Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 97
Filter
1.
Int J Womens Health ; 16: 1023-1032, 2024.
Article in English | MEDLINE | ID: mdl-38835833

ABSTRACT

Objective: To investigate the potential protective impact of miR-10a-modified HUMSCs-derived exosomes on both premature ovarian failure and the functionality of ovarian granulosa cells in a POF model. Methods: KGN cells were co-cultured with cisplatin-diaminedichloroplatinum (II) (10 µM) for 24 h to establish an in vitro POF model. The cells were distributed into three distinct groups: the control group, the POF group, and the POF + HUCMSC group. The plasmid sh-NC, sh-miR-10 a and miR-10 a mimic were transfected into KGN cells. After co-cultured with HUCMSC-EVs for 48 h, they were divided into HUCMSC group, sh-miR-10 a-HUMSCs-exosomes group and miR-10 a-HUMSCs-exosomes group. Flow cytometry was adopted to assess the impact of HUMSCs surface immune antigens and miR-10a-HUCMSCs-exosomes on KGN cell apoptosis. Additionally, the evaluation of cell proliferation was carried out through CCK-8 and EDU assays. Western blot analysis was utilized to detect the Caspase-3, Bax, and Bcl-2 proteins levels. Furthermore, the levels of TNF-α, IL-6, IL-10, MDA, SOD, and CAT were quantified using ELISA. Results: Compared with the Control group, the POF group inhibited the growth of ovarian granulosa cells (P<0.01), reduced the number of EDU cells (P<0.01), and increased the protein expression of Caspase-3 (P<0.05) and Bax (P<0.01). HUMSCs treatment significantly down-regulated the expression of IL-6, TNF-α and MDA, while up-regulating the expression of IL-10, SOD and CAT (P<0.01); the overexpression of miR-10a promoted cell growth, besides, the introduction of miR-10a-HUMSCs-derived exosomes led to an elevation in the proliferation rate of OGCs affected by POF and concurrently suppressed the apoptosis rate. Conclusion: HUMSCs-derived exosomes modified by miR-10a have protective effects on premature ovarian failure and ovarian granulosa cell function in POF model.

2.
Front Vet Sci ; 11: 1398728, 2024.
Article in English | MEDLINE | ID: mdl-38872803

ABSTRACT

The poultry ovary is a preferred target for E. coli and Salmonella infection of tissues, and lipopolysaccharide (LPS) is a critical molecule in infecting the organism and interfering with cell function, invading the ovaries through the cloaca and interfering with progesterone (P4) secretion by follicular granulosa cells (GCs), seriously affecting the health of breeding geese. miRNAs are small, non-coding RNAs with a variety of important regulatory roles. To investigate the mechanism of miR-10a-5p mediated LPS inhibition of progesterone synthesis in goose granulosa cells, Yangzhou geese at peak laying period were selected as experimental animals to verify the expression levels of genes and transcription factors related to progesterone synthesis. In this study, bioinformatic predictions identified miR-10a-5p target gene CYP11A1, and genes and transcription factors related to the sex steroid hormone secretion pathway were screened. We detected that LPS inhibited CYP11A1 expression while increasing miR-10a-5p expression in vivo. Progesterone decreased significantly in goose granulosa cells treatment with 1 µg/mL LPS for 24 h, while progesterone-related genes and regulatory factors were also suppressed. We also determined that the downregulation of miR-10a-5p led to CYP11A1 expression. Overexpression of miR-10a-5p suppressed LPS-induced CYP11A1 expression, resulting in decreased progesterone secretion. Our findings indicated that miR-10a-5p was up-regulated by LPS and inhibited progesterone synthesis by down-regulating CYP11A1. This study provides insight into the molecular mechanisms regulating geese reproduction and ovulation.

3.
Article in English | MEDLINE | ID: mdl-38841745

ABSTRACT

Neural tube defects (NTDs) are characterized by the failure of neural tube closure during embryogenesis and are considered the most common and severe central nervous system anomalies during early development. Recent microRNA (miRNA) expression profiling studies have revealed that the dysregulation of several miRNAs plays an important role in retinoic acid (RA)-induced NTDs. However, the molecular functions of these miRNAs in NTDs remain largely unidentified. Here, we show that miR-10a-5p is significantly upregulated in RA-induced NTDs and results in reduced cell growth due to cell cycle arrest and dysregulation of cell differentiation. Moreover, the cell adhesion molecule L1-like ( Chl1) is identified as a direct target of miR-10a-5p in neural stem cells (NSCs) in vitro, and its expression is reduced in RA-induced NTDs. siRNA-mediated knockdown of intracellular Chl1 affects cell proliferation and differentiation similar to those of miR-10a-5p overexpression, which further leads to the inhibition of the expressions of downstream ERK1/2 MAPK signaling pathway proteins. These cellular responses are abrogated by either increased expression of the direct target of miR-10a-5p ( Chl1) or an ERK agonist such as honokiol. Overall, our study demonstrates that miR-10a-5p plays a major role in the process of NSC growth and differentiation by directly targeting Chl1, which in turn induces the downregulation of the ERK1/2 cascade, suggesting that miR-10a-5p and Chl1 are critical for NTD formation in the development of embryos.

