ABSTRACT
Chagas disease (CD), caused by the complex life cycle parasite Trypanosoma cruzi, is a global health concern and impacts millions globally. T. cruzi's genetic variability is categorized into discrete typing units (DTUs). Despite their widespread presence in the Americas, a comprehensive understanding of their impact on CD is lacking. This study aims to analyze life cycle traits across life cycle stages, unraveling DTU dynamics. Metacyclogenesis curves were generated, inducing nutritional stress in epimastigotes of five DTUs (TcI (MG), TcI (DA), TcII(Y), TcIII, TcIV, and TcVI), resulting in metacyclic trypomastigotes. Infection dynamics in Vero cells from various DTUs were evaluated, exploring factors like amastigotes per cell, cell-derived trypomastigotes, and infection percentage. Statistical analyses, including ANOVA tests, identified significant differences. Varying onset times for metacyclogenesis converged on the 7th day. TcI (MG) exhibited the highest metacyclogenesis potential. TcI (DA) stood out, infecting 80% of cells within 24 h. TcI demonstrated the highest potential in both metacyclogenesis and infection among the strains assessed. Intra-DTU diversity was evident among TcI strains, contributing to a comprehensive understanding of Trypanosoma cruzi dynamics and genetic diversity.
Subject(s)
Chagas Disease , Trypanosoma cruzi , Chlorocebus aethiops , Animals , Trypanosoma cruzi/genetics , Vero Cells , PhenotypeABSTRACT
Leishmania parasites cause a spectrum of diseases termed leishmaniasis, which manifests in two main clinical forms, cutaneous and visceral leishmaniasis. Leishmania promastigotes transit from proliferative exponential to quiescent stationary phases inside the insect vector, a relevant step that recapitulates early molecular events of metacyclogenesis. During the insect blood meal of the mammalian hosts, the released parasites interact initially with the skin, an event marked by temperature changes. Deep knowledge on the molecular events activated during Leishmania-host interactions in each step is crucial to develop better therapies and to understand the pathogenesis. In this study, the proteomes of Leishmania (Leishmania) amazonensis (La), Leishmania (Viannia) braziliensis (Lb), and Leishmania (Leishmania) infantum (syn L. L. chagasi) (Lc) were analyzed using quantitative proteomics to uncover the proteome modulation in three different conditions related to growth phases and temperature shifts: 1) exponential phase (Exp); 2) stationary phase (Sta25) and; 3) stationary phase subjected to heat stress (Sta34). Functional validations were performed using orthogonal techniques, focusing on α-tubulin, gp63 and heat shock proteins (HSPs). Species-specific and condition-specific modulation highlights the plasticity of the Leishmania proteome, showing that pathways related to metabolism and cytoskeleton are significantly modulated from exponential to stationary growth phases, while protein folding, unfolded protein binding, signaling and microtubule-based movement were differentially altered during temperature shifts. This study provides an in-depth proteome analysis of three Leishmania spp., and contributes compelling evidence of the molecular alterations of these parasites in conditions mimicking the interaction of the parasites with the insect vector and vertebrate hosts. SIGNIFICANCE: Leishmaniasis disease manifests in two main clinical forms according to the infecting Leishmania species and host immune responses, cutaneous and visceral leishmaniasis. In Brazil, cutaneous leishmaniasis (CL) is associated with L. braziliensis and L. amazonensis, while visceral leishmaniasis, also called kala-azar, is caused by L. infantum. Leishmania parasites remodel their proteomes during growth phase transition and changes in their mileu imposed by the host, including temperature. In this study, we performed a quantitative mass spectrometry-based proteomics to compare the proteome of three New world Leishmania species, L. amazonensis (La), L. braziliensis (Lb) and L. infantum (syn L. chagasi) (Lc) in three conditions: a) exponential phase at 25 °C (Exp); b) stationary phase at 25 °C (Sta25) and; c) stationary phase subjected to temperature stress at 34 °C (Sta34). This study provides an in-depth proteome analysis of three Leishmania spp. with varying pathophysiological outcomes, and contributes compelling evidence of the molecular alterations of these parasites in conditions mimicking the interaction of the parasites with the insect vector and vertebrate hosts.
