Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 131
Filter
1.
ACS Infect Dis ; 10(5): 1654-1663, 2024 05 10.
Article in English | MEDLINE | ID: mdl-38578697

ABSTRACT

MicroRNA-mediated metabolic reprogramming recently has been identified as an important strategy for Mycobacterium tuberculosis (Mtb) to evade host immune responses. However, it is unknown what role microRNA-144-3p (miR-144-3p) plays in cellular metabolism during Mtb infection. Here, we report the meaning of miR-144-3p-mediated lipid accumulation for Mtb-macrophage interplay. Mtb infection was shown to upregulate the expression of miR-144-3p in macrophages. By targeting peroxisome proliferator-activated receptor α (PPARα) and ATP-binding cassette transporter A1 (ABCA1), miR-144-3p overexpression promoted lipid accumulation and bacterial survival in Mtb-infected macrophages, while miR-144-3p inhibition had the opposite effect. Furthermore, reprogramming of host lipid metabolism by miR-144-3p suppressed autophagy in response to Mtb infection. Our findings uncover that miR-144-3p regulates host metabolism and immune responses to Mtb by targeting PPARα and ABCA1, suggesting a potential host-directed tuberculosis therapy by targeting the interface of miRNA and lipid metabolism.


Subject(s)
ATP Binding Cassette Transporter 1 , Autophagy , Lipid Metabolism , MicroRNAs , PPAR alpha , Tuberculosis , Animals , Humans , Mice , ATP Binding Cassette Transporter 1/metabolism , ATP Binding Cassette Transporter 1/genetics , Host-Pathogen Interactions , Macrophages/microbiology , Macrophages/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Mycobacterium tuberculosis/genetics , PPAR alpha/metabolism , PPAR alpha/genetics , Tuberculosis/microbiology , Tuberculosis/pathology
2.
Heliyon ; 10(3): e24204, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38322878

ABSTRACT

Despite observations of decreased ANGPTL3 (angiopoietin-like protein 3) levels in tubular atrophy and renal interstitial fibrosis (RIF), its functional implications and regulatory mechanisms in RIF remain unclear. This investigation employed unilateral ureteral obstruction (UUO) mice as in vivo model and human proximal kidney tubuloepithelial HK-2 cells under TGF-ß1 treatment as in vitro model to explore RIF. The RIF extent was evaluated using H & E staining and Masson's trichrome staining. There was a significant decrease in ANGPTL3 levels and an increase in miR-144-3p, accompanied by heightened expressions of α-SMA, p-PI3K, p-AKT, Collagen I, and Fibronectin in the UUO mice and HK-2 cells treated with TGF-ß1. Enhancing ANGPTL3 expression or suppressing miR-144-3p mitigated TGF-ß1-induced cellular apoptosis, inflammation, and PI3K/AKT signaling pathway activation, as evidenced by altered levels of α-SMA, Collagen I, Fibronectin, and associated signaling markers. Using a bioinformatics approach, a miR-144-3p binding site was discovered on the ANGPTL3 mRNA, and this finding was subsequently confirmed through luciferase reporter assay. In HK-2 cells stimulated with TGF-ß1, the suppression of ANGPTL3 negated the effects of inhibiting miR-144-3p. Under comparable conditions, the use of LY294002, an inhibitor of the PI3K/AKT pathway, nullified the effects caused by the knockdown of ANGPTL3. Collectively, these findings indicate that miR-144-3p exacerbates RIF through PI3K/AKT pathway activation by targeting ANGPTL3, highlighting a novel potential therapeutic target for RIF management.

3.
Cytotechnology ; 76(1): 53-68, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38304630

ABSTRACT

In recent years, gastric cancer (GC) is still one of the major public health burdens in the world. It is reported that exosome circular RNA (circRNA) is involved in the GC progression. However, the function and potential mechanism of circGMPS in GC remains unclear and needs further exploration. In this study, we isolated and identified exosomes from serum by TEM, NTA analysis and Western blot. RNA expression was evaluated by qRT-PCR. Western blot was employed to examine protein expression. Cell proliferation was measured using CCK-8. Transwell assay was adopted to analyze cell migration and invasion. The relationship between genes was explored through bioinformatics analysis, dual-luciferase reporter gene assay and spearman correlation coefficient. We found that circGMPS was elevated in GC exosomes, tissues and cells. Poor prognosis of GC patients was related to high circGMPS expression. Both exosome co-culture with cells and insertion of circGMPS clearly promoted cell progression. Mechanically, circGMPS sponged miR-144-3p to regulate PUM1. Inhibition of PUM1 or miR-144-3p overexpression inhibited the malignant GC cell progression. Our data confirmed that exosome-derived circGMPS boosted malignant progression by miR-144-3p/PUM1 axis in GC cells, providing strong evidences for circGMPS as a clinical biomarker of GC treatment. Supplementary Information: The online version contains supplementary material available at 10.1007/s10616-023-00597-9.

