Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.539
Filter
1.
Talanta ; 278: 126518, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-39018759

ABSTRACT

Endocannabinoids (ECs), such as anandamide and 2-arachidonyl glycerol (2-AG), contribute to the pathology of inflammatory, malignant, cardiovascular, metabolic and mental diseases. The reliability of quantitative analyses in biological fluids of ECs and endocannabinoid-like (EC-like) substances depends on pre-analytical conditions such as temperature and "time-to-centrifugation". Standardization of these parameters is critical for valid quantification and implementation in clinical research. In this study, we compared concentrations obtained with GlucoEXACT blood collection tubes versus K3EDTA tubes and employed the optimized procedure to assess ECs profiles in patients with inflammatory skin disease and healthy controls. A UHPLC-MS/MS method was validated for human plasma from GlucoEXACT blood collection tubes according to EMA and FDA guidelines, and pre-analytical conditions were systematically modified to assess analyte stability and optimize the procedures. The results showed significantly lower concentrations of ECs and EC-like substance concentrations with GlucoEXACT tubes compared with K3EDTA tubes, and GlucoEXACT extended the time window of stable concentrations. The strongest method-disagreement occurred for 1/2-AG suggesting that GlucoEXACT delayed ex vivo isomer rearrangement. Hence, GlucoExact tubes were superior in terms of stability and reliability. However, although absolute concentrations obtained with GlucoExact and K3EDTA differed, linear regression studies showed high agreement (except for 1/2-AG), and both methods showed similar EC profiles and similar disease-dependent pro-inflammatory patterns in dermatology patients. Hence, despite the obstacles in EC analyses, implementation of optimized pre-analytical blood collection and sample processing procedures provide reliable insight into peripheral ECs.

2.
Appl Radiat Isot ; 212: 111444, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39003997

ABSTRACT

A novel HPLC method was developed and validated to determine radiochemical identity, radiochemical purity and chemical purity for the analysis of O-(2-[18F]fluoroethyl-l-tyrosine ([18F]FET). In this method, an analytical Phenomenex Gemini C18 column was used with an isocratic eluent of 7 % ethanol and 93 % 50 mM potassium phosphate buffer (pH = 6.9). The flow rate was 1.0 mL/min and the injection volume was 10 µL. A photo-diode array detector set at 220 nm was used for UV mass detection and a single channel, high sensitivity radiation detector was used. The method validation assays including specificity, linearity, precision, accuracy, and robustness were evaluated. Results show that the method was suitable for qualitative and quantitative determination of radiochemical and chemical purity of [18F]FET. This system has been routinely used for the analysis of more than 120 batches of [18F]FET with radiochemical yield 23.7 ± 6 % (no decay corrected) and molar activity 593 ± 284 GBq/µmole in our facility to support human use.

3.
Clin Chem Lab Med ; 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39026453

ABSTRACT

In this computer simulation study, we examine four different statistical approaches of linearity assessment, including two variants of deviation from linearity (individual (IDL) and averaged (AD)), along with detection capabilities of residuals of linear regression (individual and averaged). From the results of the simulation, the following broad suggestions are provided to laboratory practitioners when performing linearity assessment. A high imprecision can challenge linearity investigations by producing a high false positive rate or low power of detection. Therefore, the imprecision of the measurement procedure should be considered when interpreting linearity assessment results. In the presence of high imprecision, the results of linearity assessment should be interpreted with caution. Different linearity assessment approaches examined in this study performed well under different analytical scenarios. For optimal outcomes, a considered and tailored study design should be implemented. With the exception of specific scenarios, both ADL and IDL methods were suboptimal for the assessment of linearity compared. When imprecision is low (3 %), averaged residual of linear regression with triplicate measurements and a non-linearity acceptance limit of 5 % produces <5 % false positive rates and a high power for detection of non-linearity of >70 % across different types and degrees of non-linearity. Detection of departures from linearity are difficult to identify in practice and enhanced methods of detection need development.