Subject(s)
Leishmania braziliensis , Leishmania infantum , Leishmaniasis, Cutaneous , Leishmaniasis, Visceral , Parasites , Animals , Leishmania infantum/metabolism , Proteome/metabolism , Temperature , Leishmaniasis, Cutaneous/parasitology , MammalsABSTRACT
The Triatoma brasiliensis species complex is a monophyletic group encompassing two subspecies and six species. Recently, a hybrid zone of members of this complex was recorded in the state of Pernambuco. Questions concerning the capability of the hybrids to become infected with Trypanosoma cruzi have been raised. This study aimed to compare the susceptibility of Triatoma b. brasiliensis, Triatoma juazeirensis, and their experimental hybrids to infection with T. cruzi. We infected the parentals and their experimental hybrids (obtained through reciprocal crosses) through artificial feeding with citrated rabbit blood, to which the TcI 0354 strain of T. cruzi had been added. The insects were weighed before and after feeding on the rabbit blood, and then they were dissected on the 10th, 20th, and 30th day after infection. Both the hybrids and the parentals remained infected throughout the experiment. The parasite was mostly found in the epimastigote form. The number of epimastigotes was significantly lower in the stomach and small intestine of T. juazeirensis than in the hybrids or in T. b. brasiliensis. A significantly higher percentage of metacyclic trypomastigotes was detected in the small intestine and rectum of the hybrids. Hybrids demonstrated higher susceptibility to the TcI 0354 strain than their parentals, opening up new avenues to be investigated.
ABSTRACT
During its life cycle, Trypanosoma cruzi undergoes physiological modifications in order to adapt to insect vector and mammalian host conditions. Metacyclogenesis is essential, as the parasite acquires the ability to infect a variety of mammalian species, including humans, in which pathology is caused. In this work, the transcriptomes of metacyclic trypomastigotes and epimastigotes were analyzed in order to identify differentially expressed genes that may be involved in metacyclogenesis. Toward this end, in vitro induction of metacyclogenesis was performed and metacyclic trypomastigotes obtained. RNA-Seq was performed on triplicate samples of epimastigotes and metacyclic trypomastigotes. Differential gene expression analysis showed 513 genes, of which 221 were upregulated and 292 downregulated in metacyclic trypomastigotes. The analysis showed that these genes are related to biological processes relevant in metacyclogenesis. Within these processes, we found that most of the genes associated with infectivity and gene expression regulation were upregulated in metacyclic trypomastigotes, while genes involved in cell division, DNA replication, differentiation, cytoskeleton, and metabolism were mainly downregulated. The participation of some of these genes in T. cruzi metacyclogenesis is of interest, as they may be used as potential therapeutic targets in the design of new drugs for Chagas disease.
Subject(s)
Chagas Disease , Trypanosoma cruzi , Humans , Animals , Trypanosoma cruzi/physiology , Colombia , Gene Expression Regulation , Cell Differentiation , MammalsABSTRACT
Chagas disease is a neglected infectious disease caused by the protozoan Trypanosoma cruzi, primarily transmitted by triatomine vectors, and it threatens approximately seventy-five million people worldwide. This parasite undergoes a complex life cycle, transitioning between hosts and shifting from extracellular to intracellular stages. To ensure its survival in these diverse environments, T. cruzi undergoes extreme morphological and molecular changes. The metacyclic trypomastigote (MT) form, which arises from the metacyclogenesis (MTG) process in the triatomine hindgut, serves as a crucial link between the insect and human hosts and can be considered the starting point of Chagas disease. This review provides an overview of the current knowledge regarding the parasite's life cycle, molecular pathways, and mechanisms involved in metabolic and morphological adaptations during MTG, enabling the MT to evade the immune system and successfully infect human cells.
