ABSTRACT
The accumulation of crystal calcium oxalate (CaOx) in plants is linked to a type of stress-induced photosynthesis termed 'alarm photosynthesis', serving as a carbon reservoir when carbon dioxide (CO2) exchange is constrained. Colobanthus quitensis is an extremophyte found from southern Mexico to Antarctica, which thrives in high-altitude Andean regions. Growing under common garden conditions, C. quitensis from different latitudinal provenances display significant variations in CaOx crystal accumulation. This raises the following questions: are these differences maintained under natural conditions? And is the CaOx accumulation related to mesophyll conductance (gm) and net photosynthesis (AN) performed in situ? It is hypothesized that in provenances with lower gm, C. quitensis will exhibit an increase in the use of CaOx crystals, resulting in reduced crystal leaf abundance. Plants from Central Chile (33°), Patagonia (51°), and Antarctica (62°) were measured in situ and sampled to determine gas exchange and CaOx crystal accumulation, respectively. Both AN and gm decrease towards higher latitudes, correlating with increases in leaf mass area and leaf density. The crystal accumulation decreases at higher latitudes, correlating positively with AN and gm. Thus, in provenances where environmental conditions induce more xeric traits, the CO2 availability for photosynthesis decreases, making the activation of alarm photosynthesis feasible as an internal source of CO2.
ABSTRACT
Species in dry environments may adjust their anatomical and physiological behaviors by adopting safer or more efficient strategies. Thus, species distributed across a water availability gradient may possess different phenotypes depending on the specific environmental conditions to which they are subjected. Leaf and vascular tissues are plastic and may vary strongly in response to environmental changes affecting an individual's survival and species distribution. To identify whether and how legumes leaves vary across a water availability gradient in a seasonally dry tropical forest, we quantified leaf construction costs and performed an anatomical study on the leaves of seven legume species. We evaluated seven species, which were divided into three categories of rainfall preference: wet species, which are more abundant in wetter areas; indifferent species, which are more abundant and occur indistinctly under both rainfall conditions; and dry species, which are more abundant in dryer areas. We observed two different patterns based on rainfall preference categories. Contrary to our expectations, wet and indifferent species changed traits in the sense of security when occupying lower rainfall areas, whereas dry species changed some traits when more water was available, such as increasing cuticle and spongy parenchyma thickness, or producing smaller and more numerous stomata. Trischidium molle, the most plastic and wet species, exhibited a similar strategy to the dry species. Our results corroborate the risks to vegetation under future climate change scenarios as stressed species and populations may not endure even more severe conditions.
Subject(s)
Trees , Water , Trees/physiology , Droughts , Tropical Climate , Forests , Plant Leaves/physiologySubject(s)
Flavodoxin , Zea mays , Flavodoxin/metabolism , Drought Resistance , Chloroplasts/metabolism , Photosynthesis , Mesophyll CellsABSTRACT
MAIN CONCLUSION: Selection for increased yield changed structure, physiology and overall resource-use strategy from conservative towards acquisitive leaves. Alternative criteria can be considered, to increase yield with less potentially negative traits. We compared the morphology, anatomy and physiology of wild and semi-domesticated (SD) accessions of Silphium integrifolium (Asteraceae), in multi-year experiments. We hypothesized that several cycles of selection for seed-yield would result in acquisitive leaves, including changes predicted by the leaf economic spectrum. Early-selection indirectly resulted in leaf structural and functional changes. Leaf anatomy changed, increasing mesophyll conductance and the size of xylem vessels and mesophyll cells increased. Leaves of SD plants were larger, heavier, with lower stomatal conductance, lower internal CO2 concentration, and lower resin concentration than those of wild types. Despite increased water use efficiency, SD plants transpired 25% more because their increase in leaf area. Unintended and undesired changes in functional plant traits could quickly become fixed during domestication, shortening the lifespan and increasing resource consumption of the crop as well as having consequences in the provision and regulation of ecosystem services.
