Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 257
Filter
1.
Discov Oncol ; 15(1): 225, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864997

ABSTRACT

BACKGROUND: Colorectal cancer, which originates from the human colon or rectum, is one of the leading causes of death worldwide. Timely diagnosis and interventional therapy can significantly improve the prognostic survival of colorectal cancer patients, making regular screening and early detection essential. AIM: To investigate the regulatory function of lncRNA CTBP1-DT (CTBP1-DT) on colorectal cancer cells and to assess its diagnostic significance. METHODS: A total of 102 patients with colorectal cancer and 92 healthy individuals were selected. The levels of CTBP1-DT and microRNA-30a-5p (miR-30a-5p) in serum and cell samples of the above subjects were compared by RT-qPCR. The effects of CTBP1-DT and miR-30a-5p dysregulation on the biological functions of colorectal cancer cells were analyzed via CCK-8, flow cytometry and Transwell assays. In addition, the ability of CTBP1-DT and miR-30a-5p to early identify colorectal cancer patients was determined through ROC curve. RESULTS: Serum CTBP1-DT was elevated in patients with colorectal cancer, which was obviously higher than in healthy controls. The expression of serum miR-30a-5p was downregulated in colorectal cancer. Both CTBP1-DT and miR-30a-5p have the value of distinguishing colorectal cancer, and the combined diagnostic ability is higher. Knockdown of CTBP1-DT directly targeted miR-30a-5p to repress cell activity and metastatic ability, whereas deregulation of miR-30a-5p eliminated the above inhibitory effects. CONCLUSION: Overexpression of CTBP1-DT has a certain application potential in the diagnosis of colorectal cancer and may be a therapeutic target for colorectal cancer.

2.
Exp Cell Res ; 439(2): 114099, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38802035

ABSTRACT

Gastric cancer is histologically classified into the intestinal subtype, which forms tubular structures, and the aggressive diffuse subtype, characterized by rapid invasion and poor prognosis. The variety and quantity of miRNA isoforms between different histological subtypes of gastric cancer were unknown. Through systematic filtering, we found that more diverse miR-30a-5p isoforms was present in the diffuse subtype of gastric cancer, and was associated with patients' worse survival independent of tumor stage based on the TCGA miRNA-seq data. Among all nine isoforms of miR-30a-5p, miR-30a-5p -1|1 was more abundant than the archetype of miR-30a-5p. Higher expression of miR-30a-5p -1|1 was observed in patients with advanced tumor stage and poor survival. Furthermore, miR-30a-5p -1|1 could promote the metastasis of gastric cancer cells both in vitro and in vivo by down-regulating TMEM66. In clinical samples, decreased expression of TMEM66 was characteristic of gastric cancer, and the low level of TMEM66 correlated with deceased CD8 positive cells in the tumor microenvironment probably due to decreased cytokines production. In conclusion, the variety of miR-30a-5p isoforms correlates with worse survival in gastric cancer patients. Moreover, miR-30a-5p -1|1 could promote gastric cancer metastasis by inhibiting TMEM66 and the infiltration of intratumoral CD8 positive cells.


Subject(s)
Gene Expression Regulation, Neoplastic , Membrane Proteins , MicroRNAs , Stomach Neoplasms , T-Lymphocytes, Cytotoxic , Animals , Female , Humans , Male , Mice , Cell Line, Tumor , Cell Proliferation/genetics , Disease Progression , Gene Expression Regulation, Neoplastic/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice, Nude , MicroRNAs/genetics , MicroRNAs/metabolism , Prognosis , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Stomach Neoplasms/mortality , Stomach Neoplasms/metabolism , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/metabolism , Tumor Microenvironment/genetics
3.
Anticancer Res ; 44(6): 2445-2451, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38821626

ABSTRACT

BACKGROUND/AIM: Non-small cell lung cancer (NSCLC) is the deadliest form of cancer worldwide. Understanding the mechanisms of lung cancer development is vital for targeted therapy advancements. This article explores the little-known role of the guanylate kinase-associated protein (GKAP), encoded by the Disks large-associated protein 1 (DLGAP1) gene, in NSCLC along with assessing microRNA-30a-5p's influence on DLGAP1 gene expression in the A549 cell line. MATERIALS AND METHODS: Experiments were conducted on A549 cells transfected with synthetic oligonucleotides. The luciferase assay was employed to confirm the binding site of miR-30a-5p to the 3'UTR of DLGAP1 mRNA. The role of miRNA-30a-5p mimic in regulating potential target gene expression at the protein and mRNA levels was studied by performing RT-qPCR and western blot analyses. The effects of DLGAP1 knockdown and miRNA-30a-5p mimic on cell viability and the cell cycle were evaluated using the MTT test and flow cytometry with annexin/iodide cell staining. RESULTS: The luciferase assay indicated that miR-30a-5p has the ability to bind to the 3'UTR of DLGAP1 mRNA. RT-qPCR revealed that the overexpression of miR-30a-5p down-regulates DLGAP1 mRNA. Western blot analysis indicated that miR-30a-5p slightly reduces the level of the GKAP protein. Knockdown of DLGAP1 with synthetic oligonucleotides, as well as transfection with a miR-30a-5p mimic, significantly attenuates cell proliferation and increases the number of cells in the early and late stages of apoptosis. CONCLUSION: Our findings reveal the antiproliferative effect of miR-30a-5p and DLGAP1 gene knockdown on A549 cancer cells, implying that these elements could be considered as therapeutic targets for personalized medicine in NSCLC patients.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Cell Proliferation , Gene Expression Regulation, Neoplastic , Lung Neoplasms , MicroRNAs , Humans , 3' Untranslated Regions/genetics , A549 Cells , Apoptosis/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell Survival , GTPase-Activating Proteins/genetics , GTPase-Activating Proteins/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/pathology , MicroRNAs/genetics , SAP90-PSD95 