4.
Food Chem X ; 23: 101585, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-39027684

ABSTRACT

Moringa oleifera leaves (MOL) are native to India and have high biological activities. To better understand the basic pharmacodynamic materials, the chemical components in MOL and their pharmacokinetic properties were studied and quantitated using UPLC-Q-Exactive Orbitrap-MS. Forty-two compounds were identified, including phenolic acids and their derivatives, flavonoids, isothiocyanates, nucleosides, alkaloids, and other compounds. Two phenolic acids and six flavonoids were studied for their pharmacokinetic properties using UHPLC-MS/MS. Precision, accuracy, stability, matrix effects, and extraction recovery were verified. All substances that were measured reached their maximum within 0.5 h. Vicenin-2 had a high peak concentration and bioavailability. Kaempferol-3-O-rutinoside had a longer biological half-life than other components. The results from this study provide the data basis for subsequent comprehensive qualitative evaluation and potential MOL use in clinical applications.

5.
J Sci Food Agric ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-39031650

ABSTRACT

BACKGROUND: Green tomato extracts, an agro-food industry waste, are rich in the glycoalkaloid tomatine, which presents activity against several diseases. High-performance liquid chromatography (HPLC) with ultraviolet (UV) detection is one of the most used techniques for quantification of bioactive compounds. The aim of this study was to optimize and validate a selective HPLC method with diode array detector (DAD) for the quantitative analysis of tomatine extracted from green tomatoes by subcritical water. RESULTS: Chromatographic runs were performed on a InertSustain Phenyl (250 mm × 4.6 mm, 5 µm) analytical column, at a wavelength of 205 nm. A concentration range of 50-580 µg mL-1 was used. The validation process was performed considering the linearity, precision, trueness, limit of detection (LOD) and limit of quantitation (LOQ) of the method. The selected mobile phase composed of acetonitrile and a solution of 20 mmol L-1 potassium dihydrogen phosphate (KH2PO4) pH 3, resulted in suitable retention times and a standard calibration curve with adequate linearity (R2 = 0.9999). The method trueness was evaluated by the recovery assay, obtaining a mean recovery of 105% and the precisions were 1.4% and 0.9% (percentage relative standard deviation, RSD%) for the tomatine standard and extract samples, respectively. The inter-day variability was 2.7-9.0% (RSD%) for the standards and 6.9% (RSD%) for extract. The LOD and the LOQ of the method were determined at 8.0 and 24.1 µg mL-1, respectively. CONCLUSION: The herein described method was successfully used for the quantification of tomatine in a tomato-derived extract. Furthermore, the method constitutes a simple and rapid analytical approach able to be used as a routine protocol. © 2024 Society of Chemical Industry.

6.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 40: e20240001, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38859615

ABSTRACT

BACKGROUND: Medicinal plants have curative properties due to the presence of various complex chemical substances of different compositions, which are found as secondary plant metabolites in one or more parts of the plants. Moringa oleifera from Moringaceae and Beta vulgaris root are, native to India, grows in the tropical and subtropical regions of the world. It is commonly known as 'drumstick tree' or 'horseradish tree' or 'miracle tree'. Incorporation of more herbal powder leads to much complexity. Above plants were chosen for their utmost nutritional values. RESULTS: Herbal tablet and granules were prepared and evaluated further for various Physico-chemical parameters as a nutritional supplement. Promising results indicate that prepared formulations have potential as supplements. CONCLUSIONS: Present communication mainly focused on estimation of marker components by Reverse Phase-High Performance Liquid Chromatography. It showed the presence of enough number of secondary metabolites and minerals which can be easily consumed by all age groups.


Subject(s)
Dietary Supplements , Chromatography, High Pressure Liquid/methods , Moringa oleifera/chemistry
7.
Molecules ; 29(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38893369

ABSTRACT

Spinach (Spinacia oleracea) is one of the most famous vegetables worldwide, rich in essential metabolites for various health benefits. It is a valuable plant source that has the potential to be a nutraceutical. This study aimed to evaluate the single characteristic marker compound to establish the validation of HPLC-DAD methods applied to the development of a nutraceutical using spinach samples. Six metabolites (1-6) were identified from the spinach samples such as freeze-dried spinach (FDS) and spinach extract concentrate (SEC) by LC-Q-TOF/MS analysis. Among the six metabolites, 3',4',5-trihydroxy-3-methoxy-6,7-methylenedioxyflavone 4'-glucuronide (TMG) was selected as a marker compound due to its highest abundance and high selectivity. The specificity, accuracy, linearity, precision, repeatability, limit of detection (LOD), and limit of quantification (LOQ) of TMG in the spinach samples (FDS and SEC) were validated according to AOAC international guideline. The specificity was confirmed by monitoring the well separation of the marker compound from other compounds of spinach samples in the base peak intensity (BPI) and ultraviolet (UV) chromatogram. The calibration curve of TMG (15.625~500 µg/mL) had reasonable linearity (R2 = 0.999) considered with LOD and LOQ values, respectively. Recovery rate of TMG was 93-101% for FDS and 90-95% for SEC. The precision was less than 3 and 6% in the intraday and interday. As a result, the HPLC-DAD validation method of TMG in the spinach samples (FDS and SEC) was first established with AOAC and KFDA regulations for approving functional ingredients in functional foods.


