Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
Heliyon ; 10(3): e24579, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38318031

ABSTRACT

Aims: Heme oxygenase (HO-1) affords protection against ischaemia/reperfusion (I/R) injury; however, its effects on testicular I/R injury remain poorly explored. Herein, we aimed to examine the effects of HO-1 on testicular I/R injury and elucidate the underlying mechanism. Methods: Using the TALEN technique, we knocked out the HO-1 gene from rats. In vivo: Thirty hmox+/+ and 30 hmox-/- rats were randomly assigned to six groups: sham-operated (sham), I/R (the left testicle torsion/detorsion) 0 d,I/R 1d, I/R 3d, I/R 7d and I/R 28d. In vitro: GC-1 were suffered from: control,H/R (oxygen-deprivation/reoxygenation),H/R + HO-1 siRNA,H/R + c-Jun siRNA or H/R + HO-1 siRNA + c-jun.We performed immunofluorescence and immunohistochemistry experiments to detect HO-1 nuclear translocation. Flow cytometry was used to detect cell apoptosis and analyse the cell cycle. High-resolution miRNA, mRNA sequencing, reverse transcription-quantitative PCR, and western blotting were performed to identify testicular I/R injury-related genes strongly conserved in HO-1 knockout rats. A double luciferase reporter assay was performed to verify the relationship between C-jun and miR-221/222. Main findings: In vivo, HO-1 improved the pathological damage induced by testicular I/R. In GC-1 cells, we confirmed the nuclear translocation of HO-1 and its protective effect against hypoxia/reoxygenation (H/R) damage. Accordingly, HO-1 protein itself, rather than heme metabolites, might play a key role in testicular I/R. Gene sequencing was performed to screen for miR221/222 and its downstream gene, thymocyte selection-associated high mobility group box (TOX). HO-1 increased c-Jun phosphorylation in the H/R group, knocked down c-Jun in GC-1 cells, and decreased miR-221/222 expression. Inhibition of HO-1 expression decreased the expression of c-Jun and miR-221/222, which was rescued by adding c-Jun. Dual-luciferase reporter assay confirmed the interaction between c-Jun and miR-221/222. Conclusions: HO-1 could exert a protective effect against testicular I/R via the phosphorylated c-Jun-miR-221/222-TOX pathway.

2.
Mol Biol Rep ; 51(1): 275, 2024 Feb 04.
Article in English | MEDLINE | ID: mdl-38310615

ABSTRACT

BACKGROUND: Tumor cell spheroids are organized multicellular structures that form during the expansive growth of carcinoma cells. Spheroids formation is thought to contribute to metastasis by supporting growth and survival of mobile tumor cell populations. METHODS AND RESULTS: We investigated how spheroid architecture affects OXPHOS activity, microRNA expression, and intraperitoneal survival of an ovarian carcinoma cell line using high resolution respirometry, quantitative RT-PCR, and a rodent intraperitoneal growth model. Rates of oxidative phosphorylation/respiration per cell of cells growing as spheroids were nearly double those of a variant of the same cell type growing in suspension as loosely aggregated cells. Further, inhibition of spheroid formation by treatment with CDH2 (N-cadherin) siRNA reduced the rate of OXPHOS to that of the non-spheroid forming variant. Cells growing as spheroids showed greatly enhanced expression of miR-221/222, an oncomiR that targets multiple tumor suppressor genes and promotes invasion, and reduced expression of miR-9, which targets mitochondrial tRNA-modification enzymes and inhibits OXPHOS. Consistent with greater efficiency of ATP generation, tumor cells growing as spheroids injected into the nutrient-poor murine peritoneum survived longer than cells growing in suspension as loosely associated aggregates. CONCLUSIONS: The data indicate that growth in spheroid form enhances the OXPHOS activity of constituent tumor cells. In addition, spheroid architecture affects expression of microRNA genes involved in growth control and mitochondrial function. During the mobile phase of metastasis, when ovarian tumor cells disperse through nutrient-poor environments such as the peritoneum, enhanced OXPHOS activity afforded by spheroid architecture would enhance survival and metastatic potential.


Subject(s)
MicroRNAs , Ovarian Neoplasms , Animals , Female , Humans , Mice , Cadherins/genetics , Cell Line, Tumor , MicroRNAs/genetics , MicroRNAs/metabolism , Ovarian Neoplasms/pathology , Oxidative Phosphorylation , Spheroids, Cellular/metabolism
3.
Int J Nanomedicine ; 18: 7379-7402, 2023.
Article in English | MEDLINE | ID: mdl-38084125