4.
Article in English | MEDLINE | ID: mdl-38507172

ABSTRACT

Long non-coding RNA (lncRNA) is associated with a large number of tumor cellular functions together with chemotherapy resistance in a variety of tumors. LINC00963 was identified to regulate the malignant progression of various cancers. However, whether LINC00963 affects drug resistence in esophageal squamous cell carcinoma (ESCC) and the relevant molecular mechanisms have never been reported. This study aims to investigate the effect of LINC00963 on cisplatin resistance in ESCC. After detecting the level of LINC00963 in human esophageal squamous epithelial cells (HET-1 A), ESCC cells (TE-1) and cisplatin resistant cells of ESCC (TE-1/DDP), TE-1/DDP cell line and nude mouse model that interfered with LINC00963 expression were established. Then, the interaction among LINC00963, miR-10a, and SKA1 was clarified by double luciferase and RNA immunoprecipitation (RIP) assays. Meanwhile, the biological behavior changes of TE-1/DDP cells with miR-10a overexpression or SKA1 silencing were observed by CCK-8, flow cytometry, scratch, Transwell, and colony formation tests. Finally, the biological function of the LINC00963/SKA1 axis was elucidated by rescue experiments. LINC00963 was upregulated in TE-1 and TE-1/DDP cell lines. LINC00963 knockdown inhibited SKA1 expression of both cells and impaired tumorigenicity. Moreover, LINC00963 has a target relationship with miR-10a, and SKA1 is a target gene of miR-10a. MiR-10a overexpression or SKA1 silencing decreased the biological activity of TE-1/DDP cells and the expression of SKA1. Furthermore, SKA1 overexpression reverses the promoting effect of LINC00963 on cisplatin resistance of ESCC. LINC00963 regulates TE-1/DDP cells bioactivity and mediates cisplatin resistance through interacting with miR-10a and upregulating SKA1 expression.

5.
In Vitro Cell Dev Biol Anim ; 60(4): 343-353, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38504085

ABSTRACT

MicroRNAs (miRNAs) play an important role in articular cartilage damage in osteoarthritis (OA). However, the biological role of miRNAs in the chondrogenic differentiation of bone marrow mesenchymal stem cell (BMSC) remains largely unclear. Rabbit bone marrow mesenchymal stem cells (rBMSCs) were isolated, cultured, and identified. Afterwards, rBMSCs were induced to chondrogenic differentiation, examined by Alcian Blue staining. Differentially expressed miRNAs were identified in rBMSCs between induced and non-induced groups by miRNA sequencing analysis, part of which was validated via PCR assay. Cell viability and apoptosis were assessed by CCK-8 assay and Hoechst staining. Saffron O staining was utilized to assess chondrocyte hyperplasia. The expression of specific chondrogenic markers, including COL2A1, SOX9, Runx2, MMP-13, Aggrecan, and BMP-2, were measured at mRNA and protein levels. The association between beta-transducin repeat containing E3 ubiquitin protein ligase (BTRC) and miR-10a-5p in the miRNA family from rabbit (ocu-miR-10a-5p) was determined by luciferase reporter assay. A total of 76 differentially expressed miRNAs, including 52 downregulated and 24 upregulated miRNAs, were identified in rBMSCs from the induced group. Inhibition of ocu-miR-10a-5p suppressed rBMSC viability and chondrogenic differentiation, as well as downregulated the expression of ß-catenin, SOX9, COL2A1, MMP-13, and Runx2. BTRC was predicted and confirmed as a target of ocu-miR-10a-5p. Overexpression of BTRC rescued the promoting impacts of overexpressed ocu-miR-10a-5p on chondrogenic differentiation of rBMSCs and ß-catenin expression. Taken together, our data suggested that ocu-miR-10a-5p facilitated rabbit BMSC survival and chondrogenic differentiation by activating Wnt/ß-catenin signaling through BTRC.