Subject(s)
Spinacia oleracea , Spinacia oleracea/chemistry , Chromatography, High Pressure Liquid/methods , Glucuronides/analysis , Glucuronides/chemistry , Limit of Detection , Reproducibility of Results , Flavonoids/analysis , Flavonoids/chemistry , Plant Extracts/chemistry , Plant Extracts/analysis , Flavones/analysis , Flavones/chemistry , Reference Standards
8.
New Phytol ; 243(3): 1262-1275, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38849316

ABSTRACT

The plant hormone ethylene is of vital importance in the regulation of plant development and stress responses. Recent studies revealed that 1-aminocyclopropane-1-carboxylic acid (ACC) plays a role beyond its function as an ethylene precursor. However, the absence of reliable methods to quantify ACC and its conjugates malonyl-ACC (MACC), glutamyl-ACC (GACC), and jasmonyl-ACC (JA-ACC) hinders related research. Combining synthetic and analytical chemistry, we present the first, validated methodology to rapidly extract and quantify ACC and its conjugates using ultra-high-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS). Its relevance was confirmed by application to Arabidopsis mutants with altered ACC metabolism and wild-type plants under stress. Pharmacological and genetic suppression of ACC synthesis resulted in decreased ACC and MACC content, whereas induction led to elevated levels. Salt, wounding, and submergence stress enhanced ACC and MACC production. GACC and JA-ACC were undetectable in vivo; however, GACC was identified in vitro, underscoring the broad applicability of the method. This method provides an efficient tool to study individual functions of ACC and its conjugates, paving the road toward exploration of novel avenues in ACC and ethylene metabolism, and revisiting ethylene literature in view of the recent discovery of an ethylene-independent role of ACC.


Subject(s)
Amino Acids, Cyclic , Arabidopsis , Ethylenes , Tandem Mass Spectrometry , Arabidopsis/metabolism , Arabidopsis/genetics , Ethylenes/metabolism , Ethylenes/biosynthesis , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid , Amino Acids, Cyclic/metabolism , Biosynthetic Pathways , Stress, Physiological , Reproducibility of Results , Mutation/genetics , Liquid Chromatography-Mass Spectrometry
9.
Bioanalysis ; : 1-13, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38940441

ABSTRACT

Aim: Increased knowledge of biodistribution and pharmacokinetics of lipid nanoparticle (LNP)-encapsulated mRNA drug components may aid efficacy and safety evaluation. Methods: Mice were subcutaneously administrated LNP encapsulated enhanced green fluorescent protein mRNA and sampled up to 72 h after dosing. LNP, mRNA and translated protein were quantified by LC-MS, branched DNA and ELISA. Results: Highest levels of LNP and mRNA were detected in skin, followed by spleen, but also rapidly distributed to circulation. Translated protein showed high concentration in skin and spleen, but also in liver and kidney across 24 h where the LNP was cleared at 4 h. Conclusion: Subcutaneously dosing LNP encapsulated mRNA in mice resulted in a nonlinear relationship of LNP, mRNA and protein concentration across multiple tissues.


[Box: see text].