4.
Neurobiol Dis ; 192: 106415, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38266934

ABSTRACT

AIMS: The prevalence of depression is higher in heart failure (HF) patients. Early screening of depressive symptoms in HF patients and timely intervention can help to improve patients' quality of life and prognosis. This study aims to explore diagnostic biomarkers by examining the expression profile of serum exosomal miRNAs in HF patients with depressive symptoms. METHODS: Serum exosomal RNA was isolated and extracted from 6 HF patients with depressive symptoms (HF-DS) and 6 HF patients without depressive symptoms (HF-NDS). High-throughput sequencing was performed to obtain miRNA expression profiles and target genes were predicted for the screened differentially expressed miRNAs. Biological functions of the target genes were analyzed through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Subsequently, we collected serum exosomal RNAs from HF-DS (n = 20) and HF-NDS (n = 20). The differentially expressed miRNAs selected from the sequencing results were validated using reverse transcription quantitative polymerase chain reaction (RT-qPCR). Finally, the diagnostic efficacy of the differentially expressed exosomal miRNAs for HF-DS was evaluated by using receiver operating characteristic (ROC) curves. RESULTS: A total of 19 significantly differentially expressed exosomal miRNAs were screened by high-throughput sequencing, consisting of 12 up-regulated and 7 down-regulated exosomal miRNAs. RT-qPCR validation demonstrated that the expression level of exo-miR-144-3p was significantly down-regulated in the HF-DS group, and the expression levels of exo-miR-625-3p and exo-miR-7856-5p were significantly up-regulated. In addition, the expression level of exo-miR-144-3p was negatively correlated with the severity of depressive symptoms in HF patients, and that the area under the curve (AUC) of exo-miR-144-3p for diagnosing HF-DS was 0.763. CONCLUSIONS: In this study, we examined the serum exosomal miRNA expression profiles of HF patients with depressive symptoms and found that lower level of exo-miR-144-3p was associated with more severe depressive symptoms. Exo-miR-144-3p is a potential biomarker for the diagnosis of HF-DS.


Subject(s)
Heart Failure , MicroRNAs , Humans , Depression/diagnosis , Quality of Life , MicroRNAs/genetics , Biomarkers , Heart Failure/diagnosis
5.
BMC Cancer ; 24(1): 79, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38225540

ABSTRACT

BACKGROUND: GEFT is a key regulator of tumorigenesis in rhabdomyosarcoma (RMS), and overexpression of GEFT is significantly correlated with distant metastasis, lymph node metastasis, and a poor prognosis, yet the underlying molecular mechanism is still poorly understood. This study aimed to investigate and validate the molecular mechanism of GEFT-activated lncRNAs in regulating mTOR expression to promote the progression of RMS. METHODS: GEFT-regulated lncRNAs were identified through microarray analysis. The effects of GEFT-regulated lncRNAs on the proliferation, apoptosis, invasion, and migration of RMS cells were confirmed through cell functional experiments. The target miRNAs of GEFT-activated lncRNAs in the regulation of mTOR expression were predicted by bioinformatics analysis combined with quantitative real-time polymerase chain reaction (qRT-PCR) analysis. The expression of lnc-PSMA8-1, miR-144-3p, and mTOR was measured by qRT-PCR in RMS tissue samples and cell lines. The regulatory mechanisms of the lnc-PSMA8-1-miR-144-3p-mTOR signaling axis were verified by RNA-binding protein immunoprecipitation (RIP), a luciferase reporter assay, qRT-PCR analysis, Western blot analysis, and cell functional experiments. RESULTS: The microarray-based analysis identified 31 differentially expressed lncRNAs (fold change > 2.0, P < 0.05). Silencing the 4 upregulated lncRNAs (lnc-CEACAM19-1, lnc-VWCE-2, lnc-GPX7-1, and lnc-PSMA8-1) and overexpressing the downregulated lnc-FAM59A-1 inhibited the proliferation, invasion, and migration and induced the apoptosis of RMS cells. Among the factors analyzed, the expression of lnc-PSMA8-1, miR-144-3p, and mTOR in RMS tissue samples and cells was consistent with the correlations among their expression indicated by the lncRNA-miRNA-mRNA regulatory network based on the ceRNA hypothesis. lnc-PSMA8-1 promoted RMS progression by competitively binding to miR-144-3p to regulate mTOR expression. CONCLUSION: Our research demonstrated that lnc-PSMA8-1 was activated by GEFT and that the former positively regulated mTOR expression by sponging miR-144-3p to promote the progression of RMS. Therefore, targeting this network may constitute a potential therapeutic approach for the management of RMS.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Rhabdomyosarcoma , TOR Serine-Threonine Kinases , Humans , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , MicroRNAs/metabolism , Rhabdomyosarcoma/genetics , Rhabdomyosarcoma/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Up-Regulation
6.
J Biochem Mol Toxicol ; 38(1): e23565, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37867456

