Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.376
Filter
1.
Expert Opin Drug Deliv ; : 1-19, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38961522

ABSTRACT

INTRODUCTION: Dry powder inhaler (DPI) formulations are gaining attention as universal formulations with applications in a diverse range of drug formulations. The practical application of DPIs to pulmonary drugs requires enhancing their delivery efficiency to the target sites for various treatment modalities. Previous reviews have not explored the relation between particle morphology and delivery to different pulmonary regions. This review introduces new approaches to improve targeted DPI delivery using novel particle design such as supraparticles and metal-organic frameworks based on cyclodextrin. AREAS COVERED: This review focuses on the design of DPI formulations using polysaccharides, promising excipients not yet approved by regulatory agencies. These excipients can be used to design various particle morphologies by controlling their physicochemical properties and manufacturing methods. EXPERT OPINION: Challenges associated with DPI formulations include poor access to the lungs and low delivery efficiency to target sites in the lung. The restricted applicability of typical excipients contributes to their limited use. However, new formulations based on polysaccharides are expected to establish a technological foundation for the development of DPIs capable of delivering modalities specific to different lung target sites, thereby enhancing drug delivery.

2.
Adv Mater ; : e2313608, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38970535

ABSTRACT

Metal-organic frameworks (MOFs), characterized by tunable porosity, high surface area, and diverse chemical compositions, offer unique prospects for applications in optoelectronic devices. However, the prevailing research on thin-film devices utilizing MOFs has predominantly focused on aspects such as information storage and photosensitivity, often neglecting the integration of the advantages inherent in both photonics and electronics to enhance optical memory. This work demonstrates a light-mediated resistive memory device based on a highly oriented porphyrin-based MOFs film, in which the resistance state of the memristor is modulated by light, realizing the integration of the perception and storage of optical information. The memristor shows excellent performance with a wide light range of 405-785 nm and a persistent photoconductivity phenomenon up to 8.3 × 103 s. Further mechanistic studies have revealed that the resistive switching effect in the memristor is primarily associated with the reversible formation and annihilation of Ag conductive filaments.

3.
Mikrochim Acta ; 191(8): 449, 2024 07 05.
Article in English | MEDLINE | ID: mdl-38967877

ABSTRACT

A family of inorganic-organic hybrid crystalline materials made up of organic ligands and metal cations or clusters is known as metal-organic frameworks (MOFs). Because of their unique stability, intriguing characteristics, and structural diversity, zirconium-based MOFs (Zr-MOFs) are regarded as one of the most interesting families of MOF materials for real-world applications. Zr-MOFs that have the ligands, metal nodes, and guest molecules enclosed show distinct electrochemical reactions. They can successfully and sensitively identify a wide range of substances, which is important for both environmental preservation and human health. The rational design and synthesis of Zr-MOF electrochemical sensors and biosensors, as well as their applications in the detection of drugs, biomarkers, pesticides, food additives, hydrogen peroxide, and other materials, are the main topics of this comprehensive review. We also touch on the current issues and potential future paths for Zr-MOF electrochemical sensor research.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Metal-Organic Frameworks , Zirconium , Zirconium/chemistry , Biosensing Techniques/methods , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Metal-Organic Frameworks/chemistry , Humans
4.
J Colloid Interface Sci ; 675: 94-103, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38968640

ABSTRACT

To enhance the economic viability of photocatalytic materials for carbon capture and conversion, the challenge of employing expensive photosensitizer must be overcome. This study aims to improve the visible light utilization with zirconium-based metal-organic frameworks (Zr-MOFs) by employing a multi-component post-synthetic modification (PSM) strategy. An economical photosensitiser and copper ions are introduced into MOF 808 to enhance its photoreduction properties. Notably, the PSM of MOF 808 shows the highest CO yield up to 236.5 µmol g-1 h-1 with aHCOOH production of 993.6 µmol g-1 h-1 under non-noble metal, and its mechanistic insight for CO2 reaction is discussed in detail. The research results have important reference value for the potential application of photocatalytic metal-organic frameworks.