Subject(s)
Chagas Disease , Trypanosoma cruzi , HumansABSTRACT
Multiple genes and proteins have been identified as differentially expressed in the stages of the Leishmania life cycle. The differentiation processes are implicated in specific transcriptional and proteomic adjustments driven by gene expression regulation mechanisms. Leishmania parasites lack gene-specific transcriptional control, and gene expression regulation mostly depends on posttranscriptional mechanisms. Due to the lack of transcriptional regulation, criticism regarding the relevance of transcript quantification as a possible and efficient prediction of protein levels is recurrent in studies that use transcriptomic information. The advent of high-throughput technologies has improved the analysis of genomes, transcriptomes and proteomes for different organisms under several conditions. Nevertheless, defining the correlation between transcriptional and proteomic profiles requires arduous and expensive work and remains a challenge in Leishmania. In this review, we analyze transcriptomic and proteomic data for several Leishmania species in two different stages of the parasite life cycle: metacyclogenesis and amastigogenesis (amastigote differentiation). We found a correlation between mRNA and protein levels of 60.9% and 69.8% for metacyclogenesis and amastigogenesis, respectively; showing that majority mRNA and protein levels increase or decrease concomitantly. Among the analyzed genes that did not present correlation indicate that transcriptomic data should be carefully interpreted as protein expression. We also discuss possible explanations and mechanisms involved for this lack of correlation.
Subject(s)
Leishmania , Parasites , Animals , Leishmania/genetics , Leishmania/metabolism , Life Cycle Stages/genetics , Parasites/genetics , Proteome/analysis , Proteomics , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolismABSTRACT
Trypanosoma cruzi proliferative forms perform endocytosis through a specialized structure named the cytostome-cytopharynx complex (SPC). The SPC is a specialized invagination of the cell membrane that extends through the cell body towards the posterior regions, with its aperture close to the flagellar pocket. Recently, diverse proteins were found along the cytopharynx, including two myosin motors. One of these is the orphan myosin MyoF, that was proved to be essential for endocytosis in epimastigotes. However, the dynamics of MyoF localization along the endocytic pathway and through the T. cruzi life cycle remain unclear. Using CRISPR-Cas9 genome editing, we generated epimastigotes expressing MyoF fused to mNeonGreen from its endogenous locus. Using these cells, we observed that during the epimastigote cell cycle MyoF signal disappeared during G2, reappearing at early cytokinesis. Additionally, we show that MyoF localization during metacyclogenesis is compatible with the progressive disappearance of the SPC, being absent in metacyclic trypomastigotes. Detergent fractionation showed that MyoF was predominantly present in the insoluble fraction and immunolocalized at the SPC microtubules in whole-mount cytoskeleton preparations. Moreover, during tracer uptake through the SPC, MyoF followed the tracer along the endocytic pathway and was found in posterior compartments after 30 min. Taken together, the data suggest that MyoF may play a role not only at the cargo entry site but also along the endocytic pathway.
Subject(s)
Endocytosis , Myosins/genetics , Protozoan Proteins/genetics , Trypanosoma cruzi/physiology , Myosins/metabolism , Protozoan Proteins/metabolismABSTRACT
The flagellum of Trypanosomatids is an organelle that contributes to multiple functions, including motility, cell division, and host-pathogen interaction. Trypanin was first described in Trypanosoma brucei and is part of the dynein regulatory complex. TbTrypanin knockdown parasites showed motility defects in procyclic forms; however, silencing in bloodstream forms was lethal. Since TbTrypanin mutants show drastic phenotypic changes in mammalian stages, we decided to evaluate if the Trypanosoma cruzi ortholog plays a similar role by using the CRISPR-Cas9 system to generate null mutants. A ribonucleoprotein complex of SaCas9 and sgRNA plus donor oligonucleotide were used to edit both alleles of TcTrypanin without any selectable marker. TcTrypanin -/- epimastigotes showed a lower growth rate, partially detached flagella, normal numbers of nuclei and kinetoplasts, and motility defects such as reduced displacement and speed and increased tumbling propensity. The epimastigote mutant also showed decreased efficiency of in-vitro metacyclogenesis. Mutant parasites were able to complete the entire life cycle in vitro; however, they showed a reduction in their infection capacity compared with WT and addback cultures. Our data show that T. cruzi life cycle stages have differing sensitivities to TcTrypanin deletion. In conclusion, additional work is needed to dissect the motility components of T. cruzi and to identify essential molecules for mammalian stages.
