mostly unique and only 89 common genes responding to glucose were identified. In conclusion, short-term hyperglycemia had a stimulatory effect on osteoblasts and bone formation, whereas long-term hyperglycemia had a negative effect on intracellular redox balance, osteoblast viability and function.


Subject(s)
Gene Expression Regulation , Glucose , Osteoblasts , Osteoblasts/metabolism , Osteoblasts/drug effects , Animals , Glucose/metabolism , Rats , Gene Expression Regulation/drug effects , Gene Expression Profiling , Hyperglycemia/metabolism , Hyperglycemia/genetics , Cell Differentiation/drug effects , Cell Differentiation/genetics , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Transcriptome , Osteogenesis/drug effects , Osteogenesis/genetics , Cell Survival/drug effects , Transcription, Genetic/drug effects , Cells, Cultured , Oxidative Stress/drug effects
16.
J Am Heart Assoc ; 13(9): e029880, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38639336

ABSTRACT

BACKGROUND: Cellular therapies have been investigated to improve blood flow and prevent amputation in peripheral artery disease with limited efficacy in clinical trials. Alginate-encapsulated mesenchymal stromal cells (eMSCs) demonstrated improved retention and survival and promoted vascular generation in murine hind limb ischemia through their secretome, but large animal evaluation is necessary for human applicability. We sought to determine the efficacy of eMSCs for peripheral artery disease-induced limb ischemia through assessment in our durable swine hind limb ischemia model. METHODS AND RESULTS: Autologous bone marrow eMSCs or empty alginate capsules were intramuscularly injected 2 weeks post-hind limb ischemia establishment (N=4/group). Improvements were quantified for 4 weeks through walkway gait analysis, contrast angiography, blood pressures, fluorescent microsphere perfusion, and muscle morphology and histology. Capsules remained intact with mesenchymal stromal cells retained for 4 weeks. Adenosine-induced perfusion deficits and muscle atrophy in ischemic limbs were significantly improved by eMSCs versus empty capsules (mean±SD, 1.07±0.19 versus 0.41±0.16, P=0.002 for perfusion ratios and 2.79±0.12 versus 1.90±0.62 g/kg, P=0.029 for ischemic muscle mass). Force- and temporal-associated walkway parameters normalized (ratio, 0.63±0.35 at week 3 versus 1.02±0.19 preligation; P=0.17), and compensatory footfall patterning was diminished in eMSC-administered swine (12.58±8.46% versus 34.85±15.26%; P=0.043). Delivery of eMSCs was associated with trending benefits in collateralization, local neovascularization, and muscle fibrosis. Hypoxia-cultured porcine mesenchymal stromal cells secreted vascular endothelial growth factor and tissue inhibitor of metalloproteinase 2. CONCLUSIONS: This study demonstrates the promise of the mesenchymal stromal cell secretome at improving peripheral artery disease outcomes and the potential for this novel swine model to serve as a component of the preclinical pipeline for advanced therapies.


Subject(s)
Alginates , Disease Models, Animal , Hindlimb , Ischemia , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Animals , Mesenchymal Stem Cell Transplantation/methods , Hindlimb/blood supply , Mesenchymal Stem Cells/metabolism , Ischemia/physiopathology , Ischemia/therapy , Ischemia/metabolism , Swine , Neovascularization, Physiologic , Peripheral Arterial Disease/therapy , Peripheral Arterial Disease/physiopathology , Peripheral Arterial Disease/pathology , Injections, Intramuscular , Regional Blood Flow , Muscle, Skeletal/blood supply , Translational Research, Biomedical , Cells, Cultured
18.
Cell Commun Signal ; 22(1): 240, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664711

ABSTRACT

BACKGROUND: The repair of peripheral nerve injury poses a clinical challenge, necessitating further investigation into novel therapeutic approaches. In recent years, bone marrow mesenchymal stromal cell (MSC)-derived mitochondrial transfer has emerged as a promising therapy for cellular injury, with reported applications in central nerve injury. However, its potential therapeutic effect on peripheral nerve injury remains unclear. METHODS: We established a mouse sciatic nerve crush injury model. Mitochondria extracted from MSCs were intraneurally injected into the injured sciatic nerves. Axonal regeneration was observed through whole-mount nerve imaging. The dorsal root ganglions (DRGs) corresponding to the injured nerve were harvested to test the gene expression, reactive oxygen species (ROS) levels, as well as the degree and location of DNA double strand breaks (DSBs). RESULTS: The in vivo experiments showed that the mitochondrial injection therapy effectively promoted axon regeneration in injured sciatic nerves. Four days after injection of fluorescently labeled mitochondria into the injured nerves, fluorescently labeled mitochondria were detected in the corresponding DRGs. RNA-seq and qPCR results showed that the mitochondrial injection therapy enhanced the expression of Atf3 and other regeneration-associated genes in DRG neurons. Knocking down of Atf3 in DRGs by siRNA could diminish the therapeutic effect of mitochondrial injection. Subsequent experiments showed that mitochondrial injection therapy could increase the levels of ROS and DSBs in injury-associated DRG neurons, with this increase being correlated with Atf3 expression. ChIP and Co-IP experiments revealed an elevation of DSB levels within the transcription initiation region of the Atf3 gene following mitochondrial injection therapy, while also demonstrating a spatial proximity between mitochondria-induced DSBs and CTCF binding sites. CONCLUSION: These findings suggest that MSC-derived mitochondria injected into the injured nerves can be retrogradely transferred to DRG neuron somas via axoplasmic transport, and increase the DSBs at the transcription initiation regions of the Atf3 gene through ROS accumulation, which rapidly release the CTCF-mediated topological constraints on chromatin interactions. This process may enhance spatial interactions between the Atf3 promoter and enhancer, ultimately promoting Atf3 expression. The up-regulation of Atf3 induced by mitochondria further promotes the expression of downstream regeneration-associated genes and facilitates axon regeneration.