5.
Anal Chim Acta ; 1316: 342841, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-38969405

ABSTRACT

BACKGROUND: There is a need to develop low-cost, reliable and portable devices to enhance the efficiency of microextraction techniques in complex samples. Metal-organic frameworks (MOFs) have proven to be promising sorbents due to their well-documented properties. However, their green preparation and combination with paper-based substrates have not been satisfactorily explored to fabricate sustainable sorptive phases. RESULTS: In this work, the hybridization of a paper substrate (as a sustainable support) with MOFs (as a sorptive phase) was carried out by one-pot approach. Concretely, the selected MOF, MIL-53(Al), was in-situ growth onto the paper surface in aqueous solution without the need for high temperature or pressure, thereby aligning with the Green Analytical Chemistry principles. The optimized composite (MIL-53(Al)@cellulose paper) was characterized and evaluated as extraction sorbent for five neonicotinoids (NEOs) (thiamethoxam, clothianidin, imidacloprid, acetamiprid, and thiacloprid). Furthermore, its feasibility was demonstrated by isolating these pollutants from environmental water samples, followed their determination by HPLC coupled to diode array detection. The whole method showed satisfactory analytical performance with recoveries between 86 and 114 %, suitable precision (with RSD lower than 14 %), and limits of detection ranged from 1.0 to 1.6 µg L-1. Besides, the greenness of the method was assessed by application of different existing metrics. The developed extraction device was affordable (<0.08 €/device) and mechanical and chemically stable, being possible its reuse more than 11 cycles, thus demonstrating its suitability for rapid screening of pesticides in environmental samples. SIGNIFICANCE: This report presents, for the first time, the green synthesis of MIL-53(Al)cellulose paper composite and its application as a sorptive phase for the extraction of NEOs from environmental water samples. We believe that the proposed strategy for fabricating these sustainable paper-based sorptive phases paves the way for further hybridizations with other MOFs or materials. Additionally, it opens up large possibilities for their application in extraction of pollutants or other hazardous compounds in aquatic environments.

6.
Anal Chim Acta ; 1316: 342800, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-38969435

ABSTRACT

Heavy metal pollution in the environment has become a significant global concern due to its detrimental effects on human health and the environment. In this study, we report an electrochemical aptasensor for the simultaneous detection of Hg2+ and Pb2+. Gold nanoflower/polyethyleneimine-reduced graphene oxide (AuNFs/PEI-rGO) was introduced on the surface of a gold electrode to improve sensing performance. The aptasensor is based on the formation of a T-Hg2+-T mismatch structure and specific cleavage of the Pb2+-dependent DNAzyme, resulting in a dual signal generated by the Exo III specific digestion of methylene blue (MB) labeled at the 3' end of probe DNA-1 and the reduction of the substrate ascorbic acid (AA) catalyzed by the signal label. The decrease of MB signal and the increase of AA oxidation peak was used to indicate the content of Hg2+ and Pb2+, respectively, with detection limits of 0.11 pM (Hg2+) and 0.093 pM (Pb2+). The aptasensor was also used for detecting Hg2+ and Pb2+ in water samples with good recoveries. Overall, this electrochemical aptasensor shows promising potential for sensitive and selective detection of heavy metals in environmental samples.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Electrochemical Techniques , Exodeoxyribonucleases , Lead , Mercury , Metal-Organic Frameworks , Water Pollutants, Chemical , Mercury/analysis , Lead/analysis , Lead/chemistry , Metal-Organic Frameworks/chemistry , Aptamers, Nucleotide/chemistry , Exodeoxyribonucleases/chemistry , Exodeoxyribonucleases/metabolism , Water Pollutants, Chemical/analysis , Biosensing Techniques/methods , Graphite/chemistry , Gold/chemistry , Limit of Detection , Electrodes , DNA, Catalytic/chemistry
7.
Angew Chem Int Ed Engl ; : e202405681, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38985847

ABSTRACT

Photocatalytic hydrogen production offers an alternative pathway to establish a sustainable energy economy. While numerous photoactive materials exhibit potential for generating hydrogen from water, the synergy achieved by combining two different materials with complementary properties in the form of heterojunctions can significantly their photocatalytic activity. Our study describes the design and generation of the metal-organic framework-derived (MOF) metal oxide heterojunction composed of RuO2/N,S-TiO2. The RuO2/N,S-TiO2 is generated through the pyrolysis of MOFs, Ru- HKUST-1, and the amino-functionalized MIL-125-NH2. Among the various RuO2/N,S- TiO2 materials tested, the material characterized by the lowest RuO2 content, exhibited the highest hydrogen evolution rate, producing 10,761 µmol·hr-1·g-1 of hydrogen with an apparent quantum-yield of 10.0% in pure water. In addition to RuO2/N,S-TiO2, we generated two other MOF-derived metal-oxide heterojunctions, ZnO/N,S-TiO2 and In2O3/N,S-TiO2, leading to apparent quantum yields of 0.7% and 0.3%, respectively. The remarkable photocatalytic activity observed in RuO2/N,S-TiO2 is thought to be attributed to the synergistic effects arising from the combination of metallic properties inherent in the metal oxides, their band alignment, porosity, and surface properties inherited from the parent MOFs. The photocatalytic efficiency of RuO2/N,S-TiO2 was further demonstrated in actual water samples, producing hydrogen with a rate of 8,190 µmol·hr-1·g-1 in tap water.