10.
Biomed Chromatogr ; : e5938, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38922950

ABSTRACT

A simple, accurate and precise method was developed for the simultaneous estimation of the bempedoic acid and ezetimibe in pure and tablet dosage form. The developed method was validated as per International Conference on Harmonization guidelines. The chromatographic separation was achieved isocratically on a Waters- C18, 250 × 4.6 mm, 5 µm column. Mobile phase containing K2HPO4-methanol in the ratio 60:40 in buffer at pH 4.3 was pumped through column at a flow rate of 1.0 ml/min. The temperature was maintained at 25°C. The optimized wavelength selected was 242 nm. The separation of bempedoic acid and ezetimibe showed retention times of 3.090 and 4.268 min respectively. The RSD values of the bempedoic acid and ezetimibe were 0.34 and 0.08 respectively. The accuracy of method was determined at three levels (50,100 and 150%). The percentage recovery was obtained as 100.0 and 100.0% for bempedoic acid and ezetimibe, respectively. The limits of determination and quantitation obtained from regression equations of bempedoic acid and ezetimibe were 1.065, 3.550 and 0.203, 0.677, respectively. The regression equation of bempedoic acid is y = 20,795x + 24,168, and it is y = 6,885.7x + 11,000 for ezetimibe. The retention times were decreased and the run time was decreased, so that the method developed is simple and economical that can be adopted for regular quality control tests in industry.

11.
Article in English | MEDLINE | ID: mdl-38922468

ABSTRACT

The growing anthropogenic contamination of natural water by microplastics (MPs) confirms the urgent need to preserve this precious resource. MPs are part of the group of contaminants of emerging concern, and the occurrence studies in surface water and water for human consumption (WHC) are mandatory for environmental and human health risk assessment. This study aims to optimize and validate a Fourier transform infrared spectroscopy method coupled with optical microscopy (micro-FTIR) in transmission mode to monitor MPs in WHC. Water sample (250 mL; without sample pre-treatment) was filtered through 5 µm silicon filters. The infrared spectra identification was performed by OMNIC mathematical correlation, using various spectra libraries for polymers (including the in-house IR spectra library), a background reading on a clean silicon filter, and an aperture of 100 µm × 100 µm. The validated method showed good accuracy, with an average recovery for representative polymers of 91%, a relative standard deviation of 13%, and a reporting limit (RL) of 44 MPs/L. Sixty WHC samples from the Lisbon water supply system showed MPs ranging from 0 (< RL) to 934 MPs/L, with an average value of 309 MPs/L. The most representative polymers were polyethylene (PE, 76.8%), polyethylene terephthalate (PET, 6.9%), polypropylene (PP, 6%), polystyrene (PS, 4%), and polyamide (PA,4%). In terms of size, the microplastic particles had an average length and width of 76 µm and 39 µm, respectively.

12.
Article in English | MEDLINE | ID: mdl-38880057

ABSTRACT

A reliable liquid chromatography coupled to quadrupole-Orbitrap high-resolution mass spectrometry (LC-Q-Orbitrap HRMS) method was developed for the simultaneous identification and quantification of 13 ß-agonist residues in bovine liver, meat, milk, kidney, poultry, and egg. Dispersive-solid phase extraction (d-SPE) using acetonitrile (ACN) was used to prepare the samples. The analyte in the extracts was separated on a reversed-phase Accucore aQ (50 mm × 2.1 mm, 2.6 µm) using a mobile phase of an aqueous solution containing 2 mM ammonium acetate and acetonitrile (ACN) 0.1 % formic acid. The method was validated in accordance with Commission Implementing Regulation (CIR) EU 2021/808 at six different concentrations ranging from 0.1 to 5 µg/kg. The mean recoveries ranged from 65 to 94 %, while repeatability and reproducibility values were all below 13 %. The linearity, as correlation coefficients (R2) ranged from 0.9955 to 0.9999. The decision limit (CCα) and detection capability (CCß) ranges were 0.11-0.13 µg/kg and 0.12-0.15 µg/kg, respectively. The limits of detection (LOD) and limits of quantification (LOQ) were in the range of 0.004-0.048 µg/kg and 0.010-0.075 µg/kg, respectively. Of the 180 samples that were collected from local markets in Egypt, 21.11 % had ß-agonist residues. The mean concentration (µg/kg) and detection frequency (%) of the most frequently found ß-agonist in the samples were as follows: terbutaline (2.63 µg/kg and 90 %), ractopamine (5.14 µg/kg and 23.3 %). The method's applicability was verified by successfully completing two rounds of proficiency testing (PT).


