Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 150
Filter
1.
J Dent Sci ; 19(3): 1506-1514, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39035341

ABSTRACT

Background/purpose: While there are numerous reports on surgical techniques and materials for bone grafting, limited methods are available to enhance the body's inherent capacity to heal bones. Here we investigated microRNA-199a (miR-199a), a molecular that promotes osteoblast differentiation and bone healing. Materials and methods: To construct a miR-199a delivery complex, miR-199a-5p mimics were coated with mesoporous silica nanoparticles (MSNs) following modified with polyethyleneimine (PEI) and peptide WEAKLAKALAKALAKHLAKALAKALKACEA (KALA) to obtain 199a-5p-loaded MSN-PEI-KALA. Nanoparticle complexes are assessed for particle size and zeta potential using transmission electron microscopy and dynamic light scattering. Then MC3T3-E1 cells are exposed to MSN_miR-199a-5p @PEI-KALA. The impact of MSN_miR-199a-5p@PEI-KALA at varying concentrations on cell viability is assessed using Cell Counting Kit-8. Cell uptake and distribution were analyzed by double fluorescent staining with fluorescein amidite-labeled MSN_miR-199a@PEI-KALA and lysosome labeling. On day 7 after osteogenic induction, alkaline phosphatase (ALP) staining was conducted. Results: The findings indicated that the nanoparticle complexes encapsulating PEI and peptide exhibited an augmentation in both particle size and zeta potential. At a dosage of 10 µg/mL, MSN_miR-199a@PEI-KALA displayed the lowest cytotoxicity compared to the control group. MC3T3-E1 cells treated with MSN_miR-199a-5p@PEI-KALA exhibited intensified ALP staining and elevated mRNA expression levels of ALP, runt-related transcription factor 2, and osteopontin, suggesting the involvement of miR-199a-5p-loaded MSN-PEI-KALA in osteogenic differentiation. Conclusion: The successful construction of the delivering complex MSN_miR-199a@PEI-KALA in present research highlights the promise of this biomaterial carrier for the application of miRNAs in treating bone defects.

2.
Cancer Lett ; 597: 216995, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38851313

ABSTRACT

Globally, breast cancer (BC) is the predominant malignancy with a significant death rate due to metastasis. The epithelial-mesenchymal transition (EMT) is a fundamental initiator for metastatic progression. Through advanced computational strategies, TCF19 was identified as a critical EMT-associated gene with diagnostic and prognostic significance in BC, based on a novel EMT score. Molecular details and the pro-EMT impact of the TCF19/miR-199a-5p/SP1/LOXL2 axis were explored in BC cell lines through in vitro validations, and the oncogenic and metastatic potential of TCF19 and LOXL2 were investigated using subcutaneous and tail-vein models. Additionally, BC-specific enrichment of TCF19 and LOXL2 was measured using a distribution landscape driven by diverse genomic analysis techniques. Molecular pathways revealed that TCF19-induced LOXL2 amplification facilitated migratory, invasive, and EMT activities of BC cells in vitro, and promoted the growth and metastatic establishment of xenografts in vivo. TCF19 decreases the expression of miR-199a-5p and alters the nuclear dynamics of SP1, modulating SP1's affinity for the LOXL2 promoter, leading to increased LOXL2 expression and more malignant characteristics in BC cells. These findings unveil a novel EMT-inducing pathway, the TCF19/miR-199a-5P/SP1/LOXL2 axis, highlighting the pivotal role of TCF19 and suggesting potential for novel therapeutic approaches for more focused BC interventions.

3.
Int J Clin Oncol ; 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38853186

ABSTRACT

BACKGROUND: The late-stage diagnosis and distant metastasis of oral squamous cell carcinoma (OSCC) remain a huge challenge to clinical treatment for OSCC. During the past decades, targeting glycolysis-inducing factors becomes an attractive new strategy in OSCC therapies. METHODS: OSCC cells were stimulated with hypoxia or transfected with agomir-199a-5p, antagomir-199a-5p, and siRNA for HIF1A, cell proliferation was detected by CCK-8 assay; HIF1α, GLUT1, HK2 and LDHA expression levels were examined with western blot; miR-199 expression was determined with RT-PCR; cell migratory and invasive abilities were examined using wound healing and transwell assays; the lactate and glucose in culture medium were also determined. Luciferase assay or CHIP assay was applied for confirm the binding between miR-199a-5p and HIF1A 3'UTR, or between HIF1α and miR-199a promoter. RESULTS: HIF1α showed to be abnormally up-regulated, and miR-199a-5p showed to be abnormally down-regulated within OSCC under hypoxia. Hypoxia considerably enhanced OSCC cell proliferation, glycolysis, migratory ability, and invasive ability. MiR-199a-5p bound to HIF1A 3'-UTR and suppressed HIF1A expression; HIF1α targeted miR-199a-5p promoter region and downregulated miR-199a-5p expression. Under hypoxia, miR-199a-5p overexpression significantly repressed HIF1α up-regulation inresponse to hypoxia, OSCC cell proliferation, glycolysis, migratory ability, and invasive ability. CONCLUSION: miR-199a-5p and HIF1α form a dual-regulatory axis in OSCC cells; the miR-199a-5p/HIF1α dual-regulatory axis contributes to hypoxia-induced aggressive OSCC phenotypes.