Subject(s)
Asteraceae , Domestication , Ecosystem , Mesophyll Cells , PhenotypeABSTRACT
We analysed whether Phacelia secunda populations from different elevations exhibit intrinsic traits associated with diffusive and biochemical components of photosynthesis, and if they differ in acclimation of photosynthesis to warmer temperatures. We hypothesized that P. secunda will have similar photosynthetic performance regardless of altitudinal provenance and that plants from high elevations will have a lower photosynthetic acclimation capacity to higher temperature than plants from low elevations. Plants from 1600, 2800 and 3600 m a.s.l. in the central Chilean Andes were collected and grown under two temperature regimes (20/16 °C and 30/26 °C day/night). The following photosynthetic traits were measured in each plant for the two temperature regimes: AN , gs , gm , Jmax , Vcmax , Rubisco carboxylation kcat c . Under a common growth environment, plants from the highest elevation had slightly lower CO2 assimilation rates compared to lower elevation plants. While diffusive components of photosynthesis increased with elevation provenance, the biochemical component decreased, suggesting compensation that explains the similar rates of photosynthesis among elevation provenances. Plants from high elevations had lower photosynthetic acclimation to warmer temperatures compared to plants from lower elevations, and these responses were related to elevational changes in diffusional and biochemical components of photosynthesis. Plants of P. secunda from different elevations maintain photosynthetic traits when grown in a common environment, suggesting low plasticity to respond to future climate changes. The fact that high elevation plants had lower photosynthetic acclimation to warmer temperature suggests higher susceptibility to increases in temperature associated with global warming.
Subject(s)
Acclimatization , Photosynthesis , Temperature , Photosynthesis/physiology , Hot Temperature , Plants , Carbon Dioxide , Plant Leaves/physiologyABSTRACT
The objective of this study was to evaluate the relationship between intercellular spaces and leaf gas exchange and the effect of total intercellular space on the growth of maize and sorghum under water restriction. The experiments were conducted in a greenhouse in a 2 × 3 factorial arrangement (two plant types and three water conditions: field capacity (FC = 100%), 75%FC, and 50%FC) with 10 replicates. The lack of water was a limiting factor for maize because it showed reductions in leaf area, leaf thickness, biomass, and gas exchange parameters, while sorghum remained unchanged, maintaining its water-use efficiency. This maintenance was correlated with the growth of intercellular spaces in sorghum leaves because the increased internal volume led to better CO2 control and prevented excessive water loss under drought stress. In addition, sorghum had more stomata than maize. These characteristics contributed to the drought tolerance of sorghum, while maize could not make the same adjustments. Therefore, changes in intercellular spaces promoted adjustments to avoid water loss and may have improved CO2 diffusion, characteristics that are important for drought-tolerant plants.
Subject(s)
Sorghum , Water , Photosynthesis , Extracellular Space , Carbon Dioxide , Plant Leaves , DroughtsABSTRACT
The syconium is the urn-shaped inflorescence shared by all species of the genus Ficus. The orifice at the apex of the syconium is called the ostiole, and it is covered by interlocking bracts. The ostiolar bracts can have different arrangements, which only allow the entry of mutualist wasps and promote reproductive isolation among Ficus species. Here, we analyze the ostiolar structures that could play a role as selective filter and therefore impact the fig-fig wasp mutualism in the neotropical Ficus sections Americanae and Pharmacosycea. Samples of syconia with pistillate flowers during the receptive phase of seven species of Ficus were examined using light and scanning electron microscopy. Tests for histolocalization of substances were employed to detect secretory activity throughout the ostiolar tissues. Our results indicated that the ostiole has two components: ostiolar bracts and the periostiolar zone. Interspecies variation in ostiolar bract arrangement in both sections studied was broader than previously reported. We report for the first time for Ficus: (i) two types of ostiolar osmophores (mesophyll and diffuse), that could be a source of volatile compounds for attracting fig wasps; (ii) colleters in the axil of ostiolar bracts, which probably lubricate and facilitate the entry of pollinating wasps into the syconial cavity; (iii) secretory trichomes around the ostiolar bracts, and (iv) syconium basal bracts (F. isophlebia) covering the ostiole, which are the first physical barrier that the fig wasps must overcome to access receptive pistillate flowers. We describe the zones that compose the ostiole, which support the hypothesis that the ostiole is a selective filter in the interactions of fig trees with Agaonidae fig wasps. We also suggest that ostiolar osmophores, colleters, the periostiolar zone, and the arrangements of the ostiolar bracts may be informative with respect to Ficus systematics.