Subject(s)
Cell Differentiation , Chondrogenesis , Mesenchymal Stem Cells , MicroRNAs , Wnt Signaling Pathway , Animals , Rabbits , MicroRNAs/genetics , MicroRNAs/metabolism , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Cell Differentiation/genetics , Chondrogenesis/genetics , Wnt Signaling Pathway/genetics , Chondrocytes/metabolism , Chondrocytes/cytology , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Apoptosis/genetics , Cell Survival , beta Catenin/metabolism , beta Catenin/genetics , Base Sequence , Gene Expression Regulation
6.
BMC Genomics ; 25(1): 158, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38331736

ABSTRACT

BACKGROUND: Studies have confirmed that Infectious bovine rhinotracheitis virus (IBRV) infection induces mitochondrial damage. MicroRNAs (miRNAs) are a class of noncoding RNA molecules, which are involved in various biological processes and pathological changes associated with mitochondrial damage. It is currently unclear whether miRNAs participate in IBRV-induced mitochondrial damage in Madin-Darby bovine kidney (MDBK) cells. RESULTS: In the present study, we used high-throughput sequencing technology, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis to screen for mitochondria-related miRNAs and messenger RNAs (mRNAs). In total, 279 differentially expressed miRNAs and 832 differentially expressed mRNAs were identified in 6 hours (IBRV1) versus 24 hours (IBRV2) after IBRV infection in MDBK cells. GO and KEGG enrichment analysis revealed that 42 differentially expressed mRNAs and 348 target genes of differentially expressed miRNAs were correlated with mitochondrial damage, and the miRNA-mitochondria-related target genes regulatory network was constructed to elucidate their potential regulatory relationships. Among the 10 differentially expressed miRNAs, 8 showed expression patterns consistent with the high-throughput sequencing results. Functional validation results showed that overexpression of miR-10a and miR-182 aggravated mitochondrial damage, while inhibition of miR-10a and miR-182 alleviated mitochondrial damage. CONCLUSIONS: This study not only revealed the expression changes of miRNAs and mRNAs in IBRV-infected MDBK cells, but also revealed possible biological regulatory relationship between them. MiR-10a and miR-182 may have the potential to be developed as biomarkers for the diagnosis and treatment of IBRV. Together, Together, these data and analyses provide additional insights into the roles of miRNA and mRNA in IBRV-induced mitochondria damage.


Subject(s)
Herpesvirus 1, Bovine , MicroRNAs , Animals , Cattle , MicroRNAs/genetics , MicroRNAs/metabolism , Herpesvirus 1, Bovine/genetics , Epithelial Cells/metabolism , Kidney/metabolism , Gene Regulatory Networks , RNA, Messenger/genetics , Gene Expression Profiling
7.
Int J Mol Sci ; 25(4)2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38396943

ABSTRACT

microRNAs (miRNAs) are key regulators of both physiological and pathophysiological mechanisms in diabetes and gastrointestinal (GI) dysmotility. Our previous studies have demonstrated the therapeutic potential of miR-10a-5p mimic and miR-10b-5p mimic (miR-10a/b mimics) in rescuing diabetes and GI dysmotility in murine models of diabetes. In this study, we elucidated the safety profile of a long-term treatment with miR-10a/b mimics in diabetic mice. Male C57BL/6 mice were fed a high-fat, high-sucrose diet (HFHSD) to induce diabetes and treated by five subcutaneous injections of miR-10a/b mimics for a 5 month period. We examined the long-term effects of the miRNA mimics on diabetes and GI dysmotility, including an assessment of potential risks for cancer and inflammation in the liver and colon using biomarkers. HFHSD-induced diabetic mice subcutaneously injected with miR-10a/b mimics on a monthly basis for 5 consecutive months exhibited a marked reduction in fasting blood glucose levels with restoration of insulin and significant weight loss, improved glucose and insulin intolerance, and restored GI transit time. In addition, the miR-10a/b mimic-treated diabetic mice showed no indication of risk for cancer development or inflammation induction in the liver, colon, and blood for 5 months post-injections. This longitudinal study demonstrates that miR-10a/b mimics, when subcutaneously administered in diabetic mice, effectively alleviate diabetes and GI dysmotility for 5 months with no discernible risk for cancer or inflammation in the liver and colon. The sustained efficacy and favorable safety profiles position miR-10a/b mimics as promising candidates in miRNA-based therapeutics for diabetes and GI dysmotility.