4.
Curr Vasc Pharmacol ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38910413

ABSTRACT

BACKGROUND: Restenosis (RS) poses a significant concern, leading to recurrent ischemia and the potential for amputation following intraluminal angioplasty in the treatment of Peripheral Artery Disease (PAD). Through microRNA microarray analysis, the study detected a significant downregulation of miR-199a-5p within arterial smooth muscle cells (ASMCs) associated with RS. OBJECTIVE: This research aims to explore the possible function and the underlying mechanisms of miR-199a-5p in the context of RS. METHODS: Primary ASMCs were extracted from the femoral arteries of both healthy individuals and patients with PAD or RS. The expression levels of miR-199a-5p were assessed using both qRT-PCR and in situ hybridization techniques. To examine the impacts of miR-199a-5p, a series of experiments were performed, including flow cytometry, TUNEL assay, EdU assay, CCK8 assay, Transwell assay, and wound closure assay. A rat carotid balloon injury model was employed to elucidate the mechanism through which miR-199a-5p mitigated neointimal hyperplasia. RESULTS: MiR-199a-5p exhibited downregulation in RS patients and was predominantly expressed within ASMCs. Elevated the expression of miR-199a-5p resulted in an inhibitory effect of proliferation and migration in ASMCs. Immunohistochemistry and a dual-luciferase reporter assay uncovered that RS exhibited elevated expression levels of both HIF-1α and E2F3, and they were identified as target genes regulated by miR-199a-5p. The co-transfection of lentiviruses carrying HIF-1α and E2F3 alongside miR-199a-5p further elucidated their role in the cellular responses mediated by miR-199a-5p. In vivo, the delivery of miR-199a-5p via lentivirus led to the mitigation of neointimal formation following angioplasty, achieved by targeting HIF-1α and E2F3. CONCLUSION: MiR-199a-5p exhibits promise as a prospective therapeutic target for RS since it alleviates the condition by inhibiting the proliferation and migration of ASMCs via its regulation of HIF-1α and E2F3.

5.
J Agric Food Chem ; 72(25): 14386-14401, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38869955

ABSTRACT

Heat stress is becoming the major factor regarding dairy cow health and milk quality because of global warming. Circular RNAs (circRNAs) represent a special type of noncoding RNAs, which are related to regulating many biological processes. Nonetheless, little is known concerning their effects on heat-stressed bovine mammary epithelial cells (BMECs). Here, this study found a novel circRNA, circ_002033, using RNA sequencing (RNA-seq) and explored the role and underlying regulatory mechanism in proliferation, apoptosis, and oxidative damage in a heat-stressed bovine mammary epithelial cell line (MAC-T). According to the previous RNA-seq analysis, the abundance of circ_002033 in mammary gland tissue of heat-stressed cows increased relative to nonheat-stressed counterparts. This study found that the knockdown of circ_002033 promoted proliferation and alleviated apoptosis and oxidative damage in heat-stressed MAC-T. Mechanistically, circ_002033 localizes to miR-199a-5p in the cytoplasm of MAC-T to regulate mitogen-activated protein kinase kinase 11 (MAP3K11) expression. Meanwhile, miR-199a-5p and MAP3K11 are also involved in regulating the proliferation and apoptosis of heat-stressed MAC-T. Importantly, circ_002033 knockdown promoted the expression of miR-199a-5p while decreasing that of MAP3K11, thereby enhancing proliferation while alleviating apoptosis and oxidative damage in heat-stressed MAC-T. In summary, we found that circ_002033 regulates the proliferation, apoptosis, and oxidative damage of heat-stressed BMECs through the miR-199a-5p/MAP3K11 axis, providing the theoretical molecular foundation for mitigating heat stress of dairy cows.


Subject(s)
Apoptosis , Cell Proliferation , Epithelial Cells , Heat-Shock Response , MAP Kinase Kinase Kinases , Mammary Glands, Animal , MicroRNAs , Oxidative Stress , RNA, Circular , Animals , Cattle , Epithelial Cells/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Female , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/cytology , MAP Kinase Kinase Kinases/genetics , MAP Kinase Kinase Kinases/metabolism , Mitogen-Activated Protein Kinase Kinase Kinase 11 , Cell Line
6.
J Mol Histol ; 55(3): 359-370, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38662168