Subject(s)
Chagas Disease , Trypanosoma brucei brucei , Trypanosoma cruzi , Animals , Flagella/genetics , Protozoan Proteins/genetics , Trypanosoma cruzi/geneticsABSTRACT
Cruzipain, the major cysteine protease of the pathogenic protozoa Trypanosoma cruzi, is an important virulence factor that plays a key role in the parasite nutrition, differentiation and host cell infection. Cruzipain is synthesized as a zymogen, matured, and delivered to reservosomes. These organelles that store proteins and lipids ingested by endocytosis undergo a dramatic decrease in number during the metacyclogenesis of T. cruzi. Autophagy is a process that digests the own cell components to supply energy under starvation or different stress situations. This pathway is important during cell growth, differentiation and death. Previously, we showed that the autophagy pathway of T. cruzi is induced during metacyclogenesis. This work aimed to evaluate the participation of macroautophagy/autophagy in the distribution and function of reservosomes and cruzipain during this process. We found that parasite starvation promotes the cruzipain delivery to reservosomes. Enhanced autophagy increases acidity and hydrolytic activity in these compartments resulting in cruzipain enzymatic activation and self- processing. Inhibition of autophagy similarly impairs cruzipain traffic and activity than protease inhibitors, whereas mutant parasites that exhibit increased basal autophagy, also display increased cruzipain processing under control conditions. Further experiments showed that autophagy induced cruzipain activation and self-processing promote T. cruzi differentiation and host cell infection. These findings highlight the key role of T. cruzi autophagy in these processes and reveal a potential new target for Chagas disease therapy.Abbreviations: Baf: bafilomycin A1; CTE: C-terminal extension; Cz: cruzipain; IIF: indirect immunofluorescence; K777: vinyl sulfone with specific Cz inhibitory activity; Prot Inh: broad-spectrum protease inhibitor; Spa1: spautin-1; Wort: wortmannin.
Subject(s)
Autophagy/physiology , Chagas Disease/metabolism , Organelles/metabolism , Trypanosoma cruzi/growth & development , Animals , Cell Differentiation/physiology , Chagas Disease/parasitology , Chagas Disease/pathology , Cysteine Endopeptidases/isolation & purification , Endocytosis/immunology , Parasites/isolation & purification , Protozoan Proteins/isolation & purification , Trypanosoma cruzi/metabolismABSTRACT
Trypanosome histone N-terminal sequences are very divergent from the other eukaryotes, although they are still decorated by post-translational modifications (PTMs). Here, we used a highly robust workflow to analyze histone PTMs in the parasite Trypanosoma cruzi using mass spectrometry-based (MS-based) data-independent acquisition (DIA). We adapted the workflow for the analysis of the parasite's histone sequences by modifying the software EpiProfile 2.0, improving peptide and PTM quantification accuracy. This workflow could now be applied to the study of 141 T. cruzi modified histone peptides, which we used to investigate the dynamics of histone PTMs along the metacyclogenesis and the life cycle of T. cruzi. Global levels of histone acetylation and methylation fluctuates along metacyclogenesis, however most critical differences were observed between parasite life forms. More than 66 histone PTM changes were detected. Strikingly, the histone PTM pattern of metacyclic trypomastigotes is more similar to epimastigotes than to cellular trypomastigotes. Finally, we highlighted changes at the H4 N-terminus and at H3K76 discussing their impact on the trypanosome biology. Altogether, we have optimized a workflow easily applicable to the analysis of histone PTMs in T. cruzi and generated a dataset that may shed lights on the role of chromatin modifications in this parasite. SIGNIFICANCE: Trypanosomes are unicellular parasites that have divergent histone sequences, no chromosome condensation and a peculiar genome/gene regulation. Genes are transcribed from divergent polycistronic regions and post-transcriptional gene regulation play major role on the establishment of transcripts and protein levels. In this regard, the fact that their histones are decorated with multiple PTMs raises interesting questions about their role. Besides, this digenetic organism must adapt to different environments changing its metabolism accordingly. As metabolism and epigenetics are closely related, the study of histone PTMs in trypanosomes may enlighten this strikingly, and not yet fully understood, interplay. From a biomedical perspective, the comprehensive study of molecular mechanisms associated to the metacyclogenesis process is essential to create better strategies for controlling Chagas disease.