8.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124791, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38986257

ABSTRACT

On-site, robust, and quantitative detection of diclofenac (DCF) is highly significant in bioanalysis and quality control. Fluorescence-based metal-organic frameworks (MOFs) play a pivotal role in biochemical sensing, offering a versatile platform for detecting various biomolecules. However, conventional fluorescent MOF sensors often rely on lanthanide metals, which can pose challenges in terms of cost, accessibility, and environmental impact. Herein, an intrinsic blue fluorescent zinc-based metal-organic framework (FMOF-5) was prepared free from lanthanide metals. Coordination-induced emission as an effective strategy was followed wherein a non-fluorescent ligand is converted to a fluorescent one after insertion in a framework. Conventional fluorometry and smartphone-assisted visual methods were employed for the detection of DCF. The fluorescence emission of the FMOF-5 was effectively quenched upon the addition of the DCF, endowing it an "off" condition, which permits the construction of a calibration curve with a wide linear range of 30-670 µM and a detection limit of about 4.1 µM. Other analytical figures of merit, such as linearity, sensitivity, selectivity, accuracy, and precision were studied and calculated. Furthermore, the proposed sensor was successfully applied to quantify DCF in pharmaceutical tablets with reliable recovery and precision. Importantly, the elimination of lanthanide metals from the fluorescence detection system enhances its practicality and sustainability, making it a promising alternative for DCF detection in pharmaceutical analysis applications.

9.
Angew Chem Int Ed Engl ; : e202410509, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38946458

ABSTRACT

Heavy metal ions and antibiotic contamination have become a major environmental concern worldwide. The development of efficient recognition strategies of these pollutants at ultra-low concentrations in aqueous solutions as well as the elucidation of the intrinsic sensing mechanism are challenging tasks. In this work, unique luminescent Ln-MOF materials (NIIC-3-Ln) were assembled by rational ligand design. Among them, NIIC-3-Tb demonstrated highly selective luminescence quenching response toward Hg2+ and sulfadiazine (SDI) at subnanomolar concentrations in less than 7 s. In addition, a Hg2+ sensing mechanism through chelation was proposed on the basis of single-crystal X-ray diffraction analysis and Hg2+ adsorption study. The interaction mechanism of NIIC-3-Tb with SDI was revealed using a newly developed approach involving a (TD-)DFT based quantification of the charge transfer of a MOF-analyte supramolecular complex model in the ground and excited states. Effect of ultrasonic treatment on the surface morphology important for MOF sensing performance was revealed by gas adsorption experiments. The presented results indicate that NIIC-3-Ln is not only an advanced sensing material for the efficient detection of Hg2+ and SDI at ultra-low concentrations, but also opens up a new approach to study the sensing mechanism at the molecular level at ultra-low concentrations.

10.
Amyloid ; : 1-7, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38946492

ABSTRACT

BACKGROUND: Genotyping and amyloid fibril detection in tissues are generally considered the diagnostic gold standard in transthyretin-related amyloidosis. Patients carry less stable TTR homotetramers prone to dissociation into non-native monomers, which rapidly self-assemble into oligomers and, ultimately, amyloid fibrils. Thus, the initial event of the amyloid cascade produces the smallest transthyretin species: the monomers. This creates engineering opportunities for diagnosis that remain unexplored. METHODS: We hypothesise that molecular sieving represents a promising method for isolating and concentrating trace TTR monomers from the tetramers present in plasma samples. Subsequently, immunodetection can be utilised to distinguish monomeric TTR from other low molecular weight proteins within the adsorbed fraction. A two-step assay was devised (ImmunoSieve assay), combining molecular sieving and immunodetection for sensing monomeric transthyretin. This assay was employed to analyse plasma microsamples from 10 individuals, including 5 pre-symptomatic carriers of TTR-V30M, the most prevalent amyloidosis-associated TTR variant worldwide, and 5 healthy controls. RESULTS: The ImmunoSieve assay enable sensitive detection of monomeric transthyretin in plasma microsamples. Moreover, the circulating monomeric TTR levels were significantly higher in carriers of amyloidogenic TTR mutation. CONCLUSIONS: Monomeric TTR can function as a biomarker for evaluating disease progression and assessing responses to therapies targeted at stabilising native TTR.