Subject(s)
Activating Transcription Factor 3 , Axons , DNA Breaks, Double-Stranded , Ganglia, Spinal , Mesenchymal Stem Cells , Mitochondria , Nerve Regeneration , Reactive Oxygen Species , Sciatic Nerve , Up-Regulation , Animals , Activating Transcription Factor 3/genetics , Activating Transcription Factor 3/metabolism , Mitochondria/metabolism , Mitochondria/genetics , Reactive Oxygen Species/metabolism , Axons/metabolism , Nerve Regeneration/genetics , Up-Regulation/genetics , Mice , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Sciatic Nerve/injuries , Sciatic Nerve/pathology , Ganglia, Spinal/metabolism , Mice, Inbred C57BL , Male
19.
Bioengineering (Basel) ; 11(4)2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38671796

ABSTRACT

Mesenchymal stromal cells (MSCs) have displayed potential in regenerating organ function due to their anti-fibrotic, anti-inflammatory, and regenerative properties. However, there is a need for delivery systems to enhance MSC retention while maintaining their anti-fibrotic characteristics. This study investigates the feasibility of using alginate hydrogel microstrands as a cell delivery vehicle to maintain MSC viability and phenotype. To accommodate cell implantation needs, we invented a Syringe-in-Syringe approach to reproducibly fabricate microstrands in small numbers with a diameter of around 200 µm and a porous structure, which would allow for transporting nutrients to cells by diffusion. Using murine NIH 3T3 fibroblasts and primary embryonic 16 (E16) salivary mesenchyme cells as primary stromal cell models, we assessed cell viability, growth, and expression of mesenchymal and fibrotic markers in microstrands. Cell viability remained higher than 90% for both cell types. To determine cell number within the microstrands prior to in vivo implantation, we have further optimized the alamarBlue assay to measure viable cell growth in microstrands. We have shown the effect of initial cell seeding density and culture period on cell viability and growth to accommodate future stromal cell delivery and implantation. Additionally, we confirmed homeostatic phenotype maintenance for E16 mesenchyme cells in microstrands.

20.
Bioengineering (Basel) ; 11(4)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38671809

ABSTRACT

Osteoarthritis (OA) is a degenerative joint disease, causing impaired mobility. There are currently no effective therapies other than palliative treatment. Mesenchymal stromal cells (MSCs) and their secreted extracellular vesicles (MSC-EVs) have shown promise in attenuating OA progression, promoting chondral regeneration, and modulating joint inflammation. However, the precise molecular mechanism of action driving their beneficial effects has not been fully elucidated. In this study, we analyzed MSC-EV-treated human OA chondrocytes (OACs) to assess viability, proliferation, migration, cytokine and catabolic protein expression, and microRNA and mRNA profiles. We observed that MSC-EV-treated OACs displayed increased metabolic activity, proliferation, and migration compared to the controls. They produced decreased proinflammatory (Il-8 and IFN-γ) and increased anti-inflammatory (IL-13) cytokines, and lower levels of MMP13 protein coupled with reduced expression of MMP13 mRNA, as well as negative microRNA regulators of chondrogenesis (miR-145-5p and miR-21-5p). In 3D models, MSC-EV-treated OACs exhibited enhanced chondrogenesis-promoting features (elevated sGAG, ACAN, and aggrecan). MSC-EV treatment also reversed the pathological impact of IL-1ß on chondrogenic gene expression and extracellular matrix component (ECM) production. Finally, MSC-EV-treated OACs demonstrated the enhanced expression of genes associated with cartilage function, collagen biosynthesis, and ECM organization and exhibited a signature of 24 differentially expressed microRNAs, associated with chondrogenesis-associated pathways and ECM interactions. In conclusion, our data provide new insights on the potential mechanism of action of MSC-EVs as a treatment option for early-stage OA, including transcriptomic analysis of MSC-EV-treated OA, which may pave the way for more targeted novel therapeutics.

SELECTION OF CITATIONS
SEARCH DETAIL
...