Subject(s)
Parasites , Trypanosoma cruzi , Animals , Epigenesis, Genetic , Histones/metabolism , Life Cycle Stages , Parasites/metabolism , Protein Processing, Post-Translational , Trypanosoma cruzi/metabolismABSTRACT
Trypanosoma cruzi is a pathogenic protozoan that still has an impact on public health, despite the decrease in the number of infection cases along the years. T. cruzi possesses an heteroxenic life cycle in which it differentiates in at least four forms. Among the differentiation processes, metacyclogenesis has been exploited in different views by researchers. An intriguing question that rises is how metacyclogenesis is triggered and controlled by cell signaling and which are the differentially expressed proteins and posttranslational modifications involved in this process. An important cell signaling pathway is the protein phosphorylation, and it is reinforced in T. cruzi in which the gene expression control occurs almost exclusively posttranscriptionally. Additionally, the number of protein kinases in T. cruzi is relatively high compared to other organisms. A way to approach these questions is evaluating the cells through phosphoproteomics and proteomics. In this chapter, we will describe the steps from the cell protein extraction, digestion and fractionation, phosphopeptide enrichment, to LC-MS/MS analysis as well as a brief overview on peptide identification. In addition, a published method for in vitro metacyclogenesis will be detailed.
Subject(s)
Phosphoproteins/analysis , Proteomics/methods , Protozoan Proteins/analysis , Trypanosoma cruzi/physiology , Chromatography, Liquid/methods , Gene Expression Regulation, Developmental , Life Cycle Stages/genetics , Parasitology/methods , Phosphoproteins/metabolism , Phosphorylation/physiology , Protozoan Proteins/metabolism , Tandem Mass Spectrometry/methodsABSTRACT
Trypanosome histone N-terminal sequences are very divergent from the other eukaryotes, although they are still decorated by post-translational modifications (PTMs). Here, we used a highly robust workflow to analyze histone PTMs in the parasite Trypanosoma cruzi using mass spectrometry-based (MS-based) data-independent acquisition (DIA). We adapted the workflow for the analysis of the parasite's histone sequences by modifying the software EpiProfile 2.0, improving peptide and PTM quantification accuracy. This workflow could now be applied to the study of 141 T. cruzi modified histone peptides, which we used to investigate the dynamics of histone PTMs along the metacyclogenesis and the life cycle of T. cruzi. Global levels of histone acetylation and methylation fluctuates along metacyclogenesis, however most critical differences were observed between parasite life forms. More than 66 histone PTM changes were detected. Strikingly, the histone PTM pattern of metacyclic trypomastigotes is more similar to epimastigotes than to cellular trypomastigotes. Finally, we highlighted changes at the H4 N-terminus and at H3K76 discussing their impact on the trypanosome biology. Altogether, we have optimized a workflow easily applicable to the analysis of histone PTMs in T. cruzi and generated a dataset that may shed lights on the role of chromatin modifications in this parasite.