ABSTRACT

Purpose: Particulate matter (PM) 2.5, harmful air pollutants, and diabetes are associated with high morbidity and mortality from cardiovascular disease (CVD). However, the molecular mechanisms underlying the combined effects of PM and diabetes on CVD remain unclear. Methods: Endothelial cells (ECs) treated with high glucose (HG) and PM mimic hyperglycemia and air pollutant exposure in CVD. Endothelial inflammation was evaluated by Western blot and immunofluorescence of ICAM-1 expression and monocyte adhesion. The mechanisms underlying endothelial inflammation were elucidated through MitoSOX Red analysis, JC-1 staining, MitoTracker analysis, and Western blot analysis of mitochondrial fission-related, autophagy-related, and mitophagy-related proteins. Furthermore. nanocurcumin (NCur) pretreatment was used to test if it has a protective effect. Results: ECs under co-exposure to HG and PM increased ICAM-1 expression and monocyte adhesion, whereas NCur pretreatment attenuated these changes and improved endothelial inflammation. PM exposure increased mitochondrial ROS levels, worsened mitochondrial membrane potential, promoted mitochondrial fission, induced mitophagy, and aggravated inflammation in HG-treated ECs, while NCur reversed these changes. Also, HG and PM-induced endothelial inflammation is through the JNK signaling pathway and miR-221/222 specifically targeting ICAM-1 and BNIP3. PM exposure also aggravated mitochondrial ROS levels, mitochondrial fission, mitophagy, and endothelial inflammation in STZ-induced hyperglycemic mice, whereas NCur attenuated these changes. Conclusion: This study elucidated the mechanisms underlying HG and PM-induced endothelial inflammation in vitro and in vivo. HG and PM treatment increased mitochondrial ROS, mitochondrial fission, and mitophagy in ECs, whereas NCur reversed these conditions. In addition, miR-221/222 plays a role in the amelioration of endothelial inflammation through targeting Bnip3 and ICAM-1, and NCur pretreatment can modulate miR-221/222 levels. Therefore, NCur may be a promising approach to intervene in diabetes and air pollution-induced CVD.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus , MicroRNAs , Mice , Animals , Endothelial Cells , Intercellular Adhesion Molecule-1/metabolism , Particulate Matter/toxicity , Reactive Oxygen Species/metabolism , Inflammation/chemically induced , Inflammation/metabolism , Mitochondria/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Glucose/metabolism , Diabetes Mellitus/metabolism , Cardiovascular Diseases/metabolism
4.
Appl Biochem Biotechnol ; 195(7): 4196-4214, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36662424

ABSTRACT

Adipose-derived stem cells (ADSCs) are a type of adult mesenchymal stem cell that show a repair effect on ischemic tissues owing to their capacity for endothelial differentiation. MicroRNA-221/222 (miR-221/222) has been extensively studied in endothelial cells (ECs). However, the mechanism that regulates ADSCs differentiation into ECs remains unknown. In this study, we investigated the effects of miR-221/222-overexpression/silence in ADSCs on endothelial differentiation by constructing lentiviral vectors. Differentiation capacity was assessed by measuring the expression of endothelial markers (CD31, CD34, and CD144). In addition, low-density lipoprotein (LDL) uptake and tube-like formation were performed for evaluation of functional characterization. The PTEN/PI3K/AKT/mTOR signaling pathway was investigated using western blotting to clarify the action mechanism of this gene. The revascularization of miR-221/222-transfeted ADSCs was further verified in a rat hind limb ischemia model. The results confirmed that transfection with miR-221/222 promoted the expression of endothelial markers, LDL uptake, and tube-like formation. As expected, the PI3K/AKT signaling pathway was effectively activated when ADSCs showed high expression of miR-221/222 during endothelial differentiation. Furthermore, injection of miR-221/222 transfected ADSCs significantly improved rat hindlimb ischemia, as evidenced by increased blood flow and structural integrity and reduce inflammatory infiltration. The results of this study suggest that miR-221/222 is essential for endothelial differentiation of ADSCs and provides a novel strategy for modulating vascular formation and ischemic tissue regeneration.


Subject(s)
Mesenchymal Stem Cells , MicroRNAs , Rats , Animals , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Endothelial Cells , Cell Differentiation/genetics , TOR Serine-Threonine Kinases/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Adipose Tissue
5.
Cell Mol Biol Lett ; 27(1): 55, 2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35836108