Subject(s)
Drug Residues , Limit of Detection , Meat , Milk , Solid Phase Extraction , Animals , Cattle , Solid Phase Extraction/methods , Milk/chemistry , Drug Residues/analysis , Reproducibility of Results , Meat/analysis , Linear Models , Adrenergic beta-Agonists/analysis , Adrenergic beta-Agonists/isolation & purification , Eggs/analysis , Liver/chemistry , Kidney/chemistry , Poultry , Tandem Mass Spectrometry/methods , Chromatography, Liquid/methods
13.
Article in English | MEDLINE | ID: mdl-38917652

ABSTRACT

Dried Blood Spots (DBS) revolutionize therapeutic drug monitoring using LC-MS for the precise quantification of cardiovascular drugs (CDs), enabling personalized treatment adapted to patient-specific pharmacokinetics with minimal invasiveness. This study aims to achieve simultaneous quantification of eight CDs in DBS, overcoming physicochemical challenges. A two-step protein precipitation method was used for simple and precise sample preparation. The drugs were analyzed using LC-MS/MS in ESI positive-ion mode, showing high sensitivity and linearity, with a correlation coefficient (r2) exceeding 0.999, after being separated on a reversed-phase chromatography by gradient elution of DW-acetonitrile containing 0.1 % formic acid + 2 mM ammonium formate. The validation results indicate good selectivity, with no observed matrix effect and carry-over. The intra- and inter-day accuracy and precision were within 6 % for most drugs, except for digoxin and deslanoside at low therapeutic levels where the variation was within 20 %. Stability tests confirmed suitable DBS handling and storage conditions, indicating drug stability for at least 30 days at room temperature. The analysis of whole spot has demonstrated remarkable precision and reliability in all target drugs. The analysis of 3 mm internal diameter discs, punched in and out of DBS, presumed to contain 3 µL of blood, showed acceptable accuracy for most drugs, with less polar drugs like digoxin and deslanoside showing lower accuracy, indicating a need for further correction due to non-uniform drug distribution. Consequently, the developed LC-MS/MS method enables the quantification of multiple CDs in a single DBS analysis, while suggesting the potential for accuracy-based analysis.


Subject(s)
Cardiovascular Agents , Dried Blood Spot Testing , Tandem Mass Spectrometry , Tandem Mass Spectrometry/methods , Dried Blood Spot Testing/methods , Humans , Reproducibility of Results , Linear Models , Chromatography, Liquid/methods , Cardiovascular Agents/blood , Cardiovascular Agents/pharmacokinetics , Limit of Detection , Drug Monitoring/methods
14.
Food Chem ; 455: 139888, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38843712

ABSTRACT

A novel method has been proposed to determine nine plasticizers in honey samples by gas chromatography-mass spectrometry. An efficient sample treatment was proposed (average analyte recoveries between 77% and 118%) involving a double solvent extraction with ethyl acetate, followed by a clean-up step with florisil. Chromatographic analysis (< 21 min) was performed in an Agilent HP-5MS column under programmed temperature conditions. The greenness of the method was assessed with different tools that classified it as environmentally friendly. The method was validated in terms of selectivity, limits of detection (0.1-3.1 µg kg-1) and quantification (0.2-10.3 µg kg-1), linearity, matrix effect, trueness, and precision (relative standard deviation <9%). An analysis of thirty samples from different sources (commercial or experimental apiaries) revealed the presence of residues of five plasticizers in most of the samples. Finally, health risk assessment was evaluated, and the results indicated no associated health risks for consumers.


Subject(s)
Food Contamination , Gas Chromatography-Mass Spectrometry , Honey , Plasticizers , Plasticizers/analysis , Food Contamination/analysis , Honey/analysis , Green Chemistry Technology
15.
Plants (Basel) ; 13(12)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38931127