Subject(s)
Diabetes Mellitus, Experimental , MicroRNAs , Neoplasms , Male , Animals , Mice , Diabetes Mellitus, Experimental/genetics , Longitudinal Studies , Mice, Inbred C57BL , MicroRNAs/genetics , Inflammation , Liver , Insulin , Colon
8.
Animals (Basel) ; 14(2)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38275797

ABSTRACT

In the swine industry, meat quality, color, and texture are influenced by the excessive differentiation of fat cells. miRNAs have emerged as integral regulators of adipose development. This study delves into the influence of miR-10a-5b on the proliferation and differentiation of pig preadipocytes. Our findings reveal that miR-10a-5b is prevalent across various tissues. It hinders preadipocyte proliferation, amplifies the expression of adipogenic genes, promotes lipid accumulation, and, as a result, advances preadipocyte differentiation. We predict that KLF11 is the target gene of miRNA. A dual-fluorescence reporter assay was conducted to validate the binding sites of miR-10a-5b on the 3'UTR of the KLF11 mRNA. Results showed that miR-10a-5b targeted KLF11 3'UTR and reduced the fluorescence activity of the dual-fluorescent reporter vector. Our research also indicates that miR-10a-5b targets and downregulates the expression of both mRNA and the protein levels of KLF11. During the differentiation of the preadipocytes, KLF11 inhibited adipose differentiation and was able to suppress the promotion of adipose differentiation by miR-10a-5b. This underscores miR-10a-5b's potential as a significant regulator of preadipocyte behavior by modulating KLF11 expression, offering insights into the role of functional miRNAs in fat deposition.

9.
Clin Genitourin Cancer ; 22(1): 23-32, 2024 02.
Article in English | MEDLINE | ID: mdl-37574436

ABSTRACT

BACKGROUND: Renal cell carcinoma (RCC) carries significant morbidity and mortality globally with an increasing incidence per year predominantly represented by clear-cell renal cell carcinoma (ccRCC) which accounts for 70-80% of all RCC cases. MicroRNAs(miRNAs) implicate tumor development and progression in epigenetic mechanisms and available profiling of serum miRNAs potentiate them as diagnostic markers for various cancers. MATERIALS AND METHODS: A total of 108 ccRCC patients and 112 normal controls were enrolled. A 3-stage experiment was conducted to identify differentially expressed serum miRNAs in ccRCC and establish a diagnostic miRNAs panel. Additionally, bioinformatic analysis was employed to predict selected miRNAs' target genes, preform functional annotation and explore the roles in ccRCC. RESULTS: MiR-429, miR-10a-5p, miR-154-5p were found to be up-regulated miRNAs. Inversely, miR-27a-3p and miR-221-3p were found to be down-regulated miRNAs. These 5 miRNAs were selected to construct diagnostic panel by backward stepwise logistic regression analysis and ultimately a 3-miRNA panel (miR-429, miR-10a-5p and miR-27a-3p) was established [area under the curve (AUC) = 0.897, sensitivity = 85.0%, specificity = 83.3%]. CONCLUSION: The panel of 3-miRNA holds promise as a novel, convenient, and noninvasive diagnostic method for early detection of ccRCC.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , MicroRNAs , Humans , Carcinoma, Renal Cell/diagnosis , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , MicroRNAs/genetics , Kidney Neoplasms/diagnosis , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Gene Expression Profiling/methods , Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic
10.
Theriogenology ; 212: 19-29, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37683501

ABSTRACT

During growth, proliferation, differentiation, atresia, ovulation, and luteinization, the morphology and function of granulosa cells (GCs) change. Estrogen and progesterone are steroid hormones secreted by GCs that regulate the ovulation cycle of sows and help maintain pregnancy. miR-10a-5p is highly expressed in GCs and can inhibit GC proliferation. However, the role of miR-10a-5p in the steroid hormone synthesis of porcine GCs is unclear. In this study, miR-10a-5p agomir or antagomir was transfected into GCs. Overexpression of miR-10a-5p in GCs inhibited steroid hormone secretion and significantly downregulated steroid hormone synthesis via 3ß-hydroxy steroid dehydrogenase and cytochrome P450 family 19 subfamily A member 1. Interference with miR-10a-5p had the opposite effect. Bodipy and Oil Red O staining showed that overexpression of miR-10a-5p significantly reduced the formation of lipid droplets. Overexpression significantly inhibited the content of total cholesterol esters in GCs. The mRNA and protein levels of 3-hydroxy-3-methylglutaryl-CoA reductase and scavenger receptor class B member 1 decreased significantly, and the opposite effects were seen by interference with miR-10a-5p. Bioinformatic analysis of potential targets identified cAMP-responsive element binding protein 1 as a potential target and dual-luciferase reporter system analysis confirmed that miR-10a-5p directly targets the 3' untranslated region. These findings suggest that miR-10a-5p inhibits the expression of 3ß-hydroxy steroid dehydrogenase and cytochrome P450 family 19 subfamily A member 1 to inhibit the synthesis of steroid hormones in GCs. In addition, miR-10a-5p inhibits the cholesterol metabolism pathway of GCs to modulate steroid hormone synthesis.