ABSTRACT
Leishmaniases are widespread neglected diseases with an incidence of 1.6 million new cases and 40 thousand deaths per year. Leishmania parasites may show distinct, species-specific patterns of virulence that lead to different clinical manifestations. It is well known that successive in vitro passages (SIVP) lead to the attenuation of virulence, but neither the metabolism nor the pathways involved in these processes are well understood. Herein, promastigotes of a virulent L. amazonensis strain recently isolated from mice was compared to SIVP derived and attenuated promastigotes, submitted to 10, 40, and 60 axenic passages and named R10, R40, and R60, respectively. In vitro assays and in vivo tests were performed to characterize and confirmed the attenuation profiles. A metabolomic fingerprint comparison of R0, R10, and R60 was performed by means of capillary electrophoresis, liquid and gas chromatography coupled to mass spectrometry. To validate the metabolomic data, qPCR for selected loci, flow cytometry to measure aPS exposure, sensitivity to antimony tartrate and ROS production assays were conducted. The 65 identified metabolites were clustered in biochemical categories and mapped in eight metabolic pathways: ABC transporters; fatty acid biosynthesis; glycine, serine and threonine metabolism; ß-alanine metabolism; glutathione metabolism; oxidative phosphorylation; glycerophospholipid metabolism and lysine degradation. The obtained metabolomic data correlated with previous proteomic findings of the SVIP parasites and the gene expression of 13 selected targets. Late SIVP cultures were more sensitive to SbIII produced more ROS and exposed less phosphatidylserine in their surface. The correspondent pathways were connected to build a biochemical map of the most significant alterations involved with the process of attenuation of L. amazonensis. Overall, the reported data pointed out to a very dynamic and continuous metabolic reprogramming process, accompanied by changes in energetic, lipid and redox metabolisms, membrane remodeling and reshaping of parasite-host cells interactions, causing impacts in chemotaxis, host inflammatory responses and infectivity at the early stages of infection.
Subject(s)
Leishmania/metabolism , Metabolome , Metabolomics , Animals , Chromatography, High Pressure Liquid , Computational Biology , Female , Gas Chromatography-Mass Spectrometry , Interferon-gamma , Leishmania/classification , Leishmaniasis/parasitology , Metabolomics/methods , Mice , Oxidative Stress , Reactive Oxygen SpeciesABSTRACT
Phosphorylation is an important event in cell signaling that is modulated by kinases and phosphatases. In Trypanosoma cruzi, the etiological agent of Chagas disease, approximately 2% of the protein-coding genes encode for protein kinases. This parasite has a heteroxenic life cycle with four different development stages. In the midgut of invertebrate vector, epimastigotes differentiate into metacyclic trypomastigotes in a process known as metacyclogenesis. This process can be reproduced in vitro by submitting parasites to nutritional stress (NS). Aiming to contribute to the elucidation of mechanisms that trigger metacyclogenesis, we applied super-SILAC (super-stable isotope labeling by amino acids in cell culture) and LC-MS/MS to analyze different points during NS. This analysis resulted in the identification of 4205 protein groups and 3643 phosphopeptides with the location of 4846 phosphorylation sites. Several phosphosites were considered modulated along NS and are present in proteins associated with various functions, such as fatty acid synthesis and the regulation of protein expression, reinforcing the importance of phosphorylation and signaling events to the parasite. These modulated sites may be triggers of metacyclogenesis.
Subject(s)
Chagas Disease/parasitology , Life Cycle Stages/physiology , Proteome/metabolism , Proteomics/methods , Protozoan Proteins/metabolism , Trypanosoma cruzi/metabolism , Animals , PhosphorylationABSTRACT
Leishmania (Viannia) guyanensis is one species that causes cutaneous leishmaniasis in the New World. The incidence of infections with this parasite is probably underestimated and few studies exist on this species, despite its epidemiological importance. In particular, there are no studies concerning L. guyanensis metacyclogenesis and no technique for obtaining metacyclic promastigotes for this species is presently available. Here, we have studied L. guyanensis metacyclogenesis in axenic culture, describing the main changes that occur during this process, namely, in morphology and size, sensitivity to complement-mediated lysis, surface carbohydrates and infectivity to macrophages. We have shown that metacyclogenesis in L. guyanensis promastigotes is basically complete on the 4th day of culture, as determined by decreased body size, increased flagellum length, resistance to complement-mediated lysis and infectivity. We have also found that only a fraction of the parasites is agglutinated by Bauhinia purpurea lectin. The non-agglutinated parasites, which also peaked on the 4th day of culture, had all morphological traits typical of the metacyclic stage. This is the first report describing metacyclogenesis in L. guyanensis axenic promastigotes and a simple and efficient method for the purification of metacyclic forms. Furthermore, a model of human macrophage infection with L. guyanensis was established.