ABSTRACT

Choroidal neovascularization (CNV) can be seen in many fundus diseases, and lead to fundus exudation, bleeding, or vision loss. miRNAs are vital regulator in CNV. miR-199a-5p has been proved to be involved in regulating vascular formation of endothelial cells, but its role in CNV remains unclear. This study aims to study the role of miR-199a-5p in CNV. Laser irradiation was used to induce CNV model. The lesion area of CNV was calculated by high-resolution angiography with fluorescein isothiocyanate-dextran. Wnt family member 7b (Wnt7b), ß-catenin, and Wnt pathway proteins was measured by western blot. Immunofluorescence was performed to test Wnt7b, ß-catenin, CD31, and p-p65. miR-199a-5p and Wnt7b mRNA were tested by reverse transcription real-time polymerase chain reaction. Cell count kit-8, wound healing, Transwell, tube formation, and flow cytometry were used to detect the function of miR-199a-5p and Wnt7b on human retinal microvascular endothelial cells (HRMEC). TargetScan database and dual-luciferase reporter assay verified the interaction between miR-199a-5p and Wnt7b. The results revealed that Wnt7b increased in CNV rats. Knocking down Wnt7b repressed cell proliferation, migration, invasion, and angiogenesis, and accelerated cell apoptosis of HRMEC. Dual-luciferase reporter assay verified that miR-199a-5p targeted Wnt7b. Overexpression of miR-199a-5p inhibited the angiogenesis of HRMEC and promoted cell apoptosis by inhibiting Wbt7b. In vivo experiment found that Wnt7b rescued the promotion of miR-199a-5p inhibition on CNV lesion of rats. In addition, Wnt7b positively regulated Wnt/ß-catenin signaling pathway and promoted the angiogenesis of HRMEC. In conclusion, overexpression of miR-199a-5p inhibited the angiogenesis of HRMEC by regulating Wnt7b/Wnt/ß-catenin signaling pathway, which may serve as a promising therapy target of CNV.


Subject(s)
Choroidal Neovascularization , MicroRNAs , Wnt Proteins , Wnt Signaling Pathway , Animals , Humans , Male , Rats , Apoptosis/genetics , beta Catenin/metabolism , beta Catenin/genetics , Cell Movement/genetics , Cell Proliferation/genetics , Choroidal Neovascularization/genetics , Choroidal Neovascularization/metabolism , Choroidal Neovascularization/pathology , Disease Models, Animal , Endothelial Cells/metabolism , Gene Expression Regulation , MicroRNAs/genetics , MicroRNAs/metabolism , Rats, Sprague-Dawley , Wnt Proteins/metabolism , Wnt Proteins/genetics , Wnt Signaling Pathway/genetics
7.
Heliyon ; 10(8): e29102, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38644862

ABSTRACT

Background: Non-small cell lung cancer (NSCLC) shows the highest morbidity among malignant tumors worldwide. Despite improvements of diagnosis and treatment, patient prognosis remains unfavorable. Therefore, there is a need to discover a novel treatment strategy for NSCLC. DUSP14 is related to various cancers as the regulatory factor for cellular processes. However, its specific roles in NSCLC and the upstream modulator remain largely unclear. Methods: DUSP14 expression patterns within the lung cancer patient cohort from TCGA database were analyzed using UALCAN online tool. Different databases including miRDB, starbase, and Targetscan were employed to screen the upstream regulator of DUSP14. DUSP14 and miR-199a-5p expression was determined by qRT-PCR and Western blot techniques. To confirm binding interaction of DUSP14 with miR-199a-5p, we conducted a dual-luciferase reporter assay. Cell viability, migration, and stemness properties were assessed using CCK-8, EdU (5-ethynyl-2'-deoxyuridine) incorporation, transwell invasion, and sphere formation assays. The effect of DUSP14 silencing on tumorigenesis was assessed with the NSCLC cell xenograft mouse model. Results: Our study discovered that DUSP14 exhibited high expression within NSCLC tumor samples, which is related to the dismal prognostic outcome in NSCLC patients. Silencing DUSP14 impaired NSCLC cell proliferation, migration, and tumor sphere formation. Besides, we identified miR-199a-5p as the upstream regulatory factor for DUSP14, and its expression was negatively related to DUSP14 level within NSCLC tissues. Introducing miR-199a-5p recapitulated the function of DUSP14 silencing in NSCLC cell aggressiveness and stemness. Moreover, knocking down DUSP14 efficiently inhibited tumor formation in NSCLC cells of the xenograft model. Conclusions: Our study suggests that DUSP14 is negatively regulated by miR-199a-5p within NSCLC, whose overexpression is required for sustaining NSCLC cell proliferation, invasion and stemness.

8.
J Biochem Mol Toxicol ; 38(4): e23710, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38605440

ABSTRACT

Myocardial ischemia‒reperfusion injury (MI/RI) is closely related to pyroptosis. alkB homolog 5 (ALKBH5) is abnormally expressed in the MI/RI models. However, the detailed molecular mechanism of ALKBH5 in MI/RI has not been elucidated. In this study, rats and H9C2 cells served as experimental subjects and received MI/R induction and H/R induction, respectively. The abundance of the targeted molecules was evaluated using RT-qPCR, Western blotting, immunohistochemistry, immunofluorescence, and enzyme-linked immunosorbent assay. The heart functions of the rats were evaluated using echocardiography, and heart injury was evaluated. Cell viability and pyroptosis were determined using cell counting Kit-8 and flow cytometry, respectively. Total m6A modification was measured using a commercial kit, and pri-miR-199a-5p m6A modification was detected by Me-RNA immunoprecipitation (RIP) assay. The interactions among the molecules were validated using RIP and luciferase experiments. ALKBH5 was abnormally highly expressed in H/R-induced H9C2 cells and MI/RI rats. ALKBH5 silencing improved injury and inhibited pyroptosis. ALKBH5 reduced pri-miR-199a-5p m6A methylation to block miR-199a-5p maturation and inhibit its expression. TNF receptor-associated Factor 3 (TRAF3) is a downstream gene of miR-199a-5p. Furthermore, in H/R-induced H9C2 cells, the miR-199a-5p inhibitor-mediated promotion of pyroptosis was reversed by ALKBH5 silencing, and the TRAF3 overexpression-mediated promotion of pyroptosis was offset by miR-199a-5p upregulation. ALKBH5 silencing inhibited pri-miR-199a-5p expression and enhanced pri-miR-199a-5p m6A modification to promote miR-199a-5p maturation and enhance its expression, thereby suppressing pyroptosis to alleviate MI/RI through decreasing TRAF3 expression.