Subject(s)
Ficus , Wasps , Animals , Symbiosis , Pollination , FlowersABSTRACT
The study of ancient species provides valuable information concerning the evolution of specific adaptations to past and current environmental conditions. Araucaria araucana (Molina) K. Koch belongs to one of the oldest families of conifers in the world, but despite this, there are few studies focused on its physiology and responses to changes in environmental conditions. We used an integrated approach aimed at comprehensively characterizing the ecophysiology of this poorly known species, focusing in its stomatal, mesophyll and biochemical traits, hypothesizing that these traits govern the carbon assimilation of A. araucana under past and present levels of atmospheric CO2. Results indicated that A. araucana presents the typical traits of an ancient species, such as large stomata and low stomatal density, which trigger low stomatal conductance and slow stomatal responsiveness to changing environmental conditions. Interestingly, the quantitative analysis showed that photosynthetic rates were equally limited by both diffusive and biochemical components. The Rubisco catalytic properties proved to have a low Rubisco affinity for CO2 and O2, similar to other ancient species. This affinity for CO2, together with the low carboxylation turnover rate, are responsible for the low Rubisco catalytic efficiency of carboxylation. These traits could be the result of the diverse environmental selective pressures that A. araucana was exposed during its diversification. The increase in measured temperatures induced an increase in stomatal and biochemical limitations, which together with a lower Rubisco affinity for CO2 could explain the low photosynthetic capacity of A. araucana in warmer conditions.
Subject(s)
Carbon , Ribulose-Bisphosphate Carboxylase , Araucaria araucana , Carbon Dioxide , Photosynthesis/physiology , Plant Leaves/metabolism , Ribulose-Bisphosphate Carboxylase/metabolismABSTRACT
Plant leaves present an intricate array of layers providing a robust barrier against pathogens and abiotic stressors. However, these layers may also constitute an obstacle for the assessment of intracellular processes, especially when using fluorescence microscopy approaches. Current methods for leaf mitochondrial membrane potential determinations have been traditionally performed in thin mesophyll sections, in isolated protoplasts or in fluorescent protein-expressing transgenic plants. This may limit the amount of information obtained about overall mitochondrial morphology in intact leaves. Here, we detail a fast and straightforward protocol to assess changes in leaf mitochondrial membrane potential associated with mitochondrial dysfunction in the model plant Arabidopsis thaliana. This protocol also permits mitochondrial shape, dynamics and polarity assessment in leaves subjected to diverse stress conditions.
ABSTRACT
Rhizophora mangle, one of the main neotropic mangrove species, has wide phenological variability associated with soil salinity. Since global warming is one of the main drivers of changes in salinity, understanding the influence of this variable at the species level would help improve the prediction of climate change in the ecological services provided by mangroves. To understand the physiological and/or anatomical responses to water stress generated by edaphic salinity and its relationship with phenological and structural diversity, we quantified the functional traits of leaf tissue subjected to a cross-seeding experiment between two forests with different ranges of natural salinity (0-18 PSU and 20 to 70 PSU). A total of 180 propagules, 90 native and 90 from the other forest, were planted in each forest. Every three months for a year, soil salinity and growth, adaptability, and survival of propagules that were transformed into seedlings were measured. The traits evaluated between the two saline regimes presented significant differences, as stated in the working hypothesis. Likewise, there were modifications in the hypodermis and the xylem vessels in the exchanged seedlings, tissues related to water storage, and conduction. These responses allowed native euhaline forest seedlings to grow in oligohaline. The opposite occurred with seedlings originating in low salinities that did not survive in high salinities. Differences in adaptability between populations of R. mangle subjected to ranges of contrasting salinity may imply changes at the structural level, zoning, and abundance of the species front to the climate change processes.
ABSTRACT
There is little information about the role of red and blue light on leaf morphology and physiology in fruit trees, and more studies have been developed in herbaceous plants grown under controlled light conditions. The objective of this research was to evaluate the effect of red and blue screens on morpho-anatomy and gas exchange in apple leaves grown under ambient sunlight conditions. Apple trees cv. Fuji were covered by 40% red and blue nets, leaving trees with 20% white net as control. Light relations (photosynthetic photon flux density, PPFD; red to far-red light ratio, R/FR and blue to red light ratio, B/R), morpho-anatomical features of the leaf (palisade to spongy mesophyll ratio, P/S, and stomata density, SD) and leaf gas exchange (net photosynthesis rate, An; stomatal conductance, g s; transpiration rate, E; and intrinsic water use efficiency, IWUE) were evaluated. Red and blue nets reduced 27% PPFD, reducing by 20% SD and 25% P/S compared to control, but without negative effects on An and g s. Blue net increased g s 21%, leading to the highest E and lowest IWUE by increment of B/R light proportion. These findings demonstrate the potential use of red and blue nets for differential modulation of apple leaf gas exchange through sunlight management under field conditions.