ABSTRACT

BACKGROUND: METTL3 is the core catalytic enzyme in m6A and is involved in a variety of cardiovascular diseases. However, whether and how METTL3 plays a role during angiotensin II (Ang-II)-induced myocardial hypertrophy is still unknown. METHODS: Neonatal rat cardiomyocytes (NRCMs) and C57BL/6J mice were treated with Ang-II to induce myocardial hypertrophy. qRT-PCR and western blots were used to detect the expression of RNAs and proteins. Gene function was verified by knockdown and/or overexpression, respectively. Luciferase and RNA immunoprecipitation (RIP) assays were used to verify interactions among multiple genes. Wheat germ agglutinin (WGA), hematoxylin and eosin (H&E), and immunofluorescence were used to examine myocardial size. m6A methylation was detected by a colorimetric kit. RESULTS: METTL3 and miR-221/222 expression and m6A levels were significantly increased in response to Ang-II stimulation. Knockdown of METTL3 or miR-221/222 could completely abolish the ability of NRCMs to undergo hypertrophy. The expression of miR-221/222 was positively regulated by METTL3, and the levels of pri-miR-221/222 that bind to DGCR8 or form m6A methylation were promoted by METTL3 in NRCMs. The effect of METTL3 knockdown on hypertrophy was antagonized by miR-221/222 overexpression. Mechanically, Wnt/ß-catenin signaling was activated during hypertrophy and restrained by METTL3 or miR-221/222 inhibition. The Wnt/ß-catenin antagonist DKK2 was directly targeted by miR-221/222, and the effect of miR-221/222 inhibitor on Wnt/ß-catenin was abolished after inhibition of DKK2. Finally, AAV9-mediated cardiac METTL3 knockdown was able to attenuate Ang-II-induced cardiac hypertrophy in mouse model. CONCLUSIONS: Our findings suggest that METTL3 positively modulates the pri-miR221/222 maturation process in an m6A-dependent manner and subsequently activates Wnt/ß-catenin signaling by inhibiting DKK2, thus promoting Ang-II-induced cardiac hypertrophy. AAV9-mediated cardiac METTL3 knockdown could be a therapeutic for pathological myocardial hypertrophy.


Subject(s)
Angiotensin II , MicroRNAs , Angiotensin II/pharmacology , Animals , Cardiomegaly/genetics , Cardiomegaly/pathology , Methyltransferases/genetics , Methyltransferases/metabolism , Methyltransferases/pharmacology , Mice , Mice, Inbred C57BL , MicroRNAs/metabolism , Myocytes, Cardiac/metabolism , RNA-Binding Proteins/metabolism , Rats , beta Catenin/metabolism
6.
Mol Ther Nucleic Acids ; 27: 1191-1224, 2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35282417

ABSTRACT

Among deregulated microRNAs (miRs) in human malignancies, miR-221 has been widely investigated for its oncogenic role and as a promising biomarker. Moreover, recent evidence suggests miR-221 as a fine-tuner of chronic liver injury and inflammation-related events. Available information also supports the potential of miR-221 silencing as promising therapeutic intervention. In this systematic review, we selected papers from the principal databases (PubMed, MedLine, Medscape, ASCO, ESMO) between January 2012 and December 2020, using the keywords "miR-221" and the specific keywords related to the most important hematologic and solid malignancies, and some non-malignant diseases, to define and characterize deregulated miR-221 as a valuable therapeutic target in the modern vision of molecular medicine. We found a major role of miR-221 in this view.

7.
Cell Biosci ; 11(1): 160, 2021 Aug 17.
Article in English | MEDLINE | ID: mdl-34404451

ABSTRACT

BACKGROUND: Cardiovascular disease is the leading cause of death worldwide. Cardiac electrical remodeling including altered ion channel expression and imbalance of calcium homeostasis can have detrimental effects on cardiac function. While it has been extensively reported that miR-221/222 are involved in structural remodeling, their role in electrical remodeling still has to be evaluated. We previously reported that subunits of the L-type Ca2+ channel (LTCC) are direct targets of miR-221/222. Furthermore, HL-1 cells transfected with miR-221 or -222 mimics showed a reduction in LTCC current density while the voltage-dependence of activation was not altered. The aim of the present study was to determine the influence of miR-221/222 on cardiomyocyte calcium handling and function. RESULTS: Transient transfection of HL-1 cells with miR-221/222 mimics led to slower depolarization-dependent Ca2+ entry and increased proportion of non-responding cells. Angiotensin II-induced Ca2+ release from the SR was not affected by miR-221/222. In miR-222-transfected neonatal cardiomyocytes the isoprenaline-induced positive inotropic effect on the intracellular Ca2+ transient was lost and the positive chronotropic effect on spontaneous beating activity was strongly reduced. This could have severe consequences for cardiomyocytes and could lead to a reduced contractility and systolic dysfunction of the whole heart. CONCLUSIONS: This study adds a new role of miR-221/222 in cardiomyocytes by showing the impact on ß-adrenergic regulation of LTCC function, calcium handling and beating frequency. Together with the previous report that miR-221/222 reduce GIRK1/4 function and LTCC current density, it expands our knowledge about the role of these miRs on cardiac ion channel regulation.