Subject(s)
AlkB Homolog 5, RNA Demethylase , MicroRNAs , Myocardial Reperfusion Injury , Pyroptosis , Animals , Rats , Adenine , AlkB Homolog 5, RNA Demethylase/genetics , AlkB Homolog 5, RNA Demethylase/metabolism , Demethylation , MicroRNAs/metabolism , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/metabolism , TNF Receptor-Associated Factor 3/genetics , TNF Receptor-Associated Factor 3/metabolism
9.
JBMR Plus ; 8(5): ziae051, 2024 May.
Article in English | MEDLINE | ID: mdl-38686038

ABSTRACT

Genome wide association study (GWAS)-implicated bone mineral density (BMD) signals have been shown to localize in cis-regulatory regions of distal effector genes using 3D genomic methods. Detailed characterization of such genes can reveal novel causal genes for BMD determination. Here, we elected to characterize the "DNM3" locus on chr1q24, where the long non-coding RNA DNM3OS and the embedded microRNA MIR199A2 (miR-199a-5p) are implicated as effector genes contacted by the region harboring variation in linkage disequilibrium with BMD-associated sentinel single nucleotide polymorphism, rs12041600. During osteoblast differentiation of human mesenchymal stem/progenitor cells (hMSC), miR-199a-5p expression was temporally decreased and correlated with the induction of osteoblastic transcription factors RUNX2 and Osterix. Functional relevance of miR-199a-5p downregulation in osteoblastogenesis was investigated by introducing miR-199a-5p mimic into hMSC. Cells overexpressing miR-199a-5p depicted a cobblestone-like morphological change and failed to produce BMP2-dependent extracellular matrix mineralization. Mechanistically, a miR-199a-5p mimic modified hMSC propagated normal SMAD1/5/9 signaling and expressed osteoblastic transcription factors RUNX2 and Osterix but depicted pronounced upregulation of SOX9 and enhanced expression of essential chondrogenic genes ACAN, COMP, and COL10A1. Mineralization defects, morphological changes, and enhanced chondrogenic gene expression associated with miR-199a-5p mimic over-expression were restored with miR-199a-5p inhibitor suggesting specificity of miR-199a-5p in chondrogenic fate specification. The expression of both the DNM3OS and miR-199a-5p temporally increased and correlated with hMSC chondrogenic differentiation. Although miR-199a-5p overexpression failed to further enhance chondrogenesis, blocking miR-199a-5p activity significantly reduced chondrogenic pellet size, extracellular matrix deposition, and chondrogenic gene expression. Taken together, our results indicate that oscillating miR-199a-5p levels dictate hMSC osteoblast or chondrocyte terminal fate. Our study highlights a functional role of miR-199a-5p as a BMD effector gene at the DNM3 BMD GWAS locus, where patients with cis-regulatory genetic variation which increases miR-199a-5p expression could lead to reduced osteoblast activity.

10.
Allergy Asthma Clin Immunol ; 20(1): 23, 2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38521909

ABSTRACT

BACKGROUND: Circular RNA (circRNA) has the potential to serve as a crucial regulator in the progression of bronchial asthma. The objective of this investigation was to elucidate the functional dynamics of the circ_0070934/miR-199a-5p/Mannoside acetylglucosaminyltransferase 3 (MGAT3) axis in the development of asthma. METHODS: Circ_0070934, miR-199a-5p and MGAT3 in peripheral venous blood of 38 asthmatic patients and 43 healthy controls were detected by qRT-PCR, and the expression of MGAT3 protein was examined by ELISA. The GSE148000 dataset was analyzed for differences in MGAT3. The BEAS-2B cells were transfected with circ_0070934 plasmid and small interfering RNA, miR-199a-5p mimics and inhibitors. The apoptosis level was detected by flow cytometry and MGAT3 was detected by qRT-PCR and Western blot. The expression of E-cadherin, N-cadherin, Vimentin was examined by Western blot. Interleukin-4 (IL-4) and IL-13 were used to co-stimulate BEAS-2B cells as an asthmatic airway epithelial cell model. BEAS-2B cells exposed to type 2 cytokines (IL-4 and IL-13) were treated with circ_0070934 plasmid, and the expression of E-cadherin, N-cadherin, and Vimentin was detected by Western blot. The binding relationships were verified using dual-luciferase reporter assay and miRNA pull-down assay. RESULTS: The expression of circ_0070934 and MGAT3 in peripheral venous blood of asthmatic patients was down-regulated, and the expression of miR-199a-5p was up-regulated. And the expression of MGAT3 was reduced in sputum of asthma patients. Down-regulating the expression of circ_0070934 could promote apoptosis of BEAS-2B cells and increase epithelial-mesenchymal transition (EMT), and this effect can be partially reversed by down-regulating miR-199a-5p. Circ_0070934 could inhibit the process of epithelial mesenchymal transition induced by IL-4 and IL-13 in BEAS-2B cells. In addition, miR-199a-5p could respectively bind to circ_0070934 and MGAT3. CONCLUSION: The findings of this study indicate that circ_0070934 may function as a competitive endogenous RNA (ceRNA) of miR-199a-5p, thereby modulating the expression of MGAT3 and impacting the process of EMT in bronchial epithelial cells. These results contribute to the establishment of a theoretical framework for advancing the prevention and treatment strategies for asthma.