ABSTRACT
The partial or complete loss of chlorophylls, or albinism, is a rare phenomenon in plants. In the present study, we provide the first report of the occurrence in albino Delonix regia seedlings and describe the morpho-physiological changes associated with albinism. Wild-type (WT) and albino seedlings were characterized. Leaflets samples were processed following common procedures for analysis with light, scanning and transmission electron microscopy. The chlorophyll a fluorescence parameters and the carbohydrate, lipid and soluble protein content were also determined in leaf and cotyledon samples of both albino and WT seedlings. Albino seedlings showed reduced growth. They also had lower chlorophyll and protein content in foliar tissues than WT seedlings, in addition to lower concentrations of lipids and carbohydrates stored in cotyledons. The chloroplasts of albino seedlings were poorly developed, with an undefined internal membrane system and the presence of plastoglobules. Wild-type seedlings had a uniseriate and hypoestomatic epidermis. The mesophyll was dorsiventral, consisting of a layer of palisade parenchyma and two to four layers of spongy parenchyma. In albino seedlings, the spongy parenchyma was compact, with few intercellular spaces, and the thickness of the mesophyll was larger, resulting in increased thickness of the leaf blade. Albino seedlings had higher stomatal density and number of pavement cells, although the stomata had smaller dimensions. In addition to the partial loss of chlorophylls, albino D. regia showed changes at physiological and structural levels, demonstrating the crucial nature of photosynthetic pigments during the development and differentiation of plant leaf tissues/cells.
Subject(s)
Chlorophyll , Fabaceae , Seedlings , Chlorophyll/genetics , Chlorophyll/metabolism , Chloroplasts/metabolism , Fabaceae/anatomy & histology , Fabaceae/physiology , Photosynthesis/physiology , Plant Leaves/physiology , Seedlings/physiologyABSTRACT
BACKGROUND AND AIMS: It is commonly accepted that the leaf of a crassulacean acid metabolism (CAM) plant is thick, with large mesophyll cells and vacuoles that can accommodate the malic acid produced during the night. The link between mesophyll characteristics and CAM mode, whether obligate or C3/CAM, was evaluated. METHODS: Published values of the carbon isotopic ratio (뫉13C) as an indicator of CAM, leaf thickness, leaf micrographs and other evidence of CAM operation were used to correlate cell density, cell area, the proportion of intercellular space in the mesophyll (IAS) and the length of cell wall facing the intercellular air spaces (Lmes/A) with CAM mode. KEY RESULTS: Based on 81 species and relatively unrelated families (15) belonging to nine orders, neither leaf thickness nor mesophyll traits helped explain the degree of CAM expression. A strong correlation was found between leaf thickness and 뫉13C in some species of Crassulaceae and between leaf thickness and nocturnal acid accumulation in a few obligate CAM species of Bromeliaceae but, when all 81 species were pooled together, no significant changes with 뫉13C were observed in cell density, cell area, IAS or Lmes/A. CONCLUSIONS: An influence of phylogeny on leaf anatomy was evidenced in a few cases but this precluded generalization for widely separate taxa containing CAM species. The possible relationships between leaf anatomy and CAM mode should be interpreted cautiously.
Subject(s)
Bromeliaceae , Extracellular Space , Mesophyll Cells , Photosynthesis , Plant LeavesABSTRACT
RESUMEN Los avances biotecnológicos en plantas requieren la bioprospección de nuevos promotores para la expresión de genes de interés agronómico, en particular, es necesario caracterizar nuevos promotores con expresión tejido específica. El objetivo de esta investigación fue evaluar la actividad de expresión del promotor del gen AV1 que codifica para la proteína de la cápside (CP) del virus de la distorsión de la hoja de maracuyá (Passion fruit leaf distortion virus, PLDV) mediante ensayos transitorios de biobalística de baja presión. Se realizó un análisis de la región promotora del gen AV1 empleando herramientas bioinformáticas. Se construyó una fusión traduccional (CP-PLDV-GUS), que porta la región promotora del gen AV1 de PLDV fusionada al gen reportero uidA (GUS). CP-PLDV-GUS fue bombardeado sobre hojas de plántulas de tabaco cultivadas in vitro empleando una pistola de genes. Como control positivo se utilizó el plásmido pBI121 que porta el gen GUS bajo el control del promotor 35S de CaMV. Se llevaron a cabo 11 repeticiones, donde la unidad experimental fue la hoja y la variable de respuesta, la expresión transitoria del gen GUS representado por el número de puntos azules observados en las hojas bombardeadas. Como resultado, el análisis estadístico no paramétrico demostró que existe evidencia muestral suficiente para confirmar que, tanto el promotor AV1 del PLDV y 35S de CaMV presentan una actividad de expresión semejante. Finalmente, el promotor del gen AV1 de PLDV mostró una fuerte actividad de expresión del gen reportero en las células del mesófilo de las hojas, el cual podría ser usado para conferir expresión tejido específica en plantas transgénicas.