11.
Chemistry ; : e202401903, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949096

ABSTRACT

1D nanomaterials have attracted great attention due to their outstanding anisotropic and linear structures. A facile method is developed to fabricate 1D copper metal-organic framework nanowires (Cu-MOF-NW) through steam-assisted conversion from Cu-MOF precursors. During the steam-assisted conversion, Cu-MOF precursor gradually dissolves in methanol steam, and then recrystallized into Cu-MOF-NW, which shows high aspect ratio of about 600 and identical crystal structure of MOF-74. As-prepared Cu-MOF-NW with multiscale porous structure can effectively remove cationic dyes even in dye mixture. Moreover, Cu-MOF-NW, as an ideal template, is calcined to form Cu nanoparticle-doped carbon nanofiber with maintaining its 1D morphology, which shows excellent electrocatalytic activity for the non-enzymatic sensing of glucose.

12.
J Nanobiotechnology ; 22(1): 387, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951841

ABSTRACT

Metal-organic frameworks (MOFs) are metal-organic skeleton compounds composed of self-assembled metal ions or clusters and organic ligands. MOF materials often have porous structures, high specific surface areas, uniform and adjustable pores, high surface activity and easy modification and have a wide range of prospects for application. MOFs have been widely used. In recent years, with the continuous expansion of MOF materials, they have also achieved remarkable results in the field of antimicrobial agents. In this review, the structural composition and synthetic modification of MOF materials are introduced in detail, and the antimicrobial mechanisms and applications of these materials in the healing of infected wounds are described. Moreover, the opportunities and challenges encountered in the development of MOF materials are presented, and we expect that additional MOF materials with high biosafety and efficient antimicrobial capacity will be developed in the future.


Subject(s)
Metal-Organic Frameworks , Wound Healing , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Wound Healing/drug effects , Humans , Animals , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Porosity , Wound Infection/drug therapy
13.
Environ Technol ; : 1-13, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39002157

ABSTRACT

ABSTRACTMetal-organic frameworks (MOFs) with photocatalytic activity have garnered significant attentions in environmental remediation. Herein, copper-doped zeolitic imidazolate framework-7 (Cu-doped ZIF-7) was synthesized rapidly and easily using a microwave-assisted technique. Various analytical and spectroscopic methods were employed to access the framework, morphology, light absorption, photo-electrochemical and photocatalytic performance of the synthesized materials. Compared to ZIF-7, Cu/ZIF-7 (molar ratio of Cu2+ to Zn2+ is 1:1) demonstrates superior visible light absorption ability, narrower band gap, enhanced charge separation capability, and reduced electron-hole recombination performance. Under visible light irradiation, Cu/ZIF-7 serves as a Fenton-like catalyst and demonstrates exceptional activity for contaminant degradation, while virgin ZIF-7 remains inactive. With the addition of 9.8 mmol H2O2 and exposure to visible light for 30 min, 10 mg of Cu/ZIF-7 can completely decompose RhB solution (10 mg/L, 50 mL). The synergistic effect of the Cu/ZIF-7/H2O2/visible light system is attributed to visible light photocatalysis and Fenton-like reactions. Cu/ZIF-7 demonstrates excellent catalytic performance stability, with only a slight decrease in degradation efficiency from an initial 97.0% to 95.4% over four cycles. Additionally, spin-trapping ESR measurements and active species trapping experiments revealed that h+ and ·OH occupied a significant position for Rhodamine B (RhB) degradation. Degradation intermediate products of Rhodamine B have been identified using UPLC-MS, and the degradation pathways have been proposed and discussed. This work offers a facile and efficient technique for developing MOF-based visible light photocatalysts for water purification.