Subject(s)
MicroRNAs , Animals , Female , Apoptosis , Cell Proliferation , Cholesterol/metabolism , Cytochrome P450 Family 19/metabolism , Granulosa Cells , Hormones/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Oxidoreductases/metabolism , Steroids/metabolism , Swine
12.
Mar Biotechnol (NY) ; 25(3): 428-437, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37246207

ABSTRACT

MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression via the recognition of their target messenger RNAs. MiR-10a-3p plays an important role in the process of ossification. In this study, we obtained the precursor sequence of miR-10a-3p in the pearl oyster Pinctada fucata martensii (Pm-miR-10a-3p) and verified its sequence by miR-RACE technology, and detected its expression level in the mantle tissues of the pearl oyster P. f. martensii. Pm-nAChRsα and Pm-NPY were identified as the potential target genes of Pm-miR-10a-3p. After the over-expression of Pm-miR-10a-3p, the target genes Pm-nAChRsα and Pm-NPY were downregulated, and the nacre microstructure became disordered. The Pm-miR-10a-3p mimic obviously inhibited the luciferase activity of the 3' untranslated region of the Pm-NPY gene. When the interaction site was mutated, the inhibitory effect disappeared. Our results suggested that Pm-miR-10a-3p participates in nacre formation in P. f. martensii by targeting Pm-NPY. This study can expand our understanding of the mechanism of biomineralization in pearl oysters.


Subject(s)
MicroRNAs , Nacre , Pinctada , Animals , Pinctada/genetics , Pinctada/metabolism , Nacre/metabolism , MicroRNAs/genetics , Biomineralization , Osteogenesis
13.
Cell Tissue Res ; 393(1): 97-109, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37052702

ABSTRACT

Excessive apoptosis of intervertebral disc cells, namely nucleus pulposus (NP) cells, results in decreased cell density and extracellular matrix (ECM) catabolism, hence leading to intervertebral disc degeneration (IVDD). As a cell model in the present study, a commercially available human NP cell line was utilized. Long noncoding RNAs and microRNAs may regulate the proliferation or apoptosis of human NP cells, hence exerting a significant influence on the occurrence of IVDD. KLF3-AS1 was discovered to be abnormally downregulated in IVDD tissues. Overexpression of KLF3-AS1 enhanced NP cell viability, prevented cell apoptosis, boosted ECM synthesis, and lowered MMP-13 and ADAMTS4 levels. ZBTB20 and KLF3-AS1 were co-expressed in IVDD; ZBTB20 overexpression had similar effects on NP cells, ECM production, and MMP-13 and ADAMTS4 levels as KLF3-AS1 overexpression. miR-10a-3p may target KLF3-AS1 and ZBTB20 and inhibit the expression of ZBTB20. Inhibition of miR-10a-3p enhanced NP cell viability, reduced apoptosis, and enhanced ECM synthesis. KLF3-AS1 overexpression increased ZBTB20 expression, whereas miR-10a-3p overexpression decreased ZBTB20 expression; miR-10a-3p overexpression reduced the effects of KLF3-AS1 on ZBTB20. Overexpression of miR-10a-3p consistently decreased the effects of KLF3-AS1 overexpression on NP cell survival, apoptosis, and ECM synthesis. In conclusion, KLF3-AS1 overexpression may ameliorate degenerative NP cell alterations through the miR-10a-3p/ZBTB20 axis.


Subject(s)
Intervertebral Disc Degeneration , Intervertebral Disc , MicroRNAs , Nucleus Pulposus , RNA, Long Noncoding , Humans , Apoptosis/genetics , Cell Proliferation/genetics , Intervertebral Disc Degeneration/genetics , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Matrix Metalloproteinase 13/genetics , Matrix Metalloproteinase 13/metabolism , MicroRNAs/metabolism , Nerve Tissue Proteins/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Transcription Factors/metabolism
14.
Aging (Albany NY) ; 15(8): 3021-3034, 2023 04 14.
Article in English | MEDLINE | ID: mdl-37100464