8.
Front Cell Dev Biol ; 9: 652939, 2021.
Article in English | MEDLINE | ID: mdl-34095117

ABSTRACT

Intestinal epithelial cells are critical for nutrient absorption and defending against pathogen infection. Deoxynivalenol (Don), the most common mycotoxin, contaminates cereals and food throughout the world, causes serious damage to mammal intestinal mucosa, and appears as intestinal epithelial cell apoptosis and proliferation inhibition. Our previous study has found that milk-derived exosome ameliorates Don-induced intestinal damage, but the mechanism is still not fully understood. In this study, we demonstrated that Don downregulated the expression of miR-221/222 in intestinal epithelial cells, and exosome treatment reversed the inhibitory effect of Don on miR-221/222. Through immunofluorescence and flow cytometry analysis, we identified that miR-221/222 ameliorates Don-induced apoptosis and proliferation inhibition in intestinal epithelial cells. Through bioinformatics analyses and RNA immunoprecipitation analysis, we identified Phosphatase and tensin homolog (PTEN) is the target of miR-221/222. Through the PTEN interfering experiment, we found Don-induced apoptosis and proliferation inhibition relied on PTEN. Finally, through adenovirus to overexpress miR-221/222 in mice intestinal epithelial cells specifically, our results showed that miR-221/222 ameliorated Don-induced apoptosis and proliferation inhibition in intestinal epithelial cells by targeting PTEN. This study not only expands our understanding of how miR-221/222 and the host gene PTEN regulate intestinal epithelial cells defending against Don-induced damage, but also provides a new way to protect the development of the intestine.

9.
Front Cell Dev Biol ; 9: 663279, 2021.
Article in English | MEDLINE | ID: mdl-33959615

ABSTRACT

Cancer stem cells (CSCs) contribute to the cancer initiation, metastasis and drug resistance in non-small cell lung cancer (NSCLC). Herein, we identified a miR-221/222 cluster as a novel regulator of CSCs in NSCLC. Targeted overexpression or knockdown of miR-221/222 in NSCLC cells revealed the essential roles of miR-221/222 in regulation of lung cancer cell proliferation, mammosphere formation, subpopulation of CD133+ CSCs and the expression of stemness genes including OCT4, NANOG and h-TERT. The in vivo animal study showed that overexpression of miR-221/222 significantly enhanced the capacity of lung cancer cells to develop tumor and grow faster, indicating the importance of miR-221/222 in tumorigenesis and tumor growth. Mechanistically, Reck was found to be a key direct target gene of miR-221/222 in NSCLC. Overexpression of miR-221/222 significantly suppressed Reck expression, activated Notch1 signaling and increased the level of NICD. As an activated form of Notch1, NICD leads to enhanced stemness in NSCLC cells. In addition, knockdown of Reck by siRNA not only mimicked miR-221/222 effects, but also demonstrated involvement of Reck in the miR-221/222-induced activation of Notch1 signaling, verifying the essential roles of the miR-221/222-Reck-Notch1 axis in regulating stemness of NSCLC cells. These findings uncover a novel mechanism by which lung CSCs are significantly manipulated by miR-221/222, and provide a potential therapeutic target for the treatment of NSCLC.

11.
Theranostics ; 11(7): 3131-3149, 2021.
Article in English | MEDLINE | ID: mdl-33537078

ABSTRACT

Rationale: Cardiovascular diseases, such as myocardial infarction (MI), are the leading causes of death worldwide. Reperfusion therapy is the common standard treatment for MI. However, myocardial ischemia/reperfusion (I/R) causes cardiomyocyte injury, including apoptosis and fibrosis. We aimed to investigate the effects of conditioned medium from adipose-derived stem cells (ADSC-CM) on apoptosis and fibrosis in I/R-treated hearts and hypoxia/reoxygenation (H/R)-treated cardiomyocytes and the underlying mechanisms. Methods: ADSC-CM was collected from ADSCs. The effects of intramuscular injection of ADSC-CM on cardiac function, cardiac apoptosis, and fibrosis examined by echocardiography, Evans blue/TTC staining, TUNEL assay, and Masson's trichrome staining in I/R-treated mice. We also examined the effects of ADSC-CM on apoptosis and fibrosis in H/R-treated H9c2 cells by annexin V/PI flow cytometry, TUNEL assay, and immunocytochemistry. Results: ADSC-CM treatment significantly reduced heart damage and fibrosis of I/R-treated mice and H/R-treated cardiomyocytes. In addition, the expression of apoptosis-related proteins, such as p53 upregulated modulator of apoptosis (PUMA), p-p53 and B-cell lymphoma 2 (BCL2), as well as the fibrosis-related proteins ETS-1, fibronectin and collagen 3, were significantly reduced by ADSC-CM treatment. Moreover, we demonstrated that ADSC-CM contains a large amount of miR-221/222, which can target and regulate PUMA or ETS-1 protein levels. Furthermore, the knockdown of PUMA and ETS-1 decreased the induction of apoptosis and fibrosis, respectively. MiR-221/222 overexpression achieved similar results. We also observed that cardiac I/R markedly increased apoptosis and fibrosis in miR-221/222 knockout (KO) mice, while ADSC-CM decreased these effects. The increased phosphorylation of p38 and NF-κB not only mediated myocardial apoptosis through the PUMA/p53/BCL2 pathway but also regulated fibrosis through the ETS-1/fibronectin/collagen 3 pathway. Conclusions: Overall, our results show that ADSC-CM attenuates cardiac apoptosis and fibrosis by reducing PUMA and ETS-1 expression, respectively. The protective effect is mediated via the miR-221/222/p38/NF-κB pathway.


