Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Curr Issues Mol Biol ; 46(5): 3810-3821, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38785505

ABSTRACT

French Guiana, located in the Guiana Shield, is a natural reservoir for many zoonotic pathogens that are of considerable medical or veterinary importance. Until now, there has been limited data available on the description of parasites circulating in this area, especially on protozoan belonging to the phylum Apicomplexa; conversely, the neighbouring countries describe a high parasitic prevalence in animals and humans. Epidemiological surveillance is necessary, as new potentially virulent strains may emerge from these forest ecosystems, such as Amazonian toxoplasmosis. However, there is no standard tool for detecting protozoa in wildlife. In this study, we developed Meat-Borne-Parasite, a high-throughput meta-barcoding workflow for detecting Apicomplexa based on the Oxford Nanopore Technologies sequencing platform using the 18S gene of 14 Apicomplexa positive samples collected in French Guiana. Sequencing reads were then analysed with MetONTIIME pipeline. Thanks to a scoring rule, we were able to classify 10 samples out of 14 as Apicomplexa positive and reveal the presence of co-carriages. The same samples were also sequenced with the Illumina platform for validation purposes. For samples identified as Apicomplexa positive by both platforms, a strong positive correlation at up to the genus level was reported. Overall, the presented workflow represents a reliable method for Apicomplexa detection, which may pave the way for more comprehensive biomonitoring of zoonotic pathogens.

2.
New Phytol ; 227(5): 1505-1518, 2020 09.
Article in English | MEDLINE | ID: mdl-32368801

ABSTRACT

Anthropogenic atmospheric deposition can increase nutrient supply in the most remote ecosystems, potentially affecting soil biodiversity. Arbuscular mycorrhizal fungal (AMF) communities rapidly respond to simulated soil eutrophication in tropical forests. Yet the limited spatio-temporal extent of such manipulations, together with the often unrealistically high fertilization rates employed, impedes generalization of such responses. We sequenced mixed root AMF communities within a seven year-long fully factorial nitrogen (N) and phosphorus (P) addition experiment, replicated at three tropical montane forests in southern Ecuador with differing environmental characteristics. We hypothesized: strong shifts in community composition and species richness after long-term fertilization, site- and clade-specific responses to N vs P additions depending on local soil fertility and clade life history traits respectively. Fertilization consistently shifted AMF community composition across sites, but only reduced richness of Glomeraceae. Compositional changes were mainly driven by increases in P supply while richness reductions were observed only after combined N and P additions. We conclude that moderate increases of N and P exert a mild but consistent effect on tropical AMF communities. To predict the consequences of these shifts, current results need to be supplemented with experiments that characterize local species-specific AMF functionality.


Subject(s)
Mycorrhizae , Ecosystem , Ecuador , Forests , Fungi , Phosphorus , Plant Roots , Soil , Soil Microbiology
3.
Mycorrhiza ; 29(1): 39-49, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30443805

ABSTRACT

It is generally assumed that recruitment and expansion of alien species along elevation gradients are constrained by climate. But, if plants are not fully constrained by climate, their expansion could be facilitated or hindered by other factors such as biotic interactions. Here, we assessed the composition of arbuscular mycorrhizal fungi (AMF) in soils along an elevation gradient (i.e. 900 m, 1600 m, 2200 m and 2700 m a.s.l.) through a fungal DNA meta-barcoding approach. In addition, we studied in the greenhouse the effects of AMF on growth and phosphorous (P) nutrition of seedlings of the alien trees Gleditsia triacanthos, Ligustrum lucidum and Pyracantha angustifolia cultivated in soils from those elevations, spanning the elevation at which they already form monospecific stands (below 1450 m a.s.l.) and higher elevations, above their current range of distribution in montane ecosystems of Central Argentina. For comparison, we also included in the experiment the dominant native tree Lithraea molleoides that historically occurs below 1300 m a.s.l. Arbuscular mycorrhizal fungal community composition showed strong community turnover with increasing elevation. The effects of these AMF communities on plant growth and nutrition differed among native and alien trees. While P nutrition in alien species' seedlings was generally enhanced by AMF along the whole gradient, the native species benefited only from AMF that occur in soils from the elevation corresponding to its current altitudinal range of distribution. These results suggest that AMF might foster upper range expansion of these invasive trees over non-invaded higher elevations.


Subject(s)
Ecosystem , Mycorrhizae/physiology , Trees/growth & development , Trees/microbiology , Anacardiaceae/growth & development , Anacardiaceae/microbiology , Argentina , Gleditsia/growth & development , Gleditsia/microbiology , Introduced Species , Ligustrum/growth & development , Ligustrum/microbiology , Pyracantha/growth & development , Pyracantha/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL