Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Appl Microbiol Biotechnol ; 108(1): 235, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38407657

ABSTRACT

Methylmercury formation is mainly driven by microbial-mediated process. The mechanism of microbial mercury methylation has become a crucial research topic for understanding methylation in the environment. Pioneering studies of microbial mercury methylation are focusing on functional strain isolation, microbial community composition characterization, and mechanism elucidation in various environments. Therefore, the functional genes of microbial mercury methylation, global isolations of Hg methylation strains, and their methylation potential were systematically analyzed, and methylators in typical environments were extensively reviewed. The main drivers (key physicochemical factors and microbiota) of microbial mercury methylation were summarized and discussed. Though significant progress on the mechanism of the Hg microbial methylation has been explored in recent decade, it is still limited in several aspects, including (1) molecular biology techniques for identifying methylators; (2) characterization methods for mercury methylation potential; and (3) complex environmental properties (environmental factors, complex communities, etc.). Accordingly, strategies for studying the Hg microbial methylation mechanism were proposed. These strategies include the following: (1) the development of new molecular biology methods to characterize methylation potential; (2) treating the environment as a micro-ecosystem and studying them from a holistic perspective to clearly understand mercury methylation; (3) a more reasonable and sensitive inhibition test needs to be considered. KEY POINTS: • Global Hg microbial methylation is phylogenetically and functionally discussed. • The main drivers of microbial methylation are compared in various condition. • Future study of Hg microbial methylation is proposed.


Subject(s)
Mercury , Microbiota , Protein Processing, Post-Translational , Methylation
2.
Environ Pollut ; 325: 121373, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36863435

ABSTRACT

This study explored mercury (Hg) methylation potential in two distinct aquatic systems. Fourmile Creek (FMC) was historically polluted with Hg effluents from groundwater as it is a typical gaining stream, where organic matter and microorganisms in streambed are continuously winnowed. The H02 constructed wetland only receives atmospheric Hg and is rich in organic matter and microorganisms. Both systems receive Hg from atmospheric deposition now. Surface sediments were collected from FMC and H02, spiked with inorganic Hg, and cultivated in an anaerobic chamber to stimulate microbial Hg methylation reactions. Total mercury (THg) and methylmercury (MeHg) concentrations were measured at each spiking stage. Mercury methylation potential (MMP, %MeHg in THg) and Hg bioavailability were assessed with the deployment of diffusive gradients in thin films (DGTs). During the methylation process and at the same incubation stage, FMC sediment showed faster increasing rates of %MeHg and higher MeHg concentrations than H02, demonstrating a stronger MMP in the FMC sediment. Similarly, higher Hg bioavailability was observed in FMC sediment compared to the H02 as indicated by DGT-Hg concentrations. In conclusion, the H02 wetland with high levels of organic matter and microorganisms presented low MMP. But the Fourmile Creek as a gaining stream and a historical site of Hg pollution showed strong MMP and high Hg bioavailability. A related study on microbial community activities characterized the microorganisms between FMC and H02, which is attributed to be the main reason for their different methylation capabilities. Our study further brought up the considerations on remediated sites from Hg contamination: Hg bioaccumulation and biomagnification can still be elevated and higher than the surrounding environment due to lagged changes in microbial community structures. This study supported the sustainable ecological modifications of legacy Hg contamination and raised the necessity of long-term monitoring actions even after executing a remediation plan.


Subject(s)
Mercury , Methylmercury Compounds , Water Pollutants, Chemical , Mercury/analysis , Methylation , Biological Availability , Water Pollutants, Chemical/analysis , Geologic Sediments/chemistry
3.
Cancer Lett ; 547: 215884, 2022 10 28.
Article in English | MEDLINE | ID: mdl-35988817

ABSTRACT

Elucidating the mechanism for high metastasis capacity of triple negative breast cancers (TNBC) is crucial to improve treatment outcomes of TNBC. We have recently reported that nicotinamide N-methyltransferase (NNMT) is overexpressed in breast cancer, especially in TNBC, and predicts poor survival of patients undergoing chemotherapy. Here, we aimed to determine the function and mechanism of NNMT on metastasis of TNBC. Additionally, analysis of public datasets indicated that NNMT is involved in cholesterol metabolism. In vitro, NNMT overexpression promoted migration and invasion of TNBCs by reducing cholesterol levels in the cytoplasm and cell membrane. Mechanistically, NNMT activated MEK/ERK/c-Jun/ABCA1 pathway by repressing protein phosphatase 2A (PP2A) activity leading to cholesterol efflux and membrane fluidity enhancement, thereby promoting the epithelial-mesenchymal transition (EMT) of TNBCs. In vivo, the metastasis capacity of TNBCs was weakened by targeting NNMT. Collectively, our findings suggest a new molecular mechanism involving NNMT in metastasis and poor survival of TNBC mediated by PP2A and affecting cholesterol metabolism.


Subject(s)
Triple Negative Breast Neoplasms , Humans , ATP Binding Cassette Transporter 1/metabolism , Cell Line, Tumor , Cell Proliferation , Cholesterol , Epithelial-Mesenchymal Transition , Membrane Fluidity , Mitogen-Activated Protein Kinase Kinases/metabolism , Neoplasm Metastasis , Nicotinamide N-Methyltransferase/metabolism , Protein C/metabolism , Protein C/therapeutic use , Triple Negative Breast Neoplasms/metabolism
4.
Mar Pollut Bull ; 183: 114052, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35998525

ABSTRACT

In this study, surface seawater, bottom seawater and surface sediments were collected from the Yellow River Estuary Area (YREA) and the Laizhou Bay (LB) to investigate the occurrence, spatial distribution and geochemical control factors for total mercury (THg) and methylmercury (MeHg) in different phases. The geochemical characteristics of seawater and sediments suggested significant variances in the YREA and the LB. The high contamination of Hg in the YREA showed the discharge of the Yellow River (YR) contributed significantly to the Hg contamination in the LB. The partial least squares regression (PLSR) model was utilized to explore the complicated interactions between geochemical controls and methylation potentials in different phases. Although the ecological risk (ER) of Hg was not significant in this study area, the higher values of ER in the YREA suggested that the YR was the primary Hg contributor to LB. Therefore, the potential Hg risk should not be ignored.


Subject(s)
Mercury , Methylmercury Compounds , Water Pollutants, Chemical , Ecosystem , Environmental Monitoring , Estuaries , Geologic Sediments , Mercury/analysis , Methylmercury Compounds/analysis , Water Pollutants, Chemical/analysis
5.
Ecotoxicol Environ Saf ; 230: 113143, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34998262

ABSTRACT

Neurotoxic methylmercury (MeHg) accumulates in rice grain from paddy soil, where its concentration is controlled by microbial mercury methylation and demethylation. Both up- and down-regulation of methylation is known to occur in the presence of rice plants in comparison to non-vegetated paddy soils; the influence of rice plant presence/absence on demethylation is unknown. To assess the concurrent influence of rice plant presence/absence on methylation and demethylation, and to determine which process was more dominant in controlling soil MeHg concentrations, we maintained six rhizoboxes of paddy soil with and without rice plants. At the peak of plant growth, we simultaneously measured ambient MeHg, ambient inorganic mercury (IHg), and potential rate constants of methylation and demethylation (Kmeth and Kdemeth) in soil using stable isotope tracers and ID-GC-ICPMS. We also measured organic matter content, elemental S, and water-extractable sulfate. We found MeHg concentrations were differentially controlled by MeHg production and degradation processes, depending on whether plants were present. In non-vegetated boxes, MeHg concentration was controlled by Kmeth, as evidenced by a strong and positive correlation, while Kdemeth had no relation to MeHg concentration. These results indicate methylation was the dominant driver of MeHg concentration in non-vegetated soil. In vegetated boxes, Kdemeth strongly and negatively predicted MeHg concentration, indicating that demethylation was the dominant control in soil with plants. MeHg concentration, Kmeth, and % MeHg all had significantly less variance in vegetated than in non-vegetated soils due to a consistent elimination of greater values. This pattern suggests that reduced MeHg production capacity was a secondary control on MeHg concentrations in vegetated soils. We observed no difference in the magnitude or variance of Kdemeth between treatments, suggesting that demethylation was robust to soil chemical conditions influenced by the plant, perhaps because of a wider taxonomic diversity of demethylators. Our results suggest that methylation and demethylation processes could both be leveraged to alter MeHg concentrations in rice paddy soil.

6.
J Biol Chem ; 297(1): 100846, 2021 07.
Article in English | MEDLINE | ID: mdl-34058194

ABSTRACT

Hepatic gluconeogenesis is the major contributor to the hyperglycemia observed in both patients and animals with type 2 diabetes. The transcription factor FOXO1 plays a dominant role in stimulating hepatic gluconeogenesis. FOXO1 is mainly regulated by insulin under physiological conditions, but liver-specific disruption of Foxo1 transcription restores normal gluconeogenesis in mice in which insulin signaling has been blocked, suggesting that additional regulatory mechanisms exist. Understanding the transcriptional regulation of Foxo1 may be conducive to the development of insulin-independent strategies for the control of hepatic gluconeogenesis. Here, we found that elevated plasma levels of adenine nucleotide in type 2 diabetes are the major regulators of Foxo1 transcription. We treated lean mice with 5'-AMP and examined their transcriptional profiles using RNA-seq. KEGG analysis revealed that the 5'-AMP treatment led to shifted profiles that were similar to db/db mice. Many of the upregulated genes were in pathways associated with the pathology of type 2 diabetes including Foxo1 signaling. As observed in diabetic db/db mice, lean mice treated with 5'-AMP displayed enhanced Foxo1 transcription, involving an increase in cellular adenosine levels and a decrease in the S-adenosylmethionine to S-adenosylhomocysteine ratio. This reduced methylation potential resulted in declining histone H3K9 methylation in the promoters of Foxo1, G6Pc, and Pepck. In mouse livers and cultured cells, 5'-AMP induced expression of more FOXO1 protein, which was found to be localized in the nucleus, where it could promote gluconeogenesis. Our results revealed that adenine nucleotide-driven Foxo1 transcription is crucial for excessive glucose production in type 2 diabetic mice.


Subject(s)
Diabetes Mellitus, Type 2/genetics , Forkhead Box Protein O1/genetics , Hyperglycemia/genetics , Transcription, Genetic/genetics , Adenine Nucleotides/blood , Animals , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/pathology , Gene Expression Regulation/genetics , Gluconeogenesis/genetics , Glucose/metabolism , Humans , Hyperglycemia/blood , Hyperglycemia/pathology , Insulin/genetics , Liver/metabolism , Liver/pathology , Mice , Mice, Inbred NOD
7.
Sci Total Environ ; 770: 145338, 2021 May 20.
Article in English | MEDLINE | ID: mdl-33517014

ABSTRACT

Lake sediments are key materials for mercury deposition and methylation. To understand the mercury concentrations in China's lakes, 100 lake surface sediment samples were collected from 35 lakes in 2014. Total mercury (THg), methylmercury (MeHg) concentrations and the annual Hg burial rates in lake sediments were measured. THg and MeHg concentrations in the sediment ranged from 13.6 to 1488 ng‧g-1 and 0.05 to 1.70 ng‧g-1, respectively, and urban lakes reported most high values, indicating direct anthropogenic inputs. The Inner Mongolia-Xinjiang Region (MX) and Qinghai-Tibet Plateau Region (QT) reported relatively lower mercury burial rates, while the Eastern Plain Region (EP), Northeast Mountain and Plain Region (NE), and Yunnan-Guizhou Plateau Region (YG) reported higher mercury burial rates. Regional variances of THg burial fluxes were dominated by atmospheric deposition, terrestrial input, and sediment accumulation rates in different lakes. In 2014, the estimated average THg burial rate in China's lakes was 139 µg‧m-2‧yr-1, comparable to the average in mid-latitude North America in recent years; however, due to China's much smaller lake area relative to NA, the annual THg burial flux in China was much lower than that in North America. EP and NE, where most freshwater aquatic products in China are harvested, accounted for 58.2% and 22.9%, respectively, of the THg burial flux. High sedimentary MeHg concentrations and MeHg:THg ratios were reported in most of the NE but low MeHg concentrations and MeHg:THg ratios were reported in EP. MeHg concentrations and MeHg:THg ratios were positively correlated with water COD levels and negatively correlated with average temperature. The results of this study indicate that in addition to the adjacent seas, lake sediments are an important mercury sink in China's aquatic environment, which could cause health risks due to MeHg intake, especially in NE.