ABSTRACT
Autophagy is a well-conserved process of self-digestion of intracellular components. T. cruzi is a protozoan parasite with a complex life-cycle that involves insect vectors and mammalian hosts. Like other eukaryotic organisms, T. cruzi possesses an autophagic pathway that is activated during metacyclogenesis, the process that generates the infective forms of parasites. In addition, it has been demonstrated that mammalian autophagy has a role during host cell invasion by T. cruzi, and that T. cruzi can modulate this process to its own benefit. This review describes the latest findings concerning the participation of autophagy in both the T. cruzi differentiation processes and during the interaction of parasites within the host cells. Data to date suggest parasite autophagy is important for parasite survival and differentiation, which offers interesting prospects for therapeutic strategies. Additionally, the interruption of mammalian autophagy reduces the parasite infectivity, interfering with the intracellular cycle of T. cruzi inside the host. However, the impact on other stages of development, such as the intracellular replication of parasites is still not clearly understood. Further studies in this matter are necessaries to define the integral effect of autophagy on T. cruzi infection with both in vitro and in vivo approaches.
Subject(s)
Autophagy , Host-Parasite Interactions , Life Cycle Stages , Trypanosoma cruzi/growth & development , Animals , Chagas Disease/parasitology , Humans , Mice , Phagosomes/parasitologyABSTRACT
Trypanosoma cruzi, the etiologic agent of Chagas disease, cycles through different life stages characterized by defined molecular traits associated with the proliferative or differentiation state. In particular, T. cruzi epimastigotes are the replicative forms that colonize the intestine of the Triatomine insect vector before entering the stationary phase that is crucial for differentiation into metacyclic trypomastigotes, which are the infective forms of mammalian hosts. The transition from proliferative exponential phase to quiescent stationary phase represents an important step that recapitulates the early molecular events of metacyclogenesis, opening new possibilities for understanding this process. In this study, we report a quantitative shotgun proteomic analysis of the T. cruzi epimastigote in the exponential and stationary growth phases. More than 3000 proteins were detected and quantified, highlighting the regulation of proteins involved in different subcellular compartments. Ribosomal proteins were upregulated in the exponential phase, supporting the higher replication rate of this growth phase. Autophagy-related proteins were upregulated in the stationary growth phase, indicating the onset of the metacyclogenesis process. Moreover, this study reports the regulation of N-terminally acetylated proteins during growth phase transitioning, adding a new layer of regulation to this process. Taken together, this study reports a proteome-wide rewiring during T. cruzi transit from the replicative exponential phase to the stationary growth phase, which is the preparatory phase for differentiation.
ABSTRACT
BACKGROUND: Trypanosoma cruzi uses several strategies to survive in different hosts. A key step in the life-cycle of this parasite is metacyclogenesis, which involves various morphological, biochemical, and genetic changes that induce the differentiation of non-pathogenic epimastigotes into pathogenic metacyclic trypomastigotes. During metacyclogenesis, T. cruzi displays distinct morphologies and ultrastructural features, which have not been fully characterized. RESULTS: We performed a temporal description of metacyclogenesis using different microscopy techniques that resulted in the identification of three intermediate forms of T. cruzi: intermediates I, II and III. Such classification was based on morphological and ultrastructural aspects as the location of the kinetoplast in relation to the nucleus, kinetoplast shape and kDNA topology. Furthermore, we suggested that metacyclic trypomastigotes derived from intermediate forms that had already detached from the substrate. We also found that changes in the kinetoplast morphology and kDNA arrangement occurred only after the repositioning of this structure toward the posterior region of the cell body. These changes occurred during the later stages of differentiation. In contrast, changes in the nucleus shape began as soon as metacyclogenesis was initiated, while changes in nuclear ultrastructure, such as the loss of the nucleolus, were only observed during later stages of differentiation. Finally, we found that kDNA networks of distinct T. cruzi forms present different patterns of DNA topology. CONCLUSIONS: Our study of T. cruzi metacyclogenesis revealed important aspects of the morphology and ultrastructure of this intriguing cell differentiation process. This research expands our understanding of this parasite's fascinating life-cycle. It also highlights the study of T. cruzi as an important and exciting model system for investigating diverse aspects of cellular, molecular, and evolutionary biology.