ABSTRACT

The QuEChERS method was adjusted to determine bifenthrin residues in grapes and grape leaves. Extraction and cleanup procedures were optimized to decrease co-extracted materials and enhance the detection of bifenthrin. The method was validated per the European Union (EU) Guidelines criteria. Accuracy ranged from 98.8% to 93.5% for grapes and grape leaves, respectively. Precision values were 5.5 and 6.4 (RSDr) and 7.4 and 6.7 (RSDR) for grapes and grape leaves, respectively. LOQs (the lowest spiking level) were 2 and 20 µg/kg for grapes and grape leaves, respectively. Linearity as determination coefficient (R2) values were 0.9997 and 0.9964 for grapes and grape leaves, respectively, in a matrix over 1-100 µg/L range of analyte concentration. This was very close to the value in the pure solvent (0.9999), showing the efficiency of the cleanup in removing the co-extracted and co-injected materials; the matrix effect was close to zero in both sample matrices. Dissipation of bifenthrin was studied in a supervised trial conducted in a grapevine field during the summer of 2023 at the recommended dose and double the dose. Dissipation factor k values were 0.1549 and 0.1672 (recommended dose) and 0.235 and 0.208 (double dose) for grapes and grape leaves, respectively. Pre-harvest interval (PHI) was calculated for the Maximum Residue Limit (MRL) values of the EU database. Residues of bifenthrin were removed effectively from grapes using simple washing with tap water in a laboratory study. Residues reached the MRL level of 0.3 mg/kg in both washing treatments, running or soaking in tap water treatments for 5 min. Removal from leaves did not decrease residue levels to the MRL in grape leaves.

16.
Pharmaceutics ; 16(6)2024 May 26.
Article in English | MEDLINE | ID: mdl-38931838

ABSTRACT

The compound 6-methoxyseselin, derived from Zanthoxylum tingoassuiba, demonstrates various therapeutic properties, including vasorelaxation, antinociceptive, anti-inflammatory, and immunomodulatory effects, along with recently discovered antiasthmatic properties. This study aimed to evaluate its preclinical pharmacokinetics and pulmonary delivery in Balb/c mice. The method involved administering the compound via inhalation and intravenous routes, followed by blood sample collection for analysis using high-performance liquid chromatography with diode array detection (HPLC-DAD). The results indicated good linearity, precision, accuracy, and stability of the compound in the biological samples. Pharmacokinetic parameters such as the rate of elimination, half-life, clearance, volume of distribution, area under the curve, and mean residence time were determined for both administration routes, showing similar profiles. The lung concentrations were notably higher than the plasma concentrations, indicating significant lung penetration. These findings suggest 6-methoxyseselin as a promising candidate for new anti-asthmatic drugs, supported by its favorable pharmacokinetic profiles and high lung penetration factors. This study represents the first exploration of the pharmacokinetics and pulmonary delivery of 6-methoxyseselin in mice, highlighting its potential for further drug development.

17.
Chemosphere ; 361: 142494, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38823424

ABSTRACT

Organotin compounds (OTs) are well studied in various environmental compartments, with a critical focus on the water column as their primary entry point into aquatic ecosystems. In this context, a method for the analysis of organotin (OTs) in water using silicone rubber-based passive sampling was optimized, validated, and field-tested. Validation covered crucial parameters, including the limit of detection (LOD), limit of quantification (LOQ), accuracy, precision, linearity, and matrix effect. The method was shown to be robust (R2 ≥ 0.99), with recoveries between 70.2 and 114.6%, and precise (CV < 12.8%) (N = 3). LODCw and LOQCw were ≤15 and ≤ 48 pg Sn L-1, respectively, for TBT and TPhT. The matrix effect showed to be low (>-20% ME < 20%) for all OTs but TPhT (69.4%). The silicone rubber-water partition coefficients (Log Ksr,w) were estimated at 3.37 for MBT, 3.77 for DBT, 4.17 for TBT, 3.49 for MPhT, 3.83 for DPhT, and 4.22 for TPhT. During the field study carried out between October 2021 and February 2022 at the entrance of the Port of Santos navigation channel (Southeastern Brazil), sampling rates ranged between 4.1 and 4.6 L d-1, and the equilibrium was achieved for MBT, DBT, MPhT, and DPhT after ∼45 days of deployment. The freely dissolved concentrations varied between 134 and 165 pg Sn L-1 for TBT, 388 and 610 pg Sn L-1 for DBT, and 1114 and 1509 pg Sn L-1 for MBT, while MPhT, DPhT, and TPhT were below the limit of detection. Results pointed out that J-FLEX® rubber-based passive sampling is a suitable and reliable alternative method for the continuous monitoring of OTs in the water column.