ABSTRACT

This study was designed to explore the role of circ_0001982 in breast cancer (BC) development. Quantitative real-time polymerase chain reaction and western blot analysis assays were used to determine circ_0001982, miR-144-3p, and gse1 coiled-coil protein (GSE1) expression. Functional assays were performed to evaluate cell proliferation, apoptosis, migration, and invasion. The glycolysis was analyzed with commercial kits. Dual-luciferase reporter assay and RNA immunoprecipitation assays were conducted to analyze the relationships among circ_0001982, miR-144-3p, and GSE1. A murine xenograft model assay was performed to determine circ_0001982-induced effects on BC cell tumor properties in vivo. Circ_0001982 expression was upregulated, but miR-144-3p was reduced in BC tissues and cells in comparison with normal breast tissues and normal human mammary epithelial cells. Circ_0001982 knockdown or miR-144-3p overexpression inhibited BC cell proliferation, glycolysis, migration and invasion, and promoted apoptosis. Circ_0001982 sponged miR-144-3p and negatively regulated miR-144-3p expression in BC cells. In addition, GSE1 was identified as a target mRNA of miR-144-3p. Ectopic GSE1 expression relieved circ_0001982 depletion-induced effects on BC cell tumor properties. Furthermore, circ_0001982 absence suppressed BC cell tumor properties in vivo. Circ_0001982 contributed to the BC cell tumor properties by regulating the miR-144-3p-GSE1 axis.


Subject(s)
Breast Neoplasms , MicroRNAs , Humans , Animals , Mice , Female , Breast Neoplasms/genetics , Breast , Apoptosis , Blotting, Western , Cell Proliferation , MicroRNAs/genetics , Cell Line, Tumor , Neoplasm Proteins
7.
Int J Mol Sci ; 24(24)2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38139235

ABSTRACT

Type 2 diabetes mellitus (T2D) is a chronic metabolic disease characterized by insulin resistance and ß-cell dysfunction and leading to many micro- and macrovascular complications. In this study we analyzed the circulating miRNA expression profiles in plasma samples from 44 patients with T2D and 22 healthy individuals using next generation sequencing and detected 229 differentially expressed miRNAs. An increased level of miR-5588-5p, miR-125b-2-3p, miR-1284, and a reduced level of miR-496 in T2D patients was verified. We also compared the expression landscapes in the same group of patients depending on body mass index and identified differential expression of miR-144-3p and miR-99a-5p in obese individuals. Identification and functional analysis of putative target genes was performed for miR-5588-5p, miR-125b-2-3p, miR-1284, and miR-496, showing chromatin modifying enzymes and apoptotic genes being among the significantly enriched pathways.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , MicroRNAs , Humans , Diabetes Mellitus, Type 2/genetics , Pilot Projects , MicroRNAs/metabolism , Gene Expression Profiling
8.
BMC Pulm Med ; 23(1): 513, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38114929

ABSTRACT

OBJECTIVE: The purpose of this study was to explore the expression level of SNHG4 in patients with COPD and its diagnostic value in COPD, to probe the biological function of SNHG4 in COPD at the cellular level, and to reveal the interaction between SNHG4 and miR-144-3p/EZH2 axis. METHODS: The serum levels of SNHG4, miR-144-3p and EZH2 in healthy people and patients with COPD were detected by RT-qPCR. The diagnostic value of SNHG4 in COPD was evaluated by ROC curve. Pearson method was chosen to estimate the correlation between SNHG4 and clinical indicators in patients with COPD. Cigarette smoke extract (CSE) was obtained, and Beas-2B cells were exposed with 2% CSE to establish an inflammatory cell model of COPD in vitro. MTT assay was used to detect cell viability, flow cytometry was used to evaluate cell apoptosis, and ELISA was performed to detect inflammatory cytokines. Dual-luciferase reporting assay was carried out to verify the targeting of lncRNA-miRNA or miRNA-mRNA. RESULTS: (1) The expression of SNHG4 is decreased in patients with COPD, and the expression level in acute exacerbation COPD was lower than that in stable COPD. SNHG4 demonstrated high diagnostic accuracy in distinguishing between stable and acute exacerbation COPD. (2) The expression of SNHG4 was decreased in CSE-induced Beas-2B cells, and overexpression of SNHG4 was beneficial to alleviate CSE-induced apoptosis and inflammation. (3) The expression of miR-144-3p is up-regulated in patients with COPD and CSE-induced Beas-2B cells. MiR-144-3p has a targeting relationship with SNHG4, which is negatively regulated by SNHG4. Overexpression of miR-144-3p could counteract the beneficial effects of increased SNHG4 on CSE-induced cells. (4) The expression of EZH2 is reduced in patients with COPD and CSE-induced Beas-2B cells. Bioinformatics analysis and luciferase reporter gene confirmed that EZH2 is the downstream target gene of miR-144-3p and is negatively regulated by miR-144-3p. CONCLUSION: The expression of SNHG4 decreased in patients with COPD, and it may promote the progression of COPD by inhibiting the viability, promoting apoptosis and inflammatory response of bronchial epithelial cells via regulating the miR-144-3p/EZH2 axis.