11.
Mol Carcinog ; 63(6): 1064-1078, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38411272

ABSTRACT

Hepatocellular carcinoma (HCC) is characterized by aberrant alternative splicing (AS), which plays an important part in the pathological process of this disease. However, available reports about genes and mechanisms involved in AS process are limited. Our previous research has identified ANRIL as a long noncoding RNA related to the AS process of HCC. Here, we investigated the exact effect and the mechanism of ANRIL on HCC progress. The ANRIL expression profile was validated using the real-time quantitative polymerase chain reaction assay. The western blot analysis and IHC assay were conducted on candidate targets, including SRSF1 and Anillin. The clinicopathological features of 97 patients were collected and analyzed. Loss-of and gain-of-function experiments were conducted. The dual-luciferase reporter assay was applied to verify the interaction between ANRIL, miR-199a-5p, and SRSF1. Anomalous upregulation of ANRIL in HCC was observed, correlating with worse clinicopathological features of HCC. HCC cell proliferation, mobility, tumorigenesis, and metastasis were impaired by depleting ANRIL. We found that ANRIL acts as a sponger of miRNA-199a-5p, resulting in an elevated level of its target protein SRSF1. The phenotypes induced by ANRIL/miR-199a-5p/SRSF1 alteration are associated with Anillin, a validated HCC promoter. ANRIL is an AS-related lncRNA promoting HCC progress by modulating the miR-199a-5p/SRSF1 axis. The downstream effector of this axis in the development of HCC is Anillin.


Subject(s)
Alternative Splicing , Carcinoma, Hepatocellular , Cell Proliferation , Gene Expression Regulation, Neoplastic , Liver Neoplasms , MicroRNAs , RNA, Long Noncoding , Serine-Arginine Splicing Factors , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , RNA, Long Noncoding/genetics , Serine-Arginine Splicing Factors/genetics , Serine-Arginine Splicing Factors/metabolism , MicroRNAs/genetics , Male , Female , Cell Proliferation/genetics , Cell Line, Tumor , Middle Aged , Animals , Mice , Cell Movement/genetics , Mice, Nude
12.
Gene ; 893: 147901, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-37839765

ABSTRACT

Hair follicles undergo a renewal cycle consisting of anagen, telogen and catagen stages. MicroRNA (miRNA) plays a crucial role in this process. Recent studies have shown that miR-199a-5p, which exhibits differential expression between anagen and telogen stages in the hair follicle cycle of cashmere goats, inhibits the proliferation of various cell types, including skin keratinocytes and vascular endothelial cells. Since the proliferation of dermal papilla cells (DPCs) is a key factor in the hair follicle cycle, we utilized DPCs to investigate the function and molecular mechanism of miR-199a-5p in cashmere goats. Our functional analysis revealed that miR-199a-5p significantly suppressed cell viability and proliferation of DPCs, as evidenced by MTT, EdU and RT-qPCR methods. Subsequently, we investigated the regulatory mechanism of miR-199a-5p. Through bioinformatics analysis, a potential correlation between lnc102173187 and miR-199a-5p was predicted. However, the dual luciferase reporter assay revealed no interaction between lnc102173187 and miR-199a-5p. Further investigation using dual-luciferase reporter assay, RT-qPCR, and western blot results confirmed that VEGFA was the target gene of miR-199a-5p from. The functional experiment demonstrated that VEGFA promoted the proliferation of DPCs, and antagonized the inhibitory effect of miR-199a-5p on DPCs proliferation. Taken together, this research revealed the role of miR-199a-5p and VEGFA on the proliferation of dermal papilla cells in cashmere goat, which would enrich the theoretical basis for hair follicle development, and could also serve as a marker cofactor to play an important reference and guidance role in the breeding, improvement and optimization of cashmere goat breeds.


