Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Publication year range
1.
Zhongguo Zhong Yao Za Zhi ; 48(4): 1014-1022, 2023 Feb.
Article in Chinese | MEDLINE | ID: mdl-36872272

ABSTRACT

This study aims to observe the effect of chlorogenic acid(CGA) on microRNA(miRNA) in the process of protecting against N-acetyl-p-aminophenol(APAP)-induced liver injury. Eighteen C57BL/6 mice were randomly assigned into a normal group, a model group(APAP, 300 mg·kg~(-1)), and a CGA(40 mg·kg~(-1)) group. Hepatotoxicity of mice was induced by intragastric administration of APAP(300 mg·kg~(-1)). The mice in the CGA group were administrated with CGA(40 mg·kg~(-1)) by gavage 1 h after APAP administration. The mice were sacrificed 6 h after APAP administration, and plasma and liver tissue samples were collected for the determination of serum alanine/aspartate aminotransferase(ALT/AST) level and observation of liver histopathology, respectively. MiRNA array combined with real-time PCR was employed to discover important miRNAs. The target genes of miRNAs were predicted via miRWalk and TargetScan 7.2, verified by real-time PCR, and then subjected to functional annotation and signaling pathway enrichment. The results showed that CGA administration lowered the serum ALT/AST level elevated by APAP and alleviate the liver injury. Nine potential miRNAs were screened out from the microarray. The expression of miR-2137 and miR-451a in the liver tissue was verified by real-time PCR. The expression of miR-2137 and miR-451a was significantly up-regulated after APAP administration, and such up-regulated expression was significantly down-regulated after CGA administration, consistent with the array results. The target genes of miR-2137 and miR-451a were predicted and verified. Eleven target genes were involved in the process of CGA protecting against APAP-induced liver injury. Gene Ontology(GO) annotation and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment with DAVID and R language showed that the 11 target genes were enriched in Rho protein-related signal transduction, vascular patterning-related biological processes, binding to transcription factors, and Rho guanyl-nucleotide exchange factor activity. The results indicated that miR-2137 and miR-451a played an important role in the inhibition of CGA on APAP-induced hepatotoxicity.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , MicroRNAs , Animals , Mice , Mice, Inbred C57BL , Chlorogenic Acid , Acetaminophen , Alanine Transaminase
2.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-970573

ABSTRACT

This study aims to observe the effect of chlorogenic acid(CGA) on microRNA(miRNA) in the process of protecting against N-acetyl-p-aminophenol(APAP)-induced liver injury. Eighteen C57BL/6 mice were randomly assigned into a normal group, a model group(APAP, 300 mg·kg~(-1)), and a CGA(40 mg·kg~(-1)) group. Hepatotoxicity of mice was induced by intragastric administration of APAP(300 mg·kg~(-1)). The mice in the CGA group were administrated with CGA(40 mg·kg~(-1)) by gavage 1 h after APAP administration. The mice were sacrificed 6 h after APAP administration, and plasma and liver tissue samples were collected for the determination of serum alanine/aspartate aminotransferase(ALT/AST) level and observation of liver histopathology, respectively. MiRNA array combined with real-time PCR was employed to discover important miRNAs. The target genes of miRNAs were predicted via miRWalk and TargetScan 7.2, verified by real-time PCR, and then subjected to functional annotation and signaling pathway enrichment. The results showed that CGA administration lowered the serum ALT/AST level elevated by APAP and alleviate the liver injury. Nine potential miRNAs were screened out from the microarray. The expression of miR-2137 and miR-451a in the liver tissue was verified by real-time PCR. The expression of miR-2137 and miR-451a was significantly up-regulated after APAP administration, and such up-regulated expression was significantly down-regulated after CGA administration, consistent with the array results. The target genes of miR-2137 and miR-451a were predicted and verified. Eleven target genes were involved in the process of CGA protecting against APAP-induced liver injury. Gene Ontology(GO) annotation and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment with DAVID and R language showed that the 11 target genes were enriched in Rho protein-related signal transduction, vascular patterning-related biological processes, binding to transcription factors, and Rho guanyl-nucleotide exchange factor activity. The results indicated that miR-2137 and miR-451a played an important role in the inhibition of CGA on APAP-induced hepatotoxicity.


Subject(s)
Animals , Mice , Mice, Inbred C57BL , Chlorogenic Acid , Acetaminophen , Chemical and Drug Induced Liver Injury, Chronic , Alanine Transaminase , MicroRNAs
3.
Acta Biochim Biophys Sin (Shanghai) ; 49(5): 409-419, 2017 May 01.
Article in English | MEDLINE | ID: mdl-28369179

ABSTRACT

The gender-biased thymus involution and the importance of microRNAs (miRNAs, miRs) expression in modulating the thymus development have been reported in many studies. However, how males and females differ in so many ways in thymus involution remains unclear. To address this question, we investigated the miRNA expression profiles in both untreated 3- and 12-month-old female and male mice thymuses. The results showed that 7 and 18 miRNAs were defined as the sex- and age-specific miRNAs, respectively. The expression of miR-181c-5p, miR-20b-5p, miR-98b-5p, miR-329-3p, miR-341-5p, and miR-2137 showed significant age-difference in mice thymus by quantitative polymerase chain reaction. High expression levels of miR-2137 were detected in mice thymic epithelial cells and gradually increased during the process of thymus aging. MiR-27b-3p and miR-378a-3p of the female-biased miRNAs were confirmed as the sex- and estrogen-responsive miRNAs in mice thymus in vivo. Their potential target genes and the pathway were identified by the online software. Possible regulation roles of sex- and age-specific miRNA expression during the process of thymus aging were discussed. Our results suggested that these miRNAs may be potential biomarkers for the study of sex- and age-specific thymus aging and involution.


Subject(s)
Aging/metabolism , Gene Expression Regulation, Developmental/physiology , MicroRNAs/metabolism , Sex Characteristics , Thymus Gland/metabolism , Animals , Female , Male , Mice , Mice, Inbred BALB C
SELECTION OF CITATIONS
SEARCH DETAIL