8.
J Anim Physiol Anim Nutr (Berl) ; 103(3): 858-867, 2019 May.
Article in English | MEDLINE | ID: mdl-30900324

ABSTRACT

DNA methylation is an important epigenetic strategy for embryo development and survival. The one-carbon metabolism can be disturbed by inadequate provision of dietary methyl donors. Because of the continuous selection for larger litters, it is relevant to explore if highly prolific sows might encounter periods of methyl donor deficiency throughout their reproductive cycles. This study, therefore, assesses the fluctuation(s) in methylation potential (MP) and aims to link possible methyl donor deficiencies to nutrient metabolism. In total, 15 hybrid sows were followed from weaning of the previous reproductive cycle (d-5) to weaning of the present cycle. Blood samples were taken at d-5, 0, 21, 42, 63, 84 and d108 of gestation, the day of parturition (d115), two weeks of lactation (d129) and at weaning (d143). Blood plasma samples were analysed for S-adenosylmethionine (SAM), S-adenosylhomocysteine (SAH), free methionine, free glycine, acetylcarnitine and 3-hydroxybutyrylcarnitine. Serum samples were analysed for urea and creatinine. Generally, MP (i.e. ratio SAM:SAH) increased throughout gestation (p = 0.009), but strongly fluctuated in the period around parturition and weaning. From d108 to parturition, absolute plasma levels of SAM (p < 0.001), SAH (p = 0.031) and methionine (p = 0.001) increased. The first two weeks of lactation were characterised by an increase in MP (p = 0.039) due to a remaining high value of SAM and a distinct decrease in SAH (p = 0.008). During the last two weeks of lactation, MP decreased (p = 0.038) due to a decrease in SAM (p < 0.001) and a stable value for SAH. The methylation reactions seem to continue after weaning, a period crucial for the follicular and embryonic development of the subsequent litter. This study thus demonstrates that the methylation status fluctuates substantially throughout a sow's reproductive cycle, and further research is needed to identify the factors affecting methylation status.


Subject(s)
Animal Feed/analysis , DNA Methylation/physiology , Diet/veterinary , Nutrients/metabolism , Swine/physiology , Animal Nutritional Physiological Phenomena , Animals , Body Composition , Body Weight , Female , Nutrients/blood , Pregnancy , Swine/blood , Swine/embryology
9.
Mech Ageing Dev ; 176: 9-18, 2018 12.
Article in English | MEDLINE | ID: mdl-30367932

ABSTRACT

Dietary methionine restriction (MR) increases lifespan in several animal models. Despite low dietary intake of sulphur amino acids, rodents on MR develop hyperhomocysteinemia. On the contrary, MR has been reported to increase H2S production in mice. Enzymes involved in homocysteine metabolism also take part in H2S production and hence, in this study, the impact of MR on hyperhomocysteinemia and H2S production capacity were investigated using Fischer-344 rats assigned either a control or a MR diet for 8 weeks. The MR animals showed elevated plasma homocysteine accompanied with a reduction in liver cysteine content and methylation potential. It was further found that MR decreased cystathionine-ß-synthase (CBS) activity in the liver, however, MR increased hepatic cystathionine-γ-lyase (CGL) activity which is the second enzyme in the transsulfuration pathway and also participates in regulating H2S production. The relative contribution of CGL in H2S production increased concomitantly with the increased CGL activity. Additionally, hepatic mercaptopyruvate-sulphur-transferase (MPST) activity also increased in response to MR. Taken together, our results suggest that reduced CBS activity and S-Adenosylmethionine availability contributes to hyperhomocysteinimia in MR animals. Elevated CGL and MPST activities may provide a compensatory mechanism for maintaining hepatic H2S production capacity in response to the decreased CBS activity.


Subject(s)
Food, Formulated , Hydrogen Sulfide/metabolism , Hypercholesterolemia/metabolism , Liver/metabolism , Methionine/deficiency , Animals , Hypercholesterolemia/etiology , Hypercholesterolemia/pathology , Liver/pathology , Male , Rats , Rats, Inbred F344
10.
Reprod Sci ; 24(6): 891-901, 2017 06.
Article in English | MEDLINE | ID: mdl-27678102

ABSTRACT

Children born preterm are reported to be at increased risk of developing noncommunicable diseases in later life. Altered placental DNA methylation patterns are implicated in fetal programming of adult diseases. Our earlier animal studies focus on micronutrients (folic acid, vitamin B12) and long-chain polyunsaturated fatty acids (LCPUFAs) that interact in the 1 carbon cycle, thereby influencing methylation reactions. Our previous studies in women delivering preterm show altered plasma levels of micronutrients and lower plasma LCPUFA levels. We postulate that alterations in the micronutrient metabolism may affect the regulation of enzymes, methionine adenosyltransferase ( MAT2A), and SAH-hydrolase ( AHCY), involved in the production of methyl donor S-adenosylmethionine (SAM), thereby influencing the methylation potential (MP) in the placenta of women delivering preterm. The present study, therefore, examines the mRNA, protein levels of enzymes ( MAT2A and AHCY), SAM, S-adenosylhomocysteine (SAH) levels, and global DNA methylation levels from preterm (n = 73) and term (n = 73) placentae. The enzyme messenger RNA (mRNA) levels were analyzed by real-time quantitative polymerase chain reaction, protein levels by enzyme-linked immunosorbent assay, and SAM-SAH levels by high-performance liquid chromatography. The mRNA levels for MAT2A and AHCY are higher ( P < .05 for both) in the preterm group as compared to the term group. S-Adenosylmethionine and SAH levels were similar in both groups, although SAM:SAH ratio was lower ( P < .05) in the preterm group as compared to the term group. The global DNA methylation levels were higher ( P < .05) in women delivering small for gestation age infants as compared to women delivering appropriate for gestation age infants at term. Our data showing lower MP in the preterm placenta may have implications for the epigenetic programming of the developing fetus.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Placenta/metabolism , Premature Birth/metabolism , Adult , Female , Humans , Infant, Newborn , Infant, Premature , Male , Methionine Adenosyltransferase/genetics , Methionine Adenosyltransferase/metabolism , Pregnancy , Premature Birth/genetics , Prospective Studies , Young Adult
11.
Environ Pollut ; 221: 326-334, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27939209

ABSTRACT

Stormwater management ponds and created habitat wetlands effectively manage erosion, flooding, and pollutant loadings while providing biodiversity and aesthetic benefits, but these structures are also potential sources of methylmercury (MeHg), a bioaccumulative neurotoxin. While MeHg accumulation has been confirmed in habitat wetlands, the extent of MeHg production and accumulation in stormwater ponds is unknown. Additionally, the fine-scale spatial variation in MeHg in these wetlands has never been explored despite the possibility that cycles of wetting and drying, and the presence of aquatic plants may stimulate methylation at their margins. To address these knowledge gaps, we compared MeHg and inorganic mercury concentrations, the percent of total mercury present as MeHg (%MeHg), and potential mercury methylation rate constants (Kmeth) in the sediments of terrestrial-aquatic transects through several stormwater and habitat wetlands. We present novel evidence confirming the in situ production of MeHg in both stormwater ponds and habitat wetlands, but observe no systematic differences across the terrestrial-aquatic gradient, suggesting that routine variations in water level do not alter MeHg production and accumulation. Stormwater ponds effectively trap mercury while converting relatively little to MeHg, as evidenced by lower MeHg concentrations, %-MeHg, and Kmeth values than habitat wetlands, but often greater inorganic Hg concentrations. The relationship of aquatic vegetation to MeHg accumulation is weak and ambiguous, suggesting plants are not strong drivers of MeHg biogeochemistry in these systems. Although the MeHg hazard associated with individual artificial wetlands is low, they may be important sources of MeHg at the landscape level.


Subject(s)
Environmental Monitoring , Methylmercury Compounds/analysis , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Wetlands , Ecosystem , Mercury/analysis , Ponds/chemistry
12.
Protein Cell ; 7(4): 250-266, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26861146

ABSTRACT

Transposable elements (TEs) have no longer been totally considered as "junk DNA" for quite a time since the continual discoveries of their multifunctional roles in eukaryote genomes. As one of the most important and abundant TEs that still active in human genome, Alu, a SINE family, has demonstrated its indispensable regulatory functions at sequence level, but its spatial roles are still unclear. Technologies based on 3C (chromosome conformation capture) have revealed the mysterious three-dimensional structure of chromatin, and make it possible to study the distal chromatin interaction in the genome. To find the role TE playing in distal regulation in human genome, we compiled the new released Hi-C data, TE annotation, histone marker annotations, and the genome-wide methylation data to operate correlation analysis, and found that the density of Alu elements showed a strong positive correlation with the level of chromatin interactions (hESC: r = 0.9, P < 2.2 × 10(16); IMR90 fibroblasts: r = 0.94, P < 2.2 × 10(16)) and also have a significant positive correlation with some remote functional DNA elements like enhancers and promoters (Enhancer: hESC: r = 0.997, P = 2.3 × 10(-4); IMR90: r = 0.934, P = 2 × 10(-2); Promoter: hESC: r = 0.995, P = 3.8 × 10(-4); IMR90: r = 0.996, P = 3.2 × 10(-4)). Further investigation involving GC content and methylation status showed the GC content of Alu covered sequences shared a similar pattern with that of the overall sequence, suggesting that Alu elements also function as the GC nucleotide and CpG site provider. In all, our results suggest that the Alu elements may act as an alternative parameter to evaluate the Hi-C data, which is confirmed by the correlation analysis of Alu elements and histone markers. Moreover, the GC-rich Alu sequence can bring high GC content and methylation flexibility to the regions with more distal chromatin contact, regulating the transcription of tissue-specific genes.


Subject(s)
Alu Elements/genetics , Chromatin/chemistry , Genome, Human , Base Composition , Binding Sites , Cell Line , Chromatin/genetics , Chromatin/metabolism , CpG Islands , DNA/metabolism , Databases, Genetic , Enhancer Elements, Genetic/genetics , Histones/metabolism , Humans , Methylation
13.
Protein & Cell ; (12): 250-266, 2016.
Article in English | WPRIM (Western Pacific) | ID: wpr-757149

ABSTRACT

Transposable elements (TEs) have no longer been totally considered as "junk DNA" for quite a time since the continual discoveries of their multifunctional roles in eukaryote genomes. As one of the most important and abundant TEs that still active in human genome, Alu, a SINE family, has demonstrated its indispensable regulatory functions at sequence level, but its spatial roles are still unclear. Technologies based on 3C (chromosome conformation capture) have revealed the mysterious three-dimensional structure of chromatin, and make it possible to study the distal chromatin interaction in the genome. To find the role TE playing in distal regulation in human genome, we compiled the new released Hi-C data, TE annotation, histone marker annotations, and the genome-wide methylation data to operate correlation analysis, and found that the density of Alu elements showed a strong positive correlation with the level of chromatin interactions (hESC: r = 0.9, P < 2.2 × 10(16); IMR90 fibroblasts: r = 0.94, P < 2.2 × 10(16)) and also have a significant positive correlation with some remote functional DNA elements like enhancers and promoters (Enhancer: hESC: r = 0.997, P = 2.3 × 10(-4); IMR90: r = 0.934, P = 2 × 10(-2); Promoter: hESC: r = 0.995, P = 3.8 × 10(-4); IMR90: r = 0.996, P = 3.2 × 10(-4)). Further investigation involving GC content and methylation status showed the GC content of Alu covered sequences shared a similar pattern with that of the overall sequence, suggesting that Alu elements also function as the GC nucleotide and CpG site provider. In all, our results suggest that the Alu elements may act as an alternative parameter to evaluate the Hi-C data, which is confirmed by the correlation analysis of Alu elements and histone markers. Moreover, the GC-rich Alu sequence can bring high GC content and methylation flexibility to the regions with more distal chromatin contact, regulating the transcription of tissue-specific genes.


Subject(s)
Humans , Alu Elements , Genetics , Base Composition , Binding Sites , Cell Line , Chromatin , Chemistry , Genetics , Metabolism , CpG Islands , DNA , Metabolism , Databases, Genetic , Enhancer Elements, Genetic , Genetics , Genome, Human , Histones , Metabolism , Methylation
14.
Alcohol Clin Exp Res ; 38(7): 1829-31, 2014 Jul.
Article in English | MEDLINE | ID: mdl-25040591

ABSTRACT

Li and colleagues (2014) in this issue report that dietary nicotinic acid (NA) supplementation ameliorates ethanol-induced hepatic steatosis, but a deficiency does not worsen injury induced by alcohol alone. The authors further present some mechanistic insights into the protective role of NA supplementation. Results of this and other previous studies in the context of alcoholic liver injury raise one important question as to what should be an adequate dose of NA that will provide the maximum benefit to hepatic and extrahepatic tissues and with minimum adverse effects.


Subject(s)
Dietary Supplements , Ethanol/toxicity , Fatty Liver, Alcoholic/diet therapy , Niacin/administration & dosage , Niacin/therapeutic use , Animals , Male
15.
Sci Total Environ ; 476-477: 336-45, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24476974

ABSTRACT

Environmental drivers of total mercury (TotHg) concentrations, methylmercury (MeHg) concentrations, and MeHg fractions (a proxy for methylation potential, expressed as %MeHg) were assessed in a synoptic study of 51 lakes in southeast (Boreal) and northeast (Subarctic) Norway. Concentrations of TotHg and MeHg ranged between 0.5-6.6 ng/L and <0.02-0.70 ng/L, respectively. The lakes span wide ranges of explanatory environmental variables, including water chemistry, catchment characteristics, climate conditions, and atmospheric deposition of Hg, sulphur and nitrogen (N). Dissolved organic matter (DOM), measured as total organic carbon (TOC), was the variable most strongly correlated with TotHg (r(2)=0.76) and MeHg (r(2)=0.64) concentrations. Lakes in the Subarctic region had significantly lower TotHg and MeHg concentrations, and %MeHg than lakes in the Boreal region (p<0.01), implying a lower aquatic food web exposure of aqueous Hg species in Subarctic Norway than in the Boreal lakes. Statistical modelling (partial least squares) using data from the Boreal lakes produced models explaining 82%, 75% and 50% of the spatial variation of TotHg and MeHg concentrations and %MeHg, respectively. After TOC, the most significant explanatory variables were N availability, base cation status, and lake and catchment size. We conclude that a key process driving TotHg concentrations is DOM as a transport vector, while the role of DOM for MeHg and %MeHg is likely related to a combination of transport and DOM as a substrate for methylation. Also, negative correlations between MeHg, and catchment and lake size are consistent with in-lake and in-stream de-methylation processes. The statistical relationship suggests that N availability exerts a positive contribution on concentrations of MeHg and %MeHg.


Subject(s)
Environmental Monitoring , Lakes/chemistry , Mercury/analysis , Water Pollutants, Chemical/analysis , Geologic Sediments , Humic Substances/analysis , Methylmercury Compounds/analysis , Norway
SELECTION OF CITATIONS
SEARCH DETAIL
...