Subject(s)
Goats , MicroRNAs , Animals , Goats/genetics , Goats/metabolism , Endothelial Cells/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Hair Follicle/metabolism , Cell Proliferation/genetics , Luciferases/metabolism
13.
Int Immunopharmacol ; 124(Pt B): 111002, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37804655

ABSTRACT

Exosomes have been implicated in inflammation-related diseases, such as hepatic fibrosis (HF) and renal fibrosis, via transferring bioactive cargoes to recipient cells. This study aimed to investigate the possible effect of hepatic stellate cell (HSC)-derived exosomes on the initiation and development of HF by delivering microRNA (miR)-199a-5p. In HF rats with cholestasis induced by ligating the common bile duct, miR-199a-5p was upregulated while SIRT1 was downregulated in liver tissues from bile duct ligation (BDL) rats compared with that of sham rats. Furthermore, miR-199a-5p expression was upregulated, but the mRNA and protein expression levels of SIRT1 were downregulated in TGF-ß1-activated LX-2. miR-199a-5p promoted the proliferation and further activation of LX-2 and enhanced the expression levels of the HF markers COL1A1 and α-SMA. Subsequently, the binding of miR-199a-5p to the 3'UTR of SIRT1 mRNA was predicted by bioinformatics websites and evidenced by fluorescent reporter assay. Knocking down SIRT1 enhanced the abilities of LX-2 cell proliferation, migration, and colony formation and increased the expression levels of the HF markers α-SMA and COL1A1. LX-2-derived exosomal miR-199a-5p transferred to LX-2 and THLE-2, inhibited the proliferation of THLE-2, and promoted the epithelial mesenchymal transition (EMT) and senescence of THLE-2. Furthermore, in vivo results suggested that miR-199a-5p overexpression aggravated HF in BDL rats; increased miR-199a-5p, α-SMA, and COL1A1 expression levels; and significantly upregulated the serum ALT, AST, TBA, and TBIL levels. However, reverse results were obtained with inhibited miR-199a-5p expression. In conclusion, HSC-derived exosomal miR-199a-5p may promote HF by accelerating HSC activation and hepatocyte EMT by targeting SIRT1, suggesting that miR-199a-5p and SIRT1 may serve as potential therapeutic targets for HF.


Subject(s)
MicroRNAs , Rats , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Hepatic Stellate Cells/metabolism , Epithelial-Mesenchymal Transition , Sirtuin 1/genetics , Sirtuin 1/metabolism , Liver Cirrhosis/genetics , Liver Cirrhosis/metabolism , Hepatocytes/metabolism , RNA, Messenger/metabolism , Cell Proliferation
14.
Cancers (Basel) ; 15(19)2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37835506

ABSTRACT

MicroRNA (miR)-199a-5p has been shown to function as a tumor suppressor in some malignancies but its role in esophageal cancer is poorly understood. To further explore its role in esophageal cancer, we sought to investigate the interaction between miR-199a-5p and Jun-B, an important component of the AP1 transcription factor, which contains a potential binding site for miR-199a-5p in its mRNA. We found that levels of miR-199a-5p are reduced in both human esophageal cancer specimens and in multiple esophageal cancer cell lines compared to esophageal epithelial cells. Jun-B expression is correspondingly elevated in these tumor specimens and in several cell lines compared to esophageal epithelial cells. Jun-B mRNA expression and stability, as well as protein expression, are markedly decreased following miR-199a-5p overexpression. A direct interaction between miR-199a-5p and Jun-B mRNA was confirmed by a biotinylated RNA-pull down assay and luciferase reporter constructs. Either forced expression of miR-199a-5p or Jun-B silencing led to a significant decrease in cellular proliferation as well as in AP-1 promoter activity. Our results provide evidence that miR-199a-5p functions as a tumor suppressor in esophageal cancer cells by regulating cellular proliferation, partially through repression of Jun B.

15.
Open Med (Wars) ; 18(1): 20230777, 2023.
Article in English | MEDLINE | ID: mdl-37693833

ABSTRACT

Calcific aortic valve disease (CAVD) is an important cause of disease burden among aging populations. Excessive active endoplasmic reticulum stress (ERS) was demonstrated to promote CAVD. The expression level of miR-199a-5p in patients with CAVD was reported to be downregulated. In this article, we aimed to investigate the function and mechanism of miR-199a-5p in CAVD. The expression level of miR-199a-5p and ERS markers was identified in calcific aortic valve samples and osteogenic induction by real-time quantitative polymerase chain reaction (RT-qPCR), immunohistochemistry, and western blotting (WB). Alizarin red staining, RT-qPCR, and WB were used for the verification of the function of miR-199a-5p. The dual luciferase reporter assay and rescue experiment were conducted to illuminate the mechanism of miR-199a-5p. In our study, the expression level of miR-199a-5p was significantly decreased in calcified aortic valves and valve interstitial cells' (VICs) osteogenic induction model, accompanying with the upregulation of ERS markers. Overexpression of miR-199a-5p suppressed the osteogenic differentiation of VICs, while downregulation of miR-199a-5p promoted this function. 78 kDa glucose-regulated protein (GRP78) and activating transcription factor 6 (ATF6), both of which were pivotal modulators in ERS, were potential targets of miR-199a-5p. miR-199a-5p directly targeted GRP78 and ATF6 to modulate osteoblastic differentiation of VICs. miR-199a-5p inhibits osteogenic differentiation of VICs by regulating ERS via targeting GRP78 and ATF6.