Subject(s)
Cigarette Smoking , MicroRNAs , Pulmonary Disease, Chronic Obstructive , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Cigarette Smoking/adverse effects , MicroRNAs/genetics , MicroRNAs/metabolism , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/metabolism , Luciferases , Apoptosis , Enhancer of Zeste Homolog 2 Protein/genetics
9.
Front Cell Dev Biol ; 11: 1249174, 2023.
Article in English | MEDLINE | ID: mdl-38033864

ABSTRACT

Objective: Circular RNAs (circRNAs) have been shown to participate in various cancers via sponging miRNAs (microRNAs). However, their role in lung adenocarcinoma (LUAD) remains elusive. Methods: The transcriptome data and corresponding clinical information of lung adenocarcinoma samples were extracted from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database. Differentially expressed circRNAs (DEcircRNAs), differentially expressed miRNAs (DEmiRNAs), and differentially expressed genes (DEgenes) were identified and further used to constructed a circRNA-associated competing endogenous RNA (ceRNA) network. Real-Time qPCR analysis was conducted to examine gene expression at transcriptional level. The regulatory mechanisms of circRNA-miRNA-gene were validated by dual-luciferase reporter array and RNA pull-down assay. Cell growth, migration and invasion were evaluated by CCK-8 assay, colony formation assay and transwell assay, respectively. Results: Based on public microarray data, we systematically constructed a circRNA-associated ceRNA network including 11 DEcircRNAs, 8 DEmiRNAs and 49 DEgenes. Among the ceRNA network, we found that circ-0002727 was a key regulatory and was further confirmed to be upregulated in LUAD cancer cells. Subsequently, we found that silencing of circ-0002727 significantly suppressed the LUAD cell proliferation, migration and invasion in vitro. Mechanistically, we showed that circ-0002727 could competitively bind miR-144-3p to enhance the KIF14 expression in LUAD cells. Rescue assays indicated that circ-0002727 could regulate LUAD cell proliferation through modulating miR-144-3p/KIF14 pathway. Besides, KIF14 expression level was positively correlated with TNM stage and metastasis, and patients with high KIF14 expression suffered poor prognosis. Conclusion: Taken together, our study revealed that circ-0002727 could act as a ceRNA to regulate LUAD progression via modulating miR-144-3p/KIF14 pathway, providing a potential therapeutic target for LUAD.

10.
Mol Cancer ; 22(1): 113, 2023 07 17.
Article in English | MEDLINE | ID: mdl-37461104

ABSTRACT

BACKGROUND: Osteosarcoma (OS) is the most prevalent orthopedic malignancy with a dismal prognosis. The high iron absorption rate in OS cells of patients suggests that ferroptosis may be related to the progression of OS, but its potential molecular regulatory role is still unclear. Based on the ability to couple with exosomes for targeted delivery of signals, exosome-derived micro ribonucleic acids (miRNAs) can potentially serve as diagnostic biomarkers for OS. METHODS: We identified ferroptosis-related miRNAs and messenger ribonucleic acids(mRNAs) in OS using bioinformatics analysis and performed survival analysis. Then we measured miRNA expression levels through exosome microarray sequencing, and used RT-qPCR and IHC to verify the expression level of miR-144-3p and ZEB1. Stable gene expression cell lines were fabricated for in vitro experiments. Cell viability, migration and invasion were determined by CCK-8 and transwell experiment. Use the corresponding reagent kit to detect GSH/GSSG ratio, Fe2+ level, MDA level and ROS level, and measure the expression levels of GPX4, ACSL4 and xCT through RT-qPCR and WB. We also constructed nude mice model for in vivo experiments. Finally, the stability of the miRNA/mRNA axis was verified through functional rescue experiments. RESULTS: Low expression of miR-144-3p and high expression of ZEB1 in OS cell lines and tissues was observed. Overexpression of miR-144-3p can promote ferroptosis, reduce the survival ability of OS cells, and prevent the progression of OS. In addition, overexpression of miR-144-3p can downregulate the expression of ZEB1 in cell lines and nude mice. Knockdown of miR-144-3p has the opposite effect. The functional rescue experiment validated that miR-144-3p can regulate downstream ZEB1, and participates in the occurrence and development of OS by interfering with redox homeostasis and iron metabolism. CONCLUSIONS: MiR-144-3p can induce the occurrence of ferroptosis by negatively regulating the expression of ZEB1, thereby inhibiting the proliferation, migration, and invasion of OS cells.