Subject(s)
Culture Media, Conditioned/pharmacology , Mesenchymal Stem Cells/metabolism , Reperfusion Injury/drug therapy , Adipose Tissue/cytology , Animals , Apoptosis/drug effects , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Cell Death , Fibrosis/drug therapy , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , MicroRNAs/genetics , MicroRNAs/metabolism , Myocardial Infarction/metabolism , Myocardial Reperfusion Injury/pathology , Myocardium/pathology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Proto-Oncogene Protein c-ets-1/genetics , Proto-Oncogene Protein c-ets-1/metabolism , Reperfusion , Reperfusion Injury/genetics , Stem Cells/metabolism , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
12.
Mol Biomed ; 2(1): 20, 2021 Jun 30.
Article in English | MEDLINE | ID: mdl-35006452

ABSTRACT

Tamoxifen resistance (TamR) prevents ER-positive breast cancer patients from benefitting from endocrine therapy, and miR-221 or miR-222 plays vital roles in inducing TamR. In this study, we designed synthetic sponges to reverse TamR by targeting these two miRs. First, we established a tamoxifen resistant breast cancer cell line (MCF-7TamR), we verified the high expressing level of these two miRs in TamR cells. miR-221 or miR-222 inhibitors rendered MCF-7TamR cells responsive to tamoxifen. Next, we designed a miR-221/222 sponge, which contains total 8 multi-antisense binding sites (MBSs) for these two onco-miRs, and inserted it into CMV promoter- or hTERT promoter-driven expressing vectors. After transfected miR-221/222 sponge expressing vectors into MCF-7TamR cells, we identified a strong interaction between miR-221/222 sponge and endogenous miR-221 or miR-222 by RNA pulldown assay. We also found that miR-221/222 sponge restored the expression of ERα and PTEN, arrested cells in G1 phase, and finally resulted in reduced cell growth and cell migration. Notably, miR-221/222 sponge expressing cells abrogates tamoxifen resistance through restoring the expression of ERα, suggesting that miR-221/222 sponge gene therapy especially driven by tumor specific promoter could provide an effective therapeutic approach against TamR in breast cancer.

13.
Front Endocrinol (Lausanne) ; 12: 794490, 2021.
Article in English | MEDLINE | ID: mdl-35197926

ABSTRACT

Background: MicroRNA (miRNA) has been reported to play a critical regulatory role in papillary thyroid carcinomas (PTC). However, the role of miR-221/222 in PTC remains unclear. Here, we performed this study to explore the diagnostic potentials and mechanisms of miR-221/222 in PTC. Methods: First, we systematically analyzed the diagnostic value of miR-221/222 in the diagnosis PTC by pooling the published studies. Afterwards, we performed comprehensive bioinformatics analysis including gene ontology analysis, pathway enrichment analysis and protein-protein interaction analysis to explore the potential mechanisms of miR-221/222 involved in PTC. Results: The overall sensitivity and specificity of miR-221/222 for PTC were 0.75 (95% CI: 0.70-0.80) and 0.80 (95% CI: 0.76-0.84) respectively with the AUC of 0.85 (95% CI: 0.81-0.88). The diagnostic performance varied among different subgroups including geographical locations, sample sources and sample sizes. Meanwhile, we found that a combination of miR-221/222 and other miRNAs when used in a diagnostic panel could improve the diagnostic accuracy than individual miR-221/222. Moreover, through the bioinformatics analysis, we confirmed that miR-221/222 targets were highly related to the molecular pathogenesis of PTC. The results revealed that miR-221/222 may exert important functions in PTC through thyroid hormone signaling pathway and some other key pathways by regulating some key genes. Conclusion: These findings indicated that miR-221/222 have the potential to serve as auxiliary tools for diagnosing PTC. Further prospective clinical trials should be performed to assess the accuracy of these findings in a larger cohort and determine the clinical uses.