14.
Angew Chem Int Ed Engl ; : e202411086, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987894

ABSTRACT

Persistent challenges in hydroformylation of olefins include controlling regioselectivity, particularly for short aliphatic olefins and conducting reactions under ambient conditions.  We report here the synthesis of monophosphine-Rh complexes on a typical chelated diphosphine ligand mediated by a Zr-MOF through isolating a pair of phosphorus atoms. We demonstrate that single-crystal X-ray diffraction can elucidate the structural transformation of the Rh catalyst during olefin hydroformylation, providing valuable information on active site reconstruction during catalysis. The Rh-MOF catalyst demonstrates excellent catalytic and recyclable performance in the hydroformylation of short aliphatic olefins with linear to branched ratios of up to 99:1. Due to the framework's capacity to adsorb and concentrate gases, the catalytic reactions occur under room temperature and pressure, eliminating the need for the high temperature and pressures typically required in homogeneous systems. This study show that Zr-MOF can be a unique platform for synthesizing unusual catalytic species that cannot exist in solutions for meaningful chemical transformations and elucidate valuable structural information pertaining to metal-based catalysis.

15.
Mater Today Bio ; 27: 101132, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38994471

ABSTRACT

Pancreatic cancer is an aggressive and challenging malignancy with limited treatment options, largely attributed to the dense tumor stroma and intrinsic drug resistance. Here, we introduce a novel iron-containing nanoparticle formulation termed PTFE, loaded with the ferroptosis inducer Erastin, to overcome these obstacles and enhance pancreatic cancer therapy. The PTFE nanoparticles were prepared through a one-step assembly process, consisting of an Erastin-loaded PLGA core stabilized by a MOF shell formed by coordination between Fe3+ and tannic acid. PTFE demonstrated a unique capability to repolarize tumor-associated macrophages (TAMs) into the M1 phenotype, leading to the regulation of dense tumor stroma by modulating the activation of tumor-associated fibroblasts (TAFs) and reducing collagen deposition. This resulted in enhanced nanoparticle accumulation and deep penetration, as confirmed by in vitro multicellular tumor spheroids and in vivo mesenchymal-rich subcutaneous pancreatic tumor models. Moreover, PTFE effectively combated tumor resistance by synergistically employing the Fe3+-induced Fenton reaction and Erastin-induced ferroptosis, thereby disrupting the redox balance. As a result, significant tumor growth inhibition was achieved in mice-bearing tumor model. Comprehensive safety evaluations demonstrated PTFE's favorable biocompatibility, highlighting its potential as a promising therapeutic platform to effectively address the formidable challenges in pancreatic cancer treatment.

16.
Biosens Bioelectron ; 262: 116541, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38959719

ABSTRACT

Human epididymis protein 4 (HE4), a diagnostic biomarker of ovarian cancer, is crucial for monitoring the early stage of the disease. Hence, it is highly important to develop simple, inexpensive, and user-friendly biosensors for sensitive and quantitative HE4 assays. Herein, a new sandwich-type electrochemical immunosensor based on Prussian blue (PB) as a signal indicator and functionalized metal-organic framework nanocompositesas efficient signal amplifiers was fabricated for quantitative analysis of HE4. In principle, ketjen black (KB) and AuNPs modified on TiMOF (TiMOF-KB@AuNPs) could accelerate electron transfer on the electrode surface and act as a matrix for the immobilization of antibodies via cross-linking to improve the determination sensitivity. The PB that covalently binds to labeled antibodies endows the biosensors with intense electrochemical signals. Furthermore, the concentration of HE4 could be indirectly detected by monitoring the electroactivity of PB. Benefiting from the high signal amplification ability of the PB and MOF nanocomposites, this strategy displayed a wide linear range (0.1-80 ng mL-1) and a lower detection limit (0.02 ng mL-1). Hence, this study demonstrated great promise for application in clinical ovarian cancer diagnosis and treatment, and provided a new platform for detecting other cancer biomarkers.

17.
Food Chem ; 458: 140296, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38959806

ABSTRACT

An effective electrochemical sensor was developed to detect and determine of the As(III) by modifying the carbon paste electrode (CPE) with graphitic carbon nitride decorated with iron-based metal-organic frameworks (Fe-MOF/g-C3N5). The differential pulse anodic stripping voltammetry (DPASV) method was used to analyze As(III) ions in a phosphate buffer solution (0.10 M, pH = 5). Fe-MOF/g-C3N5/CPE showed high sensitivity (4.24 µA µg-1 L), satisfactory linear range (0.50 µg L-1-5.00 µg L-1 and 5.00 µg L-1-30.00 µg L-1), and low detection limit (LOD, 0.013 µg L-1). The prepared sensor was showed an excellent repeatability and selectivity, and successfully used for determination of the As(III) ion in ambient waters and apple juice samples.