Subject(s)
Environmental Monitoring , Limit of Detection , Organotin Compounds , Silicones , Water Pollutants, Chemical , Organotin Compounds/analysis , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Silicones/chemistry , Water/chemistry
18.
Anal Sci ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38884904

ABSTRACT

Supervised field trial was conducted to study the dissipation pattern of fluopyram in rice plant after application of fluopyram 400 g/L SC(Velum Prime) as soil drenching at the time of sowing in nursery bed at X (500 g a.i. ha-1) and 1.25X (625.2 g a.i. ha-1) doses. Samples of rice plant were collected on 0, 1, 3, 7, 10, 15, and 20 days after transplanting. QuEChERS-based extraction method was validated and adopted to determine the residues of fluopyram in rice seedlings, whole rice grains (with husk), polished rice grain, husk, straw, and soil using LC-MS/MS (liquid chromatography-tandem mass spectrometry).The initial deposit of fluopyram in rice plant recorded were 0.27 and 0.41 mg kg-1in X and 1.25X doses, respectively. Fluopyram residues dissipated following first-order kinetics with half-life of 2.53 and 2.57 days at X and 1.25X doses, respectively. Residues were detected in seedlings up to 15 days after transplanting and were at below LOQ in whole rice grains (with husk), polished rice grain, husk, straw, and soil collected at harvest. Monitoring study revealed that application of novel nematicide fluopyram for the management of nematodes in rice does not pose any risks to consumers.

19.
Biomed Chromatogr ; 38(8): e5920, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38844433

ABSTRACT

This study describes the development of a reliable and linear analytical method for precisely determining dimethylamine impurity in N,N-dimethylformamide solvent utilizing a benzoyl chloride derivatization reagent and a gas chromatography mass spectrometer. Benzoyl chloride was used to derivatize dimethylamine. At normal temperature, benzoyl chloride combined with dimethylamine, producing N,N-dimethylbenzamide. This method separated N,N-dimethylbenzamide using Rtx-5 amine (30 m × 0.32 mm × 1.50 µm) as the stationary phase, helium as the carrier gas, argon as the collision gas, and methanol as the diluent. The column flow rate was 2 mL/min. The retention time of N,N-dimethylbenzamide was determined to be 8.5 min. Precision, linearity, and accuracy were tested using ICH Q2 (R2) and USP<1225> guidelines. The percentage coefficient of variation (CV) for N,N-dimethylbenzamide in the system suitability parameter was 1.1%. The correlation coefficient of N,N-dimethylbenzamide was found to be >0.99. In the method precision parameter, the % CV for N,N-dimethylbenzamide was found to be 1.9%, whereas the % CV for N,N-dimethylbenzamide was 1.2% in intermediate precision. The percentage recovery of N,N-dimethylbenzamide was determined to be between 80% and 98%.


Subject(s)
Dimethylamines , Dimethylformamide , Drug Contamination , Gas Chromatography-Mass Spectrometry , Dimethylformamide/chemistry , Gas Chromatography-Mass Spectrometry/methods , Reproducibility of Results , Linear Models , Dimethylamines/chemistry , Dimethylamines/analysis , Benzamides/analysis , Benzamides/chemistry , Limit of Detection , Solvents/chemistry , Benzoates
20.
Molecules ; 29(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38731566

ABSTRACT

Size exclusion chromatography with total organic carbon detection (HPSEC-TOC) is a widely employed technique for characterizing aquatic natural organic matter (NOM) into high, medium, and low molecular weight fractions. This study validates the suitability of HPSEC-TOC for a simplified yet efficient routine analysis of freshwater and its application within drinking water treatment plants. The investigation highlights key procedural considerations for optimal results and shows the importance of sample preservation by refrigeration with a maximum storage duration of two weeks. Prior to analysis, the removal of inorganic carbon is essential, which is achieved without altering the NOM composition through sample acidification to pH 6 and subsequent N2-purging. The chromatographic separation employs a preparative TSK HW-50S column to achieve a limit of detection of 19.0 µgC dm-3 with an injection volume of 1350 mm-3. The method demonstrates linearity up to 10,000 µgC dm-3. Precision, trueness and recovery assessments are conducted using certified reference materials, model compounds, and real water samples. The relative measurement uncertainty in routine analysis ranges from 3.22% to 5.17%, while the measurement uncertainty on the bias is 8.73%. Overall, the HPSEC-TOC represents a reliable tool for NOM fractions analysis in both treated and untreated ground and surface water.

SELECTION OF CITATIONS
SEARCH DETAIL
...