Subject(s)
MicroRNAs , Thyroid Neoplasms , Biomarkers , Computational Biology , Diagnosis, Differential , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Thyroid Cancer, Papillary/diagnosis , Thyroid Cancer, Papillary/genetics , Thyroid Cancer, Papillary/pathology , Thyroid Neoplasms/diagnosis , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology
14.
Cancers (Basel) ; 12(9)2020 Sep 12.
Article in English | MEDLINE | ID: mdl-32932713

ABSTRACT

Thyroid cancer (TC) includes various phenotypes, from indolent to highly aggressive cancer. The limitations of the current prognostication systems to predict the recurrence risk and the variability in expression of the genes involved in the thyroid carcinogenesis uncover the need for new prognostic biomarkers by taking into account potential epigenetic differences. We aimed to summarize the current knowledge regarding the prognostic impact of microRNAs (miRNAs) in TC. A literature search was conducted in PubMed, Embase, Scopus, and Web of Science databases. Both upregulated and downregulated miRNAs are significantly correlated with worse overall survival (hazard ratio (HR) = 5.94, 95% CI: 2.73-12.90, p < 0.001; HR = 0.51, 95% CI: 0.26-0.96, p = 0.048) disease/recurrence-free survival (HR = 1.58, 95% CI: 1.08-2.32, p = 0.003; HR = 0.37, 95%, CI: 0.24-0.60, p < 0.001). Sensitivity analysis revealed a significant association between the higher expression of miR-146b, miR-221, and miR-222 and the recurrence of papillary TC (OR = 9.11, 95% CI 3.00 to 27.52; p < 0.001; OR = 3.88, 95% CI 1.34 to 11.19, p < 0.001; OR = 6.56, 95% CI 2.75 to 15.64, p < 0.001). This research identified that miR-146b, miR-221, and miR-222 could serve as potential prognostic biomarkers in TC, particularly in PTC. Further studies are needed to strengthen these findings and sustain its clinical applicability.

15.
Endocrinology ; 161(1)2020 01 01.
Article in English | MEDLINE | ID: mdl-31761936

ABSTRACT

Microribonucleic acids (miRNAs) are essential for the regulation of development, proliferation, and functions of pancreatic ß-cells. The conserved miR-221/222 cluster is an important regulator in multiple cellular processes. Here we investigated the functional role of miR-221/222 in the regulation of ß-cell proliferation and functions in transgenic mouse models. We generated 2 pancreatic ß-cell-specific-miR-221/222 transgenic mouse models on a C57BL/6J background. The glucose metabolic phenotypes, ß-cell mass, and ß-cell functions were analyzed in the mouse models. Adenovirus-mediated overexpression of miR-221/222 was performed on ß-cells and mouse insulinoma 6 (MIN6) cells to explore the effect and mechanisms of miR-221/222 on ß-cell proliferation and functions. Luciferase reporter assay, histological analysis, and quantitative polymerase chain reaction (PCR) were carried out to study the direct target genes of miR-221/222 in ß-cells. The expression of miR-221/222 was significantly upregulated in ß-cells from the high-fat diet (HFD)-fed mice and db/db mice. Overexpression of miR-221/222 impaired the insulin production and secretion of ß-cells and resulted in glucose intolerance in vivo. The ß-cell mass and proliferation were increased by miR-221/222 expression via Cdkn1b and Cdkn1c. MiR-221/222 repressed insulin transcription activity through targeting Nfatc3 and lead to reduction of insulin in ß-cells. Our findings demonstrate that miR-221/222 are important regulators of ß-cell proliferation and insulin production. The expression of miR-221/222 in ß-cells could regulate glucose metabolism in physiological and pathological processes.


Subject(s)
Gene Expression Regulation/drug effects , Gene Expression Regulation/physiology , Insulin-Secreting Cells/physiology , Insulin/metabolism , MicroRNAs/metabolism , Animals , Diet, High-Fat/adverse effects , Mice , MicroRNAs/genetics , NFATC Transcription Factors/genetics , NFATC Transcription Factors/metabolism
16.
Exp Cell Res ; 384(1): 111614, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31499060

ABSTRACT

Autophagy has been shown to be critically associated with the central mechanisms underlying Parkinson's disease (PD), while the mechanisms contributing to the imbalance of autophagy remain unclear. Small nucleolar RNA host gene 1 (SNHG1), a well-studied long noncoding RNA, has been reported to be significantly increased in PD. The potential biological functions of SNHG1 in the regulation of neuronal autophagy and cell death in PD, however, have not yet been completely elucidated. In this study, we examined the existence of regulatory networks involving SNHG1, the miR-221/222 cluster and the cyclin-dependent kinase inhibitor 1B (CDKN1B/p27)/mammalian target of rapamycin (mTOR) signaling pathway in PD. We observed that SNHG1 expression was gradually upregulated in PD cellular and animal models. Furthermore, silencing SNHG1 promoted autophagy and prevented MPP+-induced cell death, similar to the overexpression of the miR-221/222 cluster. Mechanistically, SNHG1 competitively binds to the miR-221/222 cluster and indirectly regulates the expression of p27/mTOR. In conclusion, these results demonstrated that downregulation of SNHG1 attenuated MPP+-induced decreases in LC3-II (an autophagic marker) levels and cytotoxicity through the miR-221/222/p27/mTOR pathway, suggesting that SNHG1 may be a therapeutic target for neuroprotection and disease treatment in PD.