ABSTRACT Biotechnological advances in plants require the bioprospecting of new promoters for the gene´s expression of agronomic interest, in particular, it is necessary to characterize new promoters with tissue-specific expression The objective of this research was to evaluate the expression activity of the AV1 gene promoter that codes for the capsid protein (CP) of the Passion fruit leaf distortion virus (PLDV) by means of transient tests of low pressure biobalistics. An analysis of the promoter region was carried out using bioinformatics tools. A CP-PLDV-GUS translational fusion was constructed, which carries the promoter region of the AV1 gene of PLDV fused to the uidA reporter gene (GUS). CP-PLDV-GUS was bombarded on leaves of tobacco seedlings grown in vitro using a gene gun. As a positive control pBI121 carrying the GUS gene under the control of the 35S promoter of CaMV was used. It was carried out 11 repetitions where the experimental unit was the leaf and the response variable the transient expression of the GUS gene represented by number of blue dots observed in the bombarded leaves. As a result, the non-parametric statistical analysis showed that there is sufficient sample evidence to confirm that both the AV1 promoter of PLDV and 35S of CaMV exhibit similar expression activity. Finally, the promoter of the AV1 gene of PLDV showed a strong activity of expression of the reporter gene in the leaf mesophyll cells, which could be used to confer tissue-specific expression in transgenic plants.
ABSTRACT
The Antarctic Peninsula has experienced a rapid warming in the last decades. Although recent climatic evidence supports a new tendency towards stabilization of temperatures, the impacts on the biosphere, and specifically on Antarctic plant species, remain unclear. We evaluated the in situ warming effects on photosynthesis, including the underlying diffusive, biochemical and anatomical determinants, and the relative growth of two Antarctic vascular species, Colobanthus quitensis and Deschampsia antarctica, using open top chambers (OTCs) and gas exchange measurements in the field. In C. quitensis, the photosynthetic response to warming relied on specific adjustments in the anatomical determinants of the leaf CO2 transfer, which enhanced mesophyll conductance and photosynthetic assimilation, thereby promoting higher leaf carbon gain and plant growth. These changes were accompanied by alterations in the leaf chemical composition. By contrast, D. antarctica showed no response to warming, with a lack of significant differences between plants grown inside OTCs and plants grown in the open field. Overall, the present results are the first reporting a contrasting effect of in situ warming on photosynthesis and its underlying determinants, of the two unique Antarctic vascular plant species, which could have direct consequences on their ecological success under future climate conditions.
Subject(s)
Embryophyta/growth & development , Embryophyta/physiology , Global Warming , Photosynthesis , Plant Vascular Bundle/physiology , Antarctic Regions , Biomass , Carbon Dioxide/metabolism , Geography , Mesophyll Cells/physiology , Microclimate , Models, Biological , Nitrogen/metabolism , Plant Stomata/anatomy & histology , Plant Stomata/physiology , TemperatureABSTRACT
Particular physiological traits allow the vascular plants Deschampsia antarctica Desv. and Colobanthus quitensis (Kunth) Bartl. to inhabit Antarctica. The photosynthetic performance of these species was evaluated in situ, focusing on diffusive and biochemical constraints to CO2 assimilation. Leaf gas exchange, Chl a fluorescence, leaf ultrastructure, and Rubisco catalytic properties were examined in plants growing on King George and Lagotellerie islands. In spite of the species- and population-specific effects of the measurement temperature on the main photosynthetic parameters, CO2 assimilation was highly limited by CO2 diffusion. In particular, the mesophyll conductance (gm)-estimated from both gas exchange and leaf chlorophyll fluorescence and modeled from leaf anatomy-was remarkably low, restricting CO2 diffusion and imposing the strongest constraint to CO2 acquisition. Rubisco presented a high specificity for CO2 as determined in vitro, suggesting a tight co-ordination between CO2 diffusion and leaf biochemistry that may be critical ultimately to optimize carbon balance in these species. Interestingly, both anatomical and biochemical traits resembled those described in plants from arid environments, providing a new insight into plant functional acclimation to extreme conditions. Understanding what actually limits photosynthesis in these species is important to anticipate their responses to the ongoing and predicted rapid warming in the Antarctic Peninsula.
