Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Materials (Basel) ; 16(10)2023 May 12.
Article in English | MEDLINE | ID: mdl-37241329

ABSTRACT

In this work, we apply the Particle Finite Element Method (PFEM) and Smoothed Particle Hydrodynamics (SPH) to simulate the orthogonal cutting chip formation of two workpiece materials, i.e., AISI 1045 steel and Ti6Al4V titanium alloy. A modified Johnson-Cook constitutive model is used to model the plastic behavior of the two workpiece materials. No damage or strain softening is included in the model. The friction between the workpiece and the tool is modeled following Coulomb's law with a temperature-dependent coefficient. The accuracy of PFEM and SPH in predicting thermomechanical loads at various cutting speeds and depths against the experimental data are compared. The results show that both numerical methods can predict the rake face temperature of AISI 1045 with errors less than 34%. For Ti6Al4V, however, the temperature prediction errors are significantly higher than those of the steel alloy. Errors in force prediction were in the range of 10% to 76% for both methods, which compare very well with those reported in the literature. This investigation infers that the Ti6Al4V behavior under machining conditions is difficult to model on the cutting scale irrespective of the choice of numerical method.

2.
Materials (Basel) ; 13(8)2020 Apr 24.
Article in English | MEDLINE | ID: mdl-32344739

ABSTRACT

Machining of metals is an essential operation in the manufacturing industry. Chip formation in metal cutting is associated with large plastic strains, large deformations, high strain rates and high temperatures, mainly located in the primary and in the secondary shear zones. During the last decades, there has been significant progress in numerical methods and constitutive modeling for machining operations. In this work, the Particle Finite Element Method (PFEM) together with a dislocation density (DD) constitutive model are introduced to simulate the machining of Ti-6Al-4V. The work includes a study of two constitutive models for the titanium material, the physically based plasticity DD model and the phenomenology based Johnson-Cook model. Both constitutive models were implemented into an in-house PFEM software and setup to simulate deformation behaviour of titanium Ti6Al4V during an orthogonal cutting process. Validation show that numerical and experimental results are in agreement for different cutting speeds and feeds. The dislocation density model, although it needs more thorough calibration, shows an excellent match with the results. This paper shows that the combination of PFEM together with a dislocation density constitutive model is an excellent candidate for future numerical simulations of mechanical cutting.

SELECTION OF CITATIONS
SEARCH DETAIL