Subject(s)
Autophagy/genetics , Cell Death/genetics , Down-Regulation/genetics , Parkinson Disease/genetics , RNA, Long Noncoding/genetics , Signal Transduction/genetics , Animals , Cell Line , Mice , Mice, Inbred C57BL , MicroRNAs/genetics , Neurons/pathology , Proliferating Cell Nuclear Antigen/genetics , TOR Serine-Threonine Kinases/genetics
17.
Mol Cancer ; 18(1): 110, 2019 06 22.
Article in English | MEDLINE | ID: mdl-31228940

ABSTRACT

BACKGROUND: METTL3 is known to be involved in all stages in the life cycle of RNA. It affects the tumor formation by the regulation the m6A modification in the mRNAs of critical oncogenes or tumor suppressors. In bladder cancer, METTL3 could promote the bladder cancer progression via AFF4/NF-κB/MYC signaling network by an m6A dependent manner. Recently, METTL3 was also found to affect the m6A modification in non-coding RNAs including miRNAs, lincRNAs and circRNAs. However, whether this mechanism is related to the proliferation of tumors induced by METTL3 is not reported yet. METHODS: Quantitative real-time PCR, western blot and immunohistochemistry were used to detect the expression of METTL3 in bladder cancer. The survival analysis was adopted to explore the association between METTL3 expression and the prognosis of bladder cancer. Bladder cancer cells were stably transfected with lentivirus and cell proliferation and cell cycle, as well as tumorigenesis in nude mice were performed to assess the effect of METTL3 in bladder cancer. RNA immunoprecipitation (RIP), co-immunoprecipitations and RNA m6A dot blot assays were conducted to confirm that METTL3 interacted with the microprocessor protein DGCR8 and modulated the pri-miR221/222 process in an m6A-dependent manner. Luciferase reporter assay was employed to identify the direct binding sites of miR221/222 with PTEN. Colony formation assay and CCK8 assays were conducted to confirm the function of miR-221/222 in METTL3-induced cell growth in bladder cancer. RESULTS: We confirmed the oncogenic role of METTL3 in bladder cancer by accelerating the maturation of pri-miR221/222, resulting in the reduction of PTEN, which ultimately leads to the proliferation of bladder cancer. Moreover, we found that METTL3 was significantly increased in bladder cancer and correlated with poor prognosis of bladder cancer patients. CONCLUSIONS: Our findings suggested that METTL3 may have an oncogenic role in bladder cancer through interacting with the microprocessor protein DGCR8 and positively modulating the pri-miR221/222 process in an m6A-dependent manner. To our knowledge, this is the first comprehensive study that METTL3 affected the tumor formation by the regulation the m6A modification in non-coding RNAs, which might provide fresh insights into bladder cancer therapy.


Subject(s)
Adenosine/analogs & derivatives , Methyltransferases/metabolism , MicroRNAs/genetics , Urinary Bladder Neoplasms/pathology , Adenosine/metabolism , Animals , Cell Line, Tumor , Cell Proliferation , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Male , Methyltransferases/genetics , Mice , Neoplasm Transplantation , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , RNA-Binding Proteins/metabolism , Tissue Array Analysis , Up-Regulation , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/metabolism
18.
Lab Med ; 50(4): 333-347, 2019 Oct 10.
Article in English | MEDLINE | ID: mdl-31049571

ABSTRACT

MicroRNAs (miRNAs) are a class of short (~22 nucleotides [nt]), single-stranded RNA oligonucleotides that are regulatory in nature and are often dysregulated in various diseases, including cancer. miRNAs can act as oncomiRs (miRNAs associated with cancer) or tumor suppressor miRNAs and have the potential to be a diagnostic, prognostic, noninvasive biomarker for these diseases. MicroRNA-221 (miR-221) and microRNA-222 (miR-222) are homologous miRNAs, located on the human chromosome Xp11.3, which factored significantly in impairment in the regulation of a wide range of cancers. In this review, we have highlighted the most consistently reported dysregulated miRNAs that trigger human tissues to express cancerous features and surveyed the role of those miRNAs in metastasis, apoptosis, angiogenesis, and tumor prognosis. Also, we applied the causes of drug resistance and the role of coordinated actions of these miRNAs to epigenetic changes and selected miRNAs as a potential type of cancer treatment.