Subject(s)
Cell Differentiation , Organelles/ultrastructure , Trypanosoma cruzi/cytology , Trypanosoma cruzi/physiology , MicroscopyABSTRACT
In the protozoan parasite Trypanosoma cruzi - the causative agent of Chagas disease - gene expression control is mainly post-transcriptional, where RNA-binding proteins (RBPs) play a central role, by controlling mRNA stability, distribution and translation. A large variety of RBPs are encoded in the T. cruzi genome, including the CCCH-type zinc finger (CCCH ZnF) protein family, which is characterized by the presence of the C-X7/8-C-X5-C-X3-H (CCCH) motif. In the related parasite T. brucei, CCCH ZnF proteins have been shown to control key differentiation steps in the parasite's life cycle. However, little is known about the CCCH ZnF proteins in T. cruzi. We have worked on the generation of T. cruzi mutants for CCCH ZnF proteins in an effort to shed light on the functions of these proteins in this parasite. Here, we characterize the expression and function of the CCCH ZnF protein TcZC3H31 of T. cruzi. TcZC3H31 is almost exclusively expressed in epimastigotes and metacyclic trypomastigotes, the parasite forms found in the invertebrate host. Importantly, we show that the epimastigote form of the T. cruzi knockout for the TcZC3H31 gene (TcZC3H31 KO) is incapable, both in vitro and in vivo (in infected triatomine insects), to differentiate into the metacyclic trypomastigote form, which is responsible for infection transmission from vectors to humans. The epimastigote forms recovered from the excreta of insects infected with TcZC3H31 KO parasites do not have the typical epimastigote morphology, suggesting that parasites are arrested in a mid-differentiation step. Also, epimastigotes overexpressing TcZC3H31 differentiate into metacyclics more efficiently than wild-type epimastigotes, in vitro. These data suggest that TcZC3H31 is an essential positive regulator of T. cruzi differentiation into the human-infective metacyclic form.
Subject(s)
Protozoan Proteins/metabolism , RNA-Binding Proteins/metabolism , Trypanosoma cruzi/cytology , Trypanosoma cruzi/growth & development , Zinc Fingers , Animals , Gene Expression Profiling , Gene Knockout Techniques , Insecta , Protozoan Proteins/genetics , RNA-Binding Proteins/genetics , Trypanosoma cruzi/geneticsABSTRACT
The protozoan Trypanosoma cruzi is a parasite exposed to several environmental stressors inside its invertebrate and vertebrate hosts. Although stress conditions are involved in its differentiation processes, little information is available about the stress response proteins engaged in these activities. This work reports the first known association of the stress-inducible protein 1 (STI1) with the cellular differentiation process in a unicellular eukaryote. Albeit STI1 expression is constitutive in epimastigotes and metacyclic trypomastigotes, higher protein levels were observed in late growth phase epimastigotes subjected to nutritional stress. Analysis by indirect immunofluorescence revealed that T. cruzi STI1 (TcSTI1) is located throughout the cell cytoplasm, with some cytoplasmic granules appearing in greater numbers in late growing epimastigotes and late growing epimastigotes subjected to nutritional stress. We observed that part of the fluorescence signal from both TcSTI1 and TcHSP70 colocalized around the nucleus. Gene silencing of sti1 in Trypanosoma brucei did not affect cell growth. Similarly, the growth of T. cruzi mutant parasites with a single allele sti1 gene knockout was not affected. However, the differentiation of epimastigotes in metacyclic trypomastigotes (metacyclogenesis) was compromised. Lower production rates and numbers of metacyclic trypomastigotes were obtained from the mutant parasites compared with the wild-type parasites. These data indicate that reduced levels of TcSTI1 decrease the rate of in vitro metacyclogenesis, suggesting that this protein may participate in the differentiation process of T. cruzi.