Subject(s)
Bone Neoplasms , Exosomes , Ferroptosis , MicroRNAs , Osteosarcoma , Animals , Mice , Bone Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Exosomes/metabolism , Ferroptosis/genetics , Iron , Mice, Nude , MicroRNAs/genetics , MicroRNAs/metabolism , Osteosarcoma/pathology , Humans
11.
Arthritis Res Ther ; 25(1): 106, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37340458

ABSTRACT

BACKGROUND: Long-stranded non-coding RNA TUG1 is lowly expressed in osteoarthritic chondrocytes. This study aimed to elucidate the role of TUG1 in osteoarthritic cartilage damage and the underlying mechanisms. METHODS: Combined database analysis, using primary chondrocytes as well as the C28/I2 cell line, was performed by qRT-PCR, Western blotting, and immunofluorescence to determine the expression of TUG1, miR-144-3p, DUSP1, and other target proteins. Dual luciferase reporter gene and RIP to verify direct interaction of TUG1 with miR-144-3-p and miR-144-3-p with DUSP1, Annexin V-FITC/PI double staining to detect apoptosis. CCK-8 to detect cell proliferation. The biological significance of TUG1, miR-144-3p, and DUSP1 was assessed in vitro experiments using siRNA for TUG1, mimic and repressor for miR-144-3p, and overexpression plasmid for DUSP1. In this study, all data were subjected to a t-test or one-way analysis of variance with a p-value < 0.05 as the cutoff. RESULTS: TUG1 expression was closely associated with osteoarthritic chondrocyte damage, and knockdown of TUG1 significantly promoted chondrocyte apoptosis and inflammation. In the present study, we found that TUG1 inhibited chondrocyte apoptosis and inflammation by competitively binding miR-144-3p, deregulating the negative regulatory effect of miR-144-3p on DUSP1, promoting DUSP1 expression, and inhibiting the p38 MAPK signaling pathway. CONCLUSIONS: In conclusion, our study clarifies the role of the ceRNA regulatory network of TUG1/miR-144-3p/DUSP1/P38 MAPK in OA cartilage injury and provides an experimental and theoretical basis for genetic engineering tools to promote articular cartilage repair.


Subject(s)
MicroRNAs , Osteoarthritis , RNA, Long Noncoding , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Line, Tumor , Cartilage/metabolism , Chondrocytes/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Osteoarthritis/genetics , Osteoarthritis/metabolism , Cell Proliferation/genetics , Inflammation/metabolism , Apoptosis/genetics
12.
Fundam Clin Pharmacol ; 37(6): 1129-1138, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37350460

ABSTRACT

BACKGROUND: Ginsenoside RT4 (RT4) is a new biologically active compound extracted from ginseng that possesses numerous medicinal and pharmacological properties. However, its potential therapeutic effect of ginsenoside RT4 on ulcerative colitis remains unknown. METHODS AND RESULTS: In this study, we investigated the anti-inflammatory effects of ginsenoside RT4 and its underlying molecular mechanism in the treatment of ulcerative colitis mice induced with dextran sulfate sodium (DSS). Our results demonstrate that ginsenoside RT4 effectively reduced weight, shortening of colonic tract length, colonic bowel damage, and disease activity index (DAI) scores in DSS-induced colitis mice. Additionally, ginsenoside RT4 regulates miR-144-3p expression in DSS-induced colitis mice, and we further confirmed that the solute carrier family 7 member 11 (SLC7A11) was the target gene of miR-144-3p by database analysis. Finally, ginsenoside RT4 inhibits the activation of the miR-144-3p/SLC7A11 signaling pathway, which alleviates colitis. Ginsenoside RT4 significantly decreased the expression of pro-inflammatory cytokines TNF-α and IL-1ß and increased the anti-inflammatory cytokine IL-10. CONCLUSIONS: These findings suggest that ginsenoside RT4 may have therapeutic potential for treating ulcerative colitis by downregulating levels of miR-144-3p/SLC7A11 signaling pathway, which are expected to be useful in treating clinical ulcerative colitis.


Subject(s)
Colitis, Ulcerative , Colitis , Ginsenosides , MicroRNAs , Animals , Mice , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Ginsenosides/pharmacology , Ginsenosides/metabolism , Ginsenosides/therapeutic use , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Colon , Signal Transduction , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Cytokines/metabolism , MicroRNAs/metabolism , Mice, Inbred C57BL , Disease Models, Animal
13.
Mol Nutr Food Res ; 67(12): e2200674, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36987812

ABSTRACT

SCOPE: Dityrosine (DT) is a protein oxidation marker present in many high-protein foods, such as dairy and meat products. Chronic dietary intake of DT induces oxidative stress damage in the liver and impairs energy metabolism. This study aims to investigate the mechanisms underlying the effects of DT on disrupted hepatic energy metabolism. METHODS AND RESULTS: The study investigates hepatic lipid accumulation, redox status imbalance, mitochondrial dysfunction, and energy metabolism disorders in 4-week-old C57BL/6J mice after 35 days of DT (420 µg kg-1 body weight) treatment. Transcriptome sequencing and quantitative real-time PCR in HepG2 cells show that DT mainly acted via miR-144-3p. miR-144-3p targets immune responsive gene 1 (IRG1) and decreases the fumaric acid level in the tricarboxylic acid (TCA) cycle, thereby decreasing nuclear factor erythroid 2-related factor 2 (Nrf2) expression and antioxidant activity. CONCLUSION: Administration of lycopene, a strong antioxidant, alleviates DT-induced damage in mice, confirming the involvement of the Nrf2 pathway in DT-induced abnormal hepatic lipid metabolism and energy homeostasis.