Subject(s)
Caryophyllaceae/metabolism , Photosynthesis , Plant Leaves/metabolism , Poaceae/metabolism , Ribulose-Bisphosphate Carboxylase/metabolism , Antarctic Regions , Carbon/metabolism , Cold Climate , Mesophyll Cells/metabolism , Plant Leaves/anatomy & histologyABSTRACT
ABSTRACT Wild plant species with potential for use as ornamental green foliage are often reported. Nevertheless, there are few studies evaluating morphological and anatomical aspects associated with this use. Preliminary trials suggest that the species of Sphaeradenia (Sander ex Mast.) Harling, a Cyclantaceae that occurs from Costa Rica to Peru, is suitable to be used as fresh foliage because of attractiveness of their leaves in vase and its durability without showing tissue damage, compared with other genera of this family. Through the study of anatomical characters, it is possible to predict the potential of a species that can serve as ornamental foliage. In this study, three foliar anatomical features (thickness of the cuticle and leaf, and percentage of fibers in the mesophyll) of seven Cyclanthaceae species were evaluated, using anatomical techniques and image analysis with the LUCIA® and ImageJ softwares. Statistical analysis of the results suggests that this high durability is associated with the thickness of the cuticle and mesophyll, but not with the amount of fibers in the leaf.
Subject(s)
Plant Physiological Phenomena , Plant Leaves/anatomy & histology , Plant Leaves/physiology , Mesophyll CellsABSTRACT
The effect of salt stress was analyzed in chloroplasts of Amaranthus cruentus var. Amaranteca, a plant NAD-malic enzyme (NAD-ME) type. Morphology of chloroplasts from bundle sheath (BSC) and mesophyll (MC) was observed by transmission electron microscopy (TEM). BSC and MC from control plants showed similar morphology, however under stress, changes in BSC were observed. The presence of ribulose bisphosphate carboxylase/oxygenase (RuBisCO) was confirmed by immunohistochemical staining in both types of chloroplasts. Proteomic profiles of thylakoid protein complexes from BSC and MC, and their changes induced by salt stress were analyzed by blue-native polyacrylamide gel electrophoresis followed by SDS-PAGE (2-D BN/SDS-PAGE). Differentially accumulated protein spots were analyzed by LC-MS/MS. Although A. cruentus photosynthetic tissue showed the Kranz anatomy, the thylakoid proteins showed some differences at photosystem structure level. Our results suggest that A. cruentus var. Amaranteca could be better classified as a C3-C4 photosynthetic plant.
Subject(s)
Adaptation, Physiological , Amaranthus/metabolism , Chloroplasts/metabolism , Plant Proteins/metabolism , Proteomics , Chromatography, Liquid , Databases, Protein , Electrophoresis, Polyacrylamide Gel , Light-Harvesting Protein Complexes , Mesophyll Cells , Microscopy, Electron, Transmission , Multiprotein Complexes , Photosynthesis , Photosystem I Protein Complex/metabolism , Photosystem II Protein Complex/metabolism , Plant Leaves/metabolism , Plant Vascular Bundle/metabolism , Sodium Chloride/pharmacology , Stress, Physiological , Tandem Mass Spectrometry , Thylakoids/metabolismABSTRACT
Although vast areas in tropical regions have weathered soils with low potassium (K) levels, little is known about the effects of K supply on the photosynthetic physiology of trees. This study assessed the effects of K and sodium (Na) supply on the diffusional and biochemical limitations to photosynthesis in Eucalyptus grandis leaves. A field experiment comparing treatments receiving K (+K) or Na (+Na) with a control treatment (C) was set up in a K-deficient soil. The net CO2 assimilation rates were twice as high in +K and 1.6 times higher in +Na than in the C as a result of lower stomatal and mesophyll resistance to CO2 diffusion and higher photosynthetic capacity. The starch content was higher and soluble sugar was lower in +K than in C and +Na, suggesting that K starvation disturbed carbon storage and transport. The specific leaf area, leaf thickness, parenchyma thickness, stomatal size and intercellular air spaces increased in +K and +Na compared to C. Nitrogen and chlorophyll concentrations were also higher in +K and +Na than in C. These results suggest a strong relationship between the K and Na supply to E. grandis trees and the functional and structural limitations to CO2 assimilation rates.