ABSTRACT

OBJECTIVE: Gliomas as primary cerebral malignancies frequently occurring in adults have relatively high morbidity and mortality. The underlying role of long non-coding ribonucleic acids (lncRNAs) in malignancies has attracted much attention, among which tumor suppressor candidate 7 (TUSC7) is a novel tumor suppressor gene whose regulatory mechanism in human cerebral gliomas remains inconclusive. METHODS AND RESULTS: In this study, bioinformatics analysis indicated that TUSC7 could specifically bind to microRNA (miR)-10a-5p, and according to quantitative polymerase chain reaction (q-PCR), miR-10a-5p was up-regulated in human glioma cells and negatively correlated with TUSC7 expression. Dual-luciferase reporter gene assay showed the ability of TUSC7 to bind to miR-10a-5p, and overexpression of TUSC7 notably inhibited miR-10a-5p expression, restrained human glioma cell proliferation and migration, and regulated cell cycle and cyclin expression via the brain-derived neurotrophic factor/extracellular signal-regulated kinase (BDNF/ERK) pathway. The inhibitory effect of TUSC7 on miR-10a-5p was also verified by designing miR-10a-5p overexpression and knockdown panels for wound healing, Transwell and Western blotting assays. CONCLUSIONS: TUSC7 suppresses human glioma cell proliferation and migration by negatively modulating miR-10a-5p and inhibiting the BDNF/ERK pathway, thus acting as a tumor suppressor gene in human gliomas.


Subject(s)
Glioma , MicroRNAs , RNA, Long Noncoding , Humans , Extracellular Signal-Regulated MAP Kinases , Brain-Derived Neurotrophic Factor/genetics , RNA, Long Noncoding/genetics , MAP Kinase Signaling System/genetics , Cell Proliferation/genetics , Glioma/genetics , MicroRNAs/genetics , Cell Movement/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic
15.
Hepatol Int ; 17(3): 584-594, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36737504

ABSTRACT

BACKGROUND AND AIMS: Epigenetic modifications are associated with hepatic fat accumulation and non-alcoholic fatty liver disease (NAFLD). However, few epigenetic modifications directly implicated in such processes have been identified during adolescence, a critical developmental window where physiological changes could influence future disease trajectory. To investigate the association between DNA methylation and NAFLD in adolescence, we undertook discovery and validation of novel methylation marks, alongside replication of previously reported marks. APPROACH AND RESULTS: We performed a DNA methylation epigenome-wide association study (EWAS) on DNA from whole blood from 707 Raine Study adolescents phenotyped for steatosis score and NAFLD by ultrasound at age 17. Next, we performed pyrosequencing validation of loci within the most 100 strongly associated differentially methylated CpG sites (dmCpGs) for which ≥ 2 probes per gene remained significant across four statistical models with a nominal p value < 0.007. EWAS identified dmCpGs related to three genes (ANK1, MIR10a, PTPRN2) that met our criteria for pyrosequencing. Of the dmCpGs and surrounding loci that were pyrosequenced (ANK1 n = 6, MIR10a n = 7, PTPRN2 n = 3), three dmCpGs in ANK1 and two in MIR10a were significantly associated with NAFLD in adolescence. After adjustment for waist circumference only dmCpGs in ANK1 remained significant. These ANK1 CpGs were also associated with γ-glutamyl transferase and alanine aminotransferase concentrations. Three of twenty-two differentially methylated dmCpGs previously associated with adult NAFLD were associated with NAFLD in adolescence (all adjusted p < 2.3 × 10-3). CONCLUSIONS: We identified novel DNA methylation loci associated with NAFLD and serum liver biochemistry markers during adolescence, implicating putative dmCpG/gene regulatory pathways and providing insights for future mechanistic studies.


Subject(s)
DNA Methylation , Non-alcoholic Fatty Liver Disease , Adult , Humans , Adolescent , Non-alcoholic Fatty Liver Disease/genetics , Epigenesis, Genetic , DNA , Biomarkers
16.
J Endod ; 49(3): 286-293, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36627081

ABSTRACT

INTRODUCTION: MicroRNAs have been shown to play a role in the pathogenesis of apical periodontitis. Upregulation of miR-10a-5p and downregulation of miR-891a-5p were previously reported in apical periodontitis samples. This study aims to perform a functional characterization of miR-10a-5p, investigating its capacity to regulate the expression of inflammatory cytokines and growth factors, as well as a possible co-regulation mechanism with miR-891a-5p in the development of apical periodontitis. METHODS: miR-10a-5p mimics/controls and miR-891a-5p inhibitors/controls were introduced to human K-562 cells in the presence or absence of lipopolysaccharide. Total RNA was extracted from cell lysates, and target genes were examined via quantitative reverse transcription-polymerase chain reaction. Cell lysates were also subjected to proteomics analysis. Furthermore, mimics of miR-10a-5p and inhibitors of miR-891a-5p were co-transfected into K-562 cells. RNA sequencing and quantitative reverse transcription-polymerase chain reaction were carried out to examine their target genes. RESULTS: Overexpression of miR-10a-5p led to downregulation of tumor necrosis factor-alpha and interleukin-1 beta mRNA and upregulation of transforming growth factor-beta 1 (TGFB1) mRNA expression, whereas interleukin 3 and TGF-ß1 proteins were upregulated. Simultaneous overexpression of miR-10a-5p and inhibition of miR-891a-5p further increased TGFB1 mRNA transcript levels. RNA sequencing revealed that genes co-regulated by miR-10a-5p and miR-891a-5p may be involved in apical periodontitis-related pathways such as tumor necrosis factor, transient receptor potential, and vascular endothelial growth factor signaling pathways. CONCLUSIONS: miR-10a-5p may modulate the expression of multiple inflammatory cytokines and growth factors such as tumor necrosis factor-alpha, IL-1ß, interleukin 3, and TGF-ß1. In addition, miR-10a-5p and miR-891a-5p cooperatively regulate TGFB1 gene expression, and the gene network of this co-regulation is integrated with many pathways in apical periodontitis.