Subject(s)
Carcinogenesis , Gene Expression , MicroRNAs/analysis , Neoplasms/pathology , Neoplasms/physiopathology , Biomarkers, Tumor/analysis , Biomarkers, Tumor/metabolism , Humans , MicroRNAs/metabolism
19.
Epigenetics ; 14(6): 545-557, 2019 06.
Article in English | MEDLINE | ID: mdl-30983504

ABSTRACT

Several miRNAs are dysregulated in gastrointestinal stromal tumours (GIST), and miR-221/222 appear to have a prominent role in GIST biology. Therefore, we investigated the role of DNA variants located in miR-221/222 precursor sequences and their target KIT 3'UTR. Ninety-five polymorphisms were analysed in 115 GIST cases and 88 healthy controls. KIT 3'UTR rs17084733 and pri-miR-222 rs75246947 were found significantly associated with GIST susceptibility. Specifically, KIT rs17084733 A allele was more common in GIST, particularly in KIT wild-type (WT) patients (Padj = 0.017). rs17084733 variant is located within one of the three miR-221/222 binding sites in the KIT 3'UTR, resulting in a mismatch in this seed region. Conversely, KIT mRNA levels were lower in patients carrying the variant allele, except for KIT mutant GIST. Luciferase assay data in GIST cells, generated using a construct containing all the three miR-221/222 binding sites, are consistent with KIT mRNA levels in GIST patients. Reporter assay data, generated using a construct containing only the site encompassing rs17084733, confirmed that this is a functional variant disrupting the miR-221/222 binding site. In conclusion, this is the first study investigating the role of SNPs on miR-221/222 precursor sequences and their binding region on KIT 3'UTR in GIST. We identified the KIT variant rs17084733 as a possible novel genetic biomarker for risk of developing KIT-WT GIST. Moreover, our findings suggest the role of one of the three miR-221/222 binding sites on KIT 3'UTR as endogenous sponge, soaking up and subtracting miR-221/222 to the other two sites characterized by a higher affinity.


Subject(s)
3' Untranslated Regions/genetics , Gastrointestinal Neoplasms/pathology , Gastrointestinal Stromal Tumors/pathology , MicroRNAs/metabolism , Polymorphism, Single Nucleotide , Proto-Oncogene Proteins c-kit/genetics , Adult , Aged , Aged, 80 and over , Apoptosis , Binding Sites , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Case-Control Studies , Cell Proliferation , Disease Susceptibility , Female , Follow-Up Studies , Gastrointestinal Neoplasms/genetics , Gastrointestinal Neoplasms/metabolism , Gastrointestinal Stromal Tumors/genetics , Gastrointestinal Stromal Tumors/metabolism , Gene Expression Regulation, Neoplastic , Humans , Male , MicroRNAs/genetics , Middle Aged , Prognosis , Proto-Oncogene Proteins c-kit/metabolism , Retrospective Studies , Survival Rate , Tumor Cells, Cultured , Young Adult
20.
Mol Ther ; 27(3): 559-570, 2019 03 06.
Article in English | MEDLINE | ID: mdl-30765325

ABSTRACT

Inherent or acquired resistance to chemotherapeutic drugs is still an obstacle for the treatment of multiple myeloma (MM). MicroRNA dysregulation is related to the development of chemoresistance in cancers. However, its role in chemoresistance of MM is largely unknown. Here we demonstrated that miR-221/222 were upregulated in plasma cells from patients with MM, especially those with relapsed or refractory disease. Moreover, expression levels of miR-221/222 were inversely correlated with dexamethasone (Dex) sensitivity of human MM cell lines. Importantly, we found that Dex induced pro-death autophagy in MM cells and the inhibition of autophagy significantly decreased Dex-induced cell death. Mechanistically, autophagy-related gene 12 (ATG12) was identified as a novel target gene of miR-221/222, and miR-221/222 overexpression inhibited autophagy by directly targeting ATG12 and the p27kip (p27)-mammalian target of rapamycin (mTOR) pathway. Indeed, Dex treatment decreased the expression of miR-221/222, thereby activating the ATG12/p27-mTOR autophagy-regulatory axis and inducing cell death in Dex-sensitive MM cells. Furthermore, both in vitro and in vivo results showed that the inhibitions of miR-221/222 increased the expression of ATG12 and p27 and functionally induced extended autophagy and cell death of MM cells. In conclusion, our findings demonstrated the crucial role of the miR-221/222-ATG12/p27-mTOR autophagy-regulatory axis in Dex resistance of MM, and they suggest potential prediction and treatment strategies for glucocorticoid resistance.


Subject(s)
Autophagy/physiology , Dexamethasone/therapeutic use , MicroRNAs/metabolism , Multiple Myeloma/drug therapy , Multiple Myeloma/metabolism , Autophagy/genetics , Autophagy-Related Protein 12/genetics , Autophagy-Related Protein 12/metabolism , Cell Line, Tumor , Humans , MicroRNAs/genetics , Multiple Myeloma/genetics , Proliferating Cell Nuclear Antigen/genetics , Proliferating Cell Nuclear Antigen/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...