18.
Adv Mater ; : e2401559, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958107

ABSTRACT

Label-free proteomics is widely used to identify disease mechanism and potential therapeutic targets. However, deep proteomics with ultratrace clinical specimen remains a major technical challenge due to extensive contact loss during complex sample pretreatment. Here, a hybrid of four boronic acid-rich lanthanide metal-organic frameworks (MOFs) with high protein affinity is introduced to capture proteins in ultratrace samples jointly by nitrogen-boronate complexation, cation-π and ionic interactions. A MOFs Aided Sample Preparation (MASP) workflow that shrinks sample volume and integrates lysis, protein capture, protein digestion and peptide collection steps into a single PCR tube to minimize sample loss caused by non-specific absorption, is proposed further. MASP is validated to quantify ≈1800 proteins in 10 HEK-293T cells. MASP is applied to profile cerebrospinal fluid (CSF) proteome from cerebral stroke and brain damaged patients, and identified ≈3700 proteins in 1 µL CSF. MASP is further demonstrated to detect ≈9600 proteins in as few as 50 µg mouse brain tissues. MASP thus enables deep, scalable, and reproducible proteome on precious clinical samples with low abundant proteins.

19.
Chemosphere ; 362: 142729, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38971438

ABSTRACT

17 global Sustainable Development Goals (SDGs) were established through the adoption of the 2030 Agenda for Sustainable Development by all United Nations members. Clean water and sanitation (SDG 6) and industry, innovation, and infrastructure (SDG 9) are the SDGs focus of this work. Of late, various new companies delivering metal-organic frameworks (MOFs) have blossomed and moved the field of adsorption utilizing MOFs to another stage. Inside this unique circumstance, this article aims to catch recent advancements in the field of MOFs and the utilizations of MOFs relate to the expulsion of arising contaminations that present huge difficulties to water quality because of their steadiness and possible damage to environments and human wellbeing. Customary water treatment techniques regularly neglect to eliminate these poisons, requiring the advancement of novel methodologies. This study overviews engineering techniques for controlling MOF characteristics for better flexibility, stability, and surface area. A current report on MOFs gathered new perspectives that are amicably discussed in emergent technologies and extreme applications towards environmental sectors. Various applications in many fields that exploit MOFs are being fostered, including gas storage, fluid separation, adsorbents, catalysis, medication delivery, and sensor utilizations. The surface area of a wide range of MOFs ranges from 103 to 104 m2/g, which exceeds the standard permeability of several material designs. MOFs with extremely durable porosity are more significant in their assortment and variety than other classes of porous materials. The work outlines the difficulties encountered in the synthesis steps and suggests ways to make use of MOFs' value in a variety of contexts. This caters to creating multivariate systems enclosed with numerous functionalities, leading to the synthesis of MOFs that offer a synergistic blend of in-built properties and exclusive applications. Additionally, the MOF-related future development opportunities and challenges are discussed.

20.
J Colloid Interface Sci ; 676: 52-60, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39018810

ABSTRACT

The seawater electrolysis technology powered by renewable energy is recognized as the promising "green hydrogen" production method to solve serious energy and environmental problems. The lack of low-cost and ampere-level current OER (oxygen evolution reaction) and HER (hydrogen evolution reaction) catalysis limits their industrial application. In this work, a unique tri-metal (Co/Fe/Ni) layered double hydroxide hollow array anode catalyst (CFN-LDH/NF) and the CoP/FeNi2P heterojunction hollow array cathode are successfully prepared via one in-situ growth of Co-MOF on nickel foam (Co-MOF/NF) precursor, which exhibits excellent catalytic performance. The η1000 values of 352 and 392 mV are achieved for CFN-LDH/NF (OER catalyst) in 1.0 M KOH and alkaline seawater solution, respectively. The CFNP/NF with a low overpotential of 281 mV is required to reach 1000 mA cm-2 current density for HER in 1.0 M KOH solution, while the η1000 in alkaline seawater solution is 312 mV. The CFN-LDH/NF||CFNP/NF electrolyzer exhibits excellent long-term durability over 100 h, achieving current density of 500 mA cm-2 at 1.825 V in 1.0 M KOH solution. The construction of hollow tri-metal LDH and phosphides heterostructures may open a new and relatively unexplored path for fabricating high performance seawater splitting catalysis.

SELECTION OF CITATIONS
SEARCH DETAIL
...