16.
Brain Res ; 1820: 148560, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37648092

ABSTRACT

White matter injury is the most common form of brain injury in preterm infants. In addition to hypoxia ischemia, intrauterine infection is most closely related to brain white matter injury. Our study aimed to explore the mechanism of the miR-199a-5p/HIF-1α axis on astrocyte activation and brain injury in newborn rats caused by intrauterine infection. The animal/cell model was established via escherichia coli infection/lipopolysaccharide induction, followed by the measurement of body weight, brain weight, and the pathological changes in brain tissues of newborn rats, and the pathological changes in placenta and uterus wall of pregnant rats. Also, the levels of GFAP, TNF-α, MDA, GSH, SOD, miR-199a-5p, and HIF-1α were detected though corresponding assays or kits. In vitro, cell viability and apoptosis and the levels of IL-6 and TNF-α were evaluated in astrocytes. Moreover, the targeting relationship between miR-199a-5p and HIF-1α was verified. miR-199a-5p was lowly expressed in the brain tissues of newborn rats with intrauterine infection. Overexpression of miR-199a-5p relieved the injury of placenta and uterus wall in pregnant rats and brain injury in newborn rats, accompanied by decreased HIF-1α, GFAP, TNF-α, and MDA levels and increased GSH and SOD levels. Results from cell models showed that miR-199a-5p overexpression inhibited astrocyte activation, shown by enhanced cell viability, weakened cell apoptosis, and decreased GFAP, IL-6, and TNF-α. Mechanistically, miR-199a-5p targeted HIF-1α to decrease its expression. Collectively, miR-199a-5p inhibited astrocyte activation and alleviated brain injury in newborn rats with intrauterine infection by reducing HIF-1α expression.

17.
Nutr Metab Cardiovasc Dis ; 33(8): 1619-1631, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37336718

ABSTRACT

BACKGROUND AND AIMS: Atherosclerosis (AS) is a chronic inflammatory disease that damages the arterial wall as a result of hyperlipidemia and causes endothelial cell dysfunction, which increases the risk of atherothrombotic events. Multiple pathological conditions have shown ectopic miR-199a-5p levels to cause endothelial injury, but its role in the AS competitive endogenous RNA (CeRNA) network is still unknown. METHODS AND RESULTS: The high-fat diet (HFD) apoE-/- mouse model was constructed in vivo, and ECs were cultured under ox-LDL treatment to induce EC injury in vitro. Immunohistochemistry and immunofluorescence staining were used to assess the effect of miR-199a-5p on the macrophage, SMC, collagen content, and endothelial coverage in the artery wall of mouse model. miR-199a-5p level was validated to be overexpression in the aorta tissue of HFD apoE-/- mice and in the ox-LDL-treated ECs, and even in the plasma EVs of the patients with cerebral AS. Silencing of miR-199a-5p significantly attenuated atherosclerotic progress in HFD apoE-/- mice, and the gain/loss-of-function assay indicated that miR-199a-5p overexpression aggravated ox-LDL-induced disabilities of endothelial proliferation, motility, and neovascularization based on cell counting kit-8 assay, transwell assay and matrigel assay. Mechanistically, miR-199a-5p prevented EC activation by activating the FOXO signaling pathway by targeting SIRT1. Additionally, circular RNA (circRNA) circHIF1ɑ was identified as having a low expression in the ox-LDL-treated EC and mediated SIRT1 expression via sponging miR-199a-5p to rescue ox-LDL-induced EC injury. CONCLUSIONS: Our study demonstrated the vital role of miR-199a-5p/SIRT1 axis regulated by circHIF1ɑ in AS pathogenesis and provided novel effective targets for AS treatment.


Subject(s)
Atherosclerosis , MicroRNAs , Mice , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Sirtuin 1/genetics , Apoptosis , Mice, Knockout, ApoE , Atherosclerosis/pathology , Apolipoproteins E , Lipoproteins, LDL/pharmacology , Cell Proliferation
18.
CNS Neurosci Ther ; 29(12): 3967-3979, 2023 12.
Article in English | MEDLINE | ID: mdl-37349971

ABSTRACT

AIMS: MicroRNAs (miRs) are involved in endogenous neurogenesis, enhancing of which has been regarded as a potential therapeutic strategy for ischemic stroke treatment; however, whether miR-199a-5p mediates postischemic neurogenesis remains unclear. This study aims to investigate the proneurogenesis effects of miR-199a-5p and its possible mechanism after ischemic stroke. METHODS: Neural stem cells (NSCs) were transfected using Lipofectamine 3000 reagent, and the differentiation of NSCs was evaluated by immunofluorescence and Western blotting. Dual-luciferase reporter assay was performed to verify the target gene of miR-199a-5p. MiR-199a-5p agomir/antagomir were injected intracerebroventricularly. The sensorimotor functions were evaluated by neurobehavioral tests, infarct volume was measured by toluidine blue staining, neurogenesis was detected by immunofluorescence assay, and the protein levels of neuronal nuclei (NeuN), glial fibrillary acidic protein (GFAP), caveolin-1 (Cav-1), vascular endothelial growth factor (VEGF), and brain-derived neurotrophic factor (BDNF) were measured by Western blotting. RESULTS: MiR-199a-5p mimic enhanced neuronal differentiation and inhibited astrocyte differentiation of NSCs, while a miR-199a-5p inhibitor induced the opposite effects, which can be reversed by Cav-1 siRNA. Cav-1 was through the dual-luciferase reporter assay confirmed as a target gene of miR-199a-5p. miR-199a-5p agomir in rat stroke models manifested multiple benefits, such as improving neurological deficits, reducing infarct volume, promoting neurogenesis, inhibiting Cav-1, and increasing VEGF and BDNF, which was reversed by the miR-199a-5p antagomir. CONCLUSION: MiR-199a-5p may target and inhibit Cav-1 to enhance neurogenesis and thus promote functional recovery after cerebral ischemia. These findings indicate that miR-199a-5p is a promising target for the treatment of ischemic stroke.


Subject(s)
Brain Ischemia , Ischemic Stroke , MicroRNAs , Neural Stem Cells , Rats , Animals , Vascular Endothelial Growth Factor A/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Antagomirs/therapeutic use , Caveolin 1/genetics , Caveolin 1/metabolism , Brain Ischemia/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Neural Stem Cells/metabolism , Cerebral Infarction , Neurogenesis , Cell Differentiation , Luciferases/metabolism
19.
Acta Biochim Biophys Sin (Shanghai) ; 55(5): 783-794, 2023 May 25.
Article in English | MEDLINE | ID: mdl-37232573

ABSTRACT

Bone marrow mesenchymal stem cell (BMSC)-derived exosomes are a promising therapeutic agent for human disease, but their effects on neural stem cells (NSCs) subject to spinal cord ischaemia-reperfusion injury (SCIRI) remain unknown. Here, we examine the impact of miR-199a-5p-enriched exosomes derived from BMSCs on NSC proliferation. We establish a rat model of aortic cross-clamping to induce SCIRI in vivo and a primary NSC model of oxygen-glucose deprivation/reoxygenation (OGD/R) to simulate SCIRI in vitro. CCK8, EdU, and BrdU assays are performed to evaluate the proliferation of NSCs. Hematoxylin and eosin (H&E) staining is used to determine the number of surviving neurons. The Basso, Beattie, and Bresnahan (BBB) scale and inclined plane test (IPT) are used to evaluate hind limb motor function. DiO-labelled exosomes are efficiently internalized by NSCs and increase ectopic amounts of miR-199a-5p, which promotes the proliferation of NSCs. In contrast, exosomes derived from miR-199a-5p-depleted BMSCs exert fewer beneficial effects. MiR-199a-5p targets and negatively regulates glycogen synthase kinase 3ß (GSK-3ß) and increases nuclear ß-catenin and cyclin D1 levels. miR-199a-5p inhibition reduces the total number of EdU-positive NSCs after OGD/R, but the GSK-3ß inhibitor CHIR-99021 reverses this effect. In vivo, intrathecal injection of BMSC-derived exosomes increases the proliferation of endogenous spinal cord NSCs after SCIRI. In addition, more proliferating NSCs are found in rats intrathecally injected with exosomes overexpressing miR-199a-5p. In summary, miR-199a-5p in BMSC-derived exosomes promotes NSC proliferation via GSK-3ß/ß-catenin signaling.


Subject(s)
Exosomes , Mesenchymal Stem Cells , MicroRNAs , Neural Stem Cells , Reperfusion Injury , Rats , Humans , Animals , MicroRNAs/genetics , beta Catenin/genetics , Glycogen Synthase Kinase 3 beta/genetics , Exosomes/genetics , Cell Proliferation
20.
Transl Lung Cancer Res ; 12(4): 770-785, 2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37197635

ABSTRACT

Background: Circular RNA hsa_circ_0087378 (circ_0087378) has been found to have different functions in different cancer types. However, its function in non-small cell lung cancer (NSCLC) remains unclear. This study revealed the effect of circ_0087378 on the malignant behavior of NSCLC cells in vitro to broaden the options for NSCLC treatment. Methods: This study detected the expression of circ_0087378 in NSCLC cells via real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The discoidin domain receptor 1 (DDR1) protein in NSCLC cells was investigated through western blot. The influence of circ_0087378 on the malignant behavior of NSCLC cells in vitro was investigated by cell counting kit-8 assay, colony formation assay, Transwell assay, and flow cytometry. Dual-luciferase reporter gene assay and RNA pull-down assay were performed to verify the binding between two genes. Results: Circ_0087378 was abundantly expressed in NSCLC cells. The loss of circ_0087378 repressed the proliferation, colony formation, migration, invasion, but enhanced the apoptosis in NSCLC cells in vitro. Circ_0087378 could repress microRNA-199a-5p (miR-199a-5p) by acting as a sponge. The loss of miR-199a-5p abrogated the inhibition of circ_0087378 loss on the malignant phenotype of NSCLC cells in vitro. DDR1 was directly repressed via miR-199a-5p. DDR1 counteracted the repressive role of miR-199a-5p on the malignant behavior of NSCLC cells in vitro. Conclusions: Circ_0087378 promotes the malignant behavior of NSCLC cells in vitro by facilitating DDR1 via sponging miR-199a-5p. It may be a promising target for treatment.

SELECTION OF CITATIONS
SEARCH DETAIL
...