Subject(s)
MicroRNAs , NF-E2-Related Factor 2 , Mice , Animals , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Down-Regulation , Mice, Inbred C57BL , Liver/metabolism , Oxidative Stress , Antioxidants/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Lipids/pharmacology , Mitochondria
14.
Phytomedicine ; 113: 154681, 2023 May.
Article in English | MEDLINE | ID: mdl-36893674

ABSTRACT

BACKGROUND: Ginsenoside Re is an active component in ginseng that confers protection against myocardial ischemia/reperfusion (I/R) injury. Ferroptosis is a type of regulated cell death found in various diseases. PURPOSE: Our study aims to investigate the role of ferroptosis and the protective mechanism of Ginsenoside Re in myocardial ischemia/reperfusion. METHODS: In the present study, we treated rats for five days with Ginsenoside Re, then established the myocardial ischemia/reperfusion injury rat model to detect molecular implications in myocardial ischemia/reperfusion regulation and to determine the underlying mechanism. RESULTS: This study identifies the mechanism behind ginsenoside Re's effect on myocardial ischemia/reperfusion injury and its regulation of ferroptosis through miR-144-3p. Ginsenoside Re significantly reduced cardiac damage caused by ferroptosis during myocardial ischemia/reperfusion injury and glutathione decline. To determine how Ginsenoside Re regulated ferroptosis, we isolated exosomes from VEGFR2+ endothelial progenitor cells after ischemia/reperfusion injury and performed miRNA profiling to screen the miRNAs aberrantly expressed in the process of myocardial ischemia/reperfusion injury and ginsenoside Re treatment. We identified that miR-144-3p was upregulated in myocardial ischemia/reperfusion injury by luciferase report and qRT-PCR. We further confirmed that the solute carrier family 7 member 11 (SLC7A11) was the target gene of miR-144-3p by database analysis and western blot. In comparison with ferropstatin-1, a ferroptosis inhibitor, in vivo studies confirmed that ferropstatin-1 also diminished myocardial ischemia/reperfusion injury induced cardiac function damage. CONCLUSION: We demonstrated that ginsenoside Re attenuates myocardial ischemia/reperfusion induced ferroptosis via miR-144-3p/SLC7A11.


Subject(s)
Ferroptosis , MicroRNAs , Myocardial Ischemia , Myocardial Reperfusion Injury , Reperfusion Injury , Rats , Animals , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/metabolism , Reperfusion Injury/drug therapy , MicroRNAs/genetics , MicroRNAs/metabolism , Ischemia
15.
Int J Exp Pathol ; 104(3): 117-127, 2023 06.
Article in English | MEDLINE | ID: mdl-36806218

ABSTRACT

Aerobic glycolysis is a unique mark of cancer cells, which enables therapeutic intervention in cancer. Forkhead box K1 (FOXK1) is a transcription factor that facilitates the progression of multiple cancers including hepatocellular carcinoma (HCC). Nevertheless, it is unclear whether or not FOXK1 can affect HCC cell glycolysis. This study attempted to study the effect of FOXK1 on HCC cell glycolysis. Expression of mature miRNAs and mRNAs, as well as clinical data, was downloaded from The Cancer Genome Atlas-Liver hepatocellular carcinoma (TCGA-LIHC) dataset. FOXK1 and miR-144-3p levels were assessed through quantitative real-time polymerase chain reaction (qRT-PCR) and western blot. Targeting of the relationship between miR-144-3p and FOXK1 was verified via a dual-luciferase assay. Pathway enrichment analysis of FOXK1 was performed by Gene Set Enrichment Analysis (GSEA). Cell function assays revealed the glycolytic ability, cell viability, migration, invasion, cell cycle, and apoptosis of HCC cells in each treatment group. Bioinformatics analysis suggested that FOXK1 was upregulated in tissues of HCC patients, while the upstream miR-144-3p was downregulated in tumour tissues. Dual-luciferase assay implied a targeting relationship between miR-144-3p and FOXK1. Cellular experiments implied that silencing FOXK1 repressed HCC cell glycolysis, which in turn inhibited the HCC malignant progression. Rescue assay confirmed that miR-144-3p repressed glycolysis in HCC cells by targeting FOXK1, and then repressed HCC malignant progression. miR-144-3p/FOXK1 axis repressed malignant progression of HCC via affecting the aerobic glycolytic process of HCC cells. miR-144-3p and FOXK1 have the potential to become new therapeutic targets for HCC, which provide new insights for HCC treatment.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , MicroRNAs , Humans , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Cell Line, Tumor , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Proliferation/genetics , Glycolysis/genetics , Cell Movement/genetics , Gene Expression Regulation, Neoplastic
16.
Environ Int ; 172: 107807, 2023 02.
Article in English | MEDLINE | ID: mdl-36773565

ABSTRACT

Zinc exposure has been linked with disordered glucose metabolism and type 2 diabetes mellitus (T2DM) development. However, the underlying mechanism remains unclear. We conducted population-based studies and in vitro experiments to explore potential role of microRNAs (miRNAs) in zinc-related hyperglycemia and T2DM. In the discovery stage, we identified plasma miRNAs expression profile for zinc exposure based on 87 community residents from the Wuhan-Zhuhai cohort through next-generation sequencing. MiRNAs profiling for T2DM was also performed among 9 pairs newly diagnosed T2DM-healthy controls. In the validating stage, plasma miRNA related to both of zinc exposure and T2DM among the discovery population was measured by qRT-PCR in 161 general individuals derived from the same cohort. Furthermore, zinc treated HepG2 cells with mimic or inhibitor were used to verify the regulating role of miR-144-3p. Based on the discovery and validating populations, we observed that miR-144-3p was positively associated with urinary zinc, hyperglycemia, and risk of T2DM. In vitro experiments confirmed that zinc-induced increase in miR-144-3p expression suppressed the target gene Nrf2 and downstream antioxidant enzymes, and aggravated insulin resistance. Our findings provided a novel clue for mechanism underlying zinc-induced glucose dysmetabolism and T2DM development, emphasizing the important role of miR-144-3p dysregulation.


Subject(s)
Diabetes Mellitus, Type 2 , Hyperglycemia , Insulin Resistance , MicroRNAs , Humans , Zinc/toxicity , MicroRNAs/genetics
17.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 31(1): 76-80, 2023 Feb.
Article in Chinese | MEDLINE | ID: mdl-36765480

ABSTRACT

OBJECTIVE: To investigate the effects of miR-144-3p on cell proliferation, cell cycle and apoptosis of blast phase chronic myelogenous leukemia (CML) K562 cells. METHODS: K562 cells were cultured in vitro and mimics negative control, hsa-miR-144-3p mimics, inhibitor negative control and miR-144-3p inhibitor were respectively transfected into K562 cells with transfection reagents. The cells were divided into five groups including blank control, mimics negative control, miR-144-3p mimics, inhibitor negative control and miR-144-3p inhibitor. After transfection, the cell proliferation activity was detected by CCK-8 assay. The cell cycle distribution and apoptosis were detected by flow cytometry. RESULTS: Compared with the blank control and mimics negative control groups, the proliferation rate of miR-144-3p mimics group was significantly decreased (P<0.05), the proportion of S phase cells was markedly increased (P<0.05), while the proportion of G1 phase cells was obviously decreased (P<0.05), and the apoptosis rate was significantly increased (P<0.05). Compared with the blank control and inhibitor negative control groups, the proliferation rate of miR-144-3p inhibitor group was obviously increased (P<0.05), the proportion of S phase cells was markedly decreased (P<0.05), while the proportion of G1 phase cells was obviously increased (P<0.05), and the apoptosis rate was significantly decreased (P<0.05). CONCLUSION: miR-144-3p can inhibit the proliferation and promote apoptosis of K562 cells, affect the cell cycle, and block K562 cells in S phase, which indicates that miR-144-3p is involved in the cell cycle activity of CML during blastic phase.


Subject(s)
MicroRNAs , Humans , Apoptosis/genetics , Cell Cycle/genetics , Cell Line, Tumor , Cell Proliferation/genetics , K562 Cells , MicroRNAs/genetics , MicroRNAs/metabolism
18.
Cancers (Basel) ; 15(2)2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36672460

ABSTRACT

In recent decades, the rapid development of radiotherapy has dramatically increased the cure rate of malignant tumors. Heavy-ion radiotherapy, which is characterized by the "Bragg Peak" because of its excellent physical properties, induces extensive unrepairable DNA damage in tumor tissues, while normal tissues in the path of ion beams suffer less damage. However, there are few prognostic molecular biomarkers that can be used to assess the efficacy of heavy ion radiotherapy. In this study, we focus on non-small cell lung cancer (NSCLC) radiotherapy and use RNA sequencing and bioinformatic analysis to investigate the gene expression profiles of A549 cells exposed to X-ray or carbon ion irradiation to screen the key genes involved in the stronger tumor-killing effect induced by carbon ions. The potential ceRNA network was predicted and verified by polymerase chain amplification, western blotting analysis, colony formation assay, and apoptosis assay. The results of the experiments indicated that lncRNA EBLN3P plays a critical role in inhibiting carbon ion-induced cell proliferation and inducing apoptosis of NSCLC cells. These functions were achieved by the EBLN3P/miR-144-3p/TNPO1 (transportin-1) ceRNA network. In summary, the lncRNA EBLN3P functions as a ceRNA to mediate lung cancer inhibition induced by carbon ion irradiation by sponging miR-144-3p to regulate TNPO1 expression, indicating that EBLN3P may be a promising target for increasing the treatment efficacy of conventional radiotherapy for NSCLC.

19.
Curr Stem Cell Res Ther ; 18(2): 247-259, 2023.
Article in English | MEDLINE | ID: mdl-35507744

ABSTRACT

INTRODUCTION: Acute Myocardial Infarction (AMI) has been classified as a prevalent condition threatening human health. This study sought to explore the effects of bone marrow mesenchymal stem cells (BMSCs)-extracellular vesicles (EVs) on cardiomyocyte apoptosis and autophagy induced by ischemia- hypoxia (I/H). MATERIALS AND METHODS: EVs were isolated from BMSCs using ultracentrifugation. The I/H cardiomyocyte model was established and cultured with EVs to evaluate the internalization of EVs by the cardiomyocyte line, apoptosis, proliferation, and autophagy of the cardiomyocyte line. The targeting relationship between miR-144-3p and ROCK1 was verified. EVs were isolated after transfection of BMSCs with the miR-144-3p inhibitor to evaluate the effect of miR-144-3p on the cardiomyocyte line. RESULTS AND DISCUSSION: After overexpression of ROCK1 in the I/H cardiomyocyte line treated with EVs, the I/H cardiomyocyte line apoptosis and autophagy were determined. BMSCs-EVs suppressed I/Hinduced apoptosis and autophagy of the cardiomyocyte line. BMSCs-EVs carried miR-144-3p into the I/H cardiomyocyte line, and the down-regulation of miR-144-3p in EVs partially inverted the suppression of apoptosis and autophagy of the I/H cardiomyocyte line induced by EVs. Our findings denoted that miR- 144-3p targeted ROCK1. Overexpression of ROCK1 partially inverted the inhibition of EVs on I/H cardiomyocyte line apoptosis and autophagy. BMSCs-EVs-derived miR-144-3p targeted ROCK1 to radically activate the PI3K/AKT/mTOR pathway. CONCLUSION: Overall, our study elicited that BMSCs-EVs carried miR-144-3p into the I/H cardiomyocyte line to target ROCK1 and stimulate the PI3K/AKT/mTOR pathway, thus inhibiting I/H-induced cardiomyocyte line apoptosis and autophagy.


Subject(s)
Apoptosis , Autophagy , Extracellular Vesicles , Mesenchymal Stem Cells , MicroRNAs , Myocytes, Cardiac , Humans , Apoptosis/genetics , Autophagy/genetics , Hypoxia , Ischemia , MicroRNAs/genetics , Myocytes, Cardiac/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , rho-Associated Kinases/genetics , TOR Serine-Threonine Kinases/genetics
20.
J Cell Mol Med ; 27(2): 189-203, 2023 01.
Article in English | MEDLINE | ID: mdl-36541023

ABSTRACT

Circular RNAs (circRNAs) are often found in eukaryocyte and have a role in the pathogenesis of a variety of human disorders. Our related research has shown the differential expression of circRNAs in periprosthetic osteolysis (PPOL). However, the involvement of circRNAs in the exact process is yet unknown. CircSLC8A1 expression was evaluated in clinical samples and human bone marrow mesenchymal stem cells (hBMSCs) in this investigation using quantitative real-time PCR. In vitro and in vivo studies were conducted to explicate its functional role and pathway. We demonstrated CircSLC8A1 is involved in PPOL using gain- and loss-of-function methods. The association of CircSLC8A1 and miR-144-3p, along with miR-144-3p and RUNX1, was predicted using bioinformatics. RNA pull-down and luciferase assays confirmed it. The impact of CircSLC8A1 in the PPOL-mouse model was also investigated using adeno-associated virus. CircSLC8A1 was found to be downregulated in PPOL patients' periprosthetic tissues. Overexpression of CircSLC8A1 promoted osteogenic differentiation (OD) and inhibited apoptosis of hBMSCs in vitro. The osteogenic markers of RUNX1, osteopontin (OPN) and osteocalcin (OCN) were significantly upregulated in hBMSCs after miR-144-3p inhibitor was transferred. Mechanistic analysis demonstrated that CircSLC8A1 directly bound to miR-144-3p and participated in PPOL through the miR-144-3p/RUNX1 pathway in hBMSCs. Micro-CT and quantitative analysis showed that CircSLC8A1 markedly inhibited PPOL, and osteogenic markers (RUNX1, OPN and OCN) were significantly increased (P<0.05) in the mice model. Our findings prove that CircSLC8A1 exerted a regulatory role in promoting osteogenic differentiation in hBMSCs, and CircSLC8A1/miR-144-3p/RUNX1 pathway may provide a potential target for prevention of PPOL.


Subject(s)
Mesenchymal Stem Cells , MicroRNAs , Osteolysis , Animals , Mice , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Osteogenesis/genetics , Core Binding Factor Alpha 2 Subunit/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , Osteolysis/genetics , Osteolysis/metabolism , Cell Differentiation/genetics , Mesenchymal Stem Cells/metabolism , Osteocalcin/metabolism , Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...