Subject(s)
MicroRNAs , Periapical Periodontitis , Humans , MicroRNAs/metabolism , Cytokines/metabolism , Transforming Growth Factor beta1 , Interleukin-3 , Tumor Necrosis Factor-alpha , Vascular Endothelial Growth Factor A , Anti-Inflammatory Agents
17.
Adv Healthc Mater ; 12(12): e2203087, 2023 05.
Article in English | MEDLINE | ID: mdl-36652551

ABSTRACT

Erectile dysfunction (ED) is an adverse side effect of pelvic surgery with no effective treatment. In this study, it is explored whether melatonin could improve the therapeutic effects of small extracellular vesicles (sEVs), derived from mesenchymal stem cells (MSCs), on cavernous nerve injury (CNI) ED, and the underlying mechanisms are investigated. The sEVs from melatonin-pretreated MSCs (MT-EVs) and MSCs (NC-EVs) are isolated and applied to CNI ED. Transplantation of MT-EVs remarkably increases erectile function and reduces phenotypic modulation in CNI ED rats. The therapeutic effects of MT-EVs are superior to those of NC-EVs. Sequencing implies that miR-10a-3p is enriched in MT-EVs, and directly targets the protein kinase inhibitor α (PKIA). After the suppression of miR-10a-3p, the therapeutic actions of MT-EVs are abolished, but are rescued by PKIA. Similarly, RhoA/ROCK is inhibited by MT-EVs, but this action is reversed by suppressing miR-10a-3p, accompanied by corresponding changes in PKIA. In conclusion, transplantation of MT-EVs could significantly alleviate CNI ED. MT-EVs may relieve the phenotypic modulation of the corpora cavernosum smooth muscle cells via the miR-10a-3p/PKIA/RhoA/ROCK signaling axis. These nanovesicles should be potential therapeutic vectors or bioactive materials for CNI ED.


Subject(s)
Erectile Dysfunction , Extracellular Vesicles , Melatonin , Mesenchymal Stem Cells , MicroRNAs , Male , Humans , Rats , Animals , Erectile Dysfunction/drug therapy , Erectile Dysfunction/metabolism , Melatonin/pharmacology , Melatonin/metabolism , Melatonin/therapeutic use , Extracellular Vesicles/metabolism , Mesenchymal Stem Cells/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism
18.
J Inflamm Res ; 15: 6097-6104, 2022.
Article in English | MEDLINE | ID: mdl-36386576

ABSTRACT

Purpose: Previous studies have shown that microRNA is involved in regulating a variety of human inflammatory diseases. The purpose of this study was to investigate the expression of miR-10a-3p in the blood of patients with severe pneumonia and evaluate its value in the diagnosis and prognosis of severe pneumonia. Patients and Methods: Seventy patients with severe pneumonia and 75 healthy individuals were included in this study. Venous blood of all subjects was obtained for RT-qPCR analysis to obtain the relative expression level of miR-10a-5p. The diagnostic accuracy of miR-10a-5p for severe pneumonia was assessed by ROC curve. After standardized treatment, the prognosis of patients with severe pneumonia was analyzed by a 28-day follow-up method. Kaplan-Meier curve and multivariate Cox regression analysis were used to determine the basic factors influencing the prognosis of patients. Results: Compared with healthy control, serum miR-10a-3p expression in patients with severe pneumonia was distinctly upregulated (P < 0.001). Besides, ROC analysis showed that miR-10a-3p had high diagnostic accuracy for severe pneumonia, with an AUC of 0.881, sensitivity and specificity of 75.7% and 84.0%, respectively. Kaplan-Meier curve exhibited that high miR-10a-3p expression group had a higher probability of death than those with low miR-10a-3p expression. Multivariate Cox regression analysis demonstrated that miR-10a-3p and CRP were independent risk factors affecting the prognosis of patients. Conclusion: The expression of miR-10a-3p was increased in patients with severe pneumonia, and abnormally expressed miR-10a-3p has the potential to be used as a diagnostic and prognostic marker for severe pneumonia, which provides a new biological direction for the early detection and risk assessment of severe pneumonia.

19.
BMC Cancer ; 22(1): 1044, 2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36199080

ABSTRACT

BACKGROUND: To investigate the potential role of Long Non-coding RNAs (lncRNAs) in the progression of osteosarcoma. METHODS: The candidate lncRNAs were screened with RNA-seq and confirmed with quantitative real-time PCR. Using MTS, transwell assay, and flow cytometric analysis, the effects of overexpressed lnc-SELPLG-2:1 on cell functions were determined. Immunohistochemical staining, fluorescence in situ hybridization, and luciferase reporter assay were used to evaluate the potential mechanism of lnc-SELPLG-2:1 in vivo and in vitro using a tumor model. Moreover, the effects of overexpression of hsa-miR-10a-5p on the functions of SaOS2 cells were determined using functional cell analysis. A response test was used to confirm the mechanism by which lnc-SELPLG-2:1 sponge hsa-miR-10a-5p promotes the expression of BTRC to regulate osteosarcoma. RESULTS: Lnc-SELPLG-2:1 was highly expressed in osteosarcoma compared to normal cells and bone and marrow samples. Inhibition of lnc-SELPLG-2:1 accelerated cell apoptosis and suppressed cell proliferation, migration, and invasion, whereas lnc-SELPLG-2:1 overexpression had the opposite effect. Moreover, inhibiting lnc-SELPLG-2:1 in an in vivo model decreased tumor size and suppressed the expression of cell migration-related proteins. The prediction, dual luciferase assay, and response test results indicated that hsa-miR-10-5p and BTRC were involved in the lnc-SELPLG-2:1 cascade. Unlike lnc-SELPLG-2:1, hsa-hsa-miR-10a-5p had opposite expression and function. Competitive binding of lnc-SELPLG-2:1 to hsa-hsa-miR-10a-5p prevented BTRC from miRNA-mediated degradation, thereby activating the expression of VIM, MMP9, and MMP2, promoting osteosarcoma cell proliferation, migration, and invasion, and inhibiting apoptosis. CONCLUSION: Lnc-SELPLG-2:1 is an oncogenesis activator in osteosarcoma, and its functions are performed via hsa-miR-10a-5p /BTRC cascade.


Subject(s)
Bone Neoplasms , MicroRNAs , Osteosarcoma , RNA, Long Noncoding , Bone Neoplasms/pathology , Carcinogenesis/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Humans , In Situ Hybridization, Fluorescence , Matrix Metalloproteinase 2 , Matrix Metalloproteinase 9 , Membrane Glycoproteins , MicroRNAs/genetics , MicroRNAs/metabolism , Osteosarcoma/pathology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
20.
J Orthop Surg Res ; 17(1): 464, 2022 Oct 23.
Article in English | MEDLINE | ID: mdl-36274134

ABSTRACT

BACKGROUND: LncRNA PCED1B-AS1 (PCED1B-AS1) promotes glioma. This study aimed to investigate its role in osteosarcoma (OS). METHODS: The study included 60 OS patients. Accumulation of miR-10a and PCED1B-AS1 in tissues from OS patients and cell lines was determined by RT-qPCR. Cell transfections were performed for interaction analysis. Participation of PCED1B-AS1 siRNA silencing and miR-10a overexpression in proliferation, invasion, and migration of U2OS and MG-63 cells was analyzed by cell proliferation assay and Transwell assay. RESULTS: PCED1B-AS1 level was increased in OS and positively correlated with miR-10a level. In OS cells, PCED1B-AS1 siRNA silencing downregulated miR-10a. Methylation-specific PCR analysis showed that PCED1B-AS1 siRNA silencing decreased the methylation of miR-10a gene promoter. Moreover, PCED1B-AS1 siRNA silencing suppressed OS cell proliferation, invasion, and migration. In addition, miR-10a overexpression attenuated the effects of PCED1B-AS1 siRNA silencing. CONCLUSION: PCED1B-AS1 knockdown may inhibit OS cell proliferation and movement by regulating miR-10 gene methylation.


Subject(s)
Bone Neoplasms , MicroRNAs , Osteosarcoma , RNA, Long Noncoding , Humans , Bone Neoplasms/genetics , Bone Neoplasms/metabolism , Cell Line, Tumor , Cell Movement , Cell Proliferation , Down-Regulation , Gene Expression Regulation, Neoplastic , Methylation , MicroRNAs/metabolism , Osteosarcoma/metabolism , RNA, Long Noncoding/metabolism , RNA, Small Interfering
SELECTION OF CITATIONS
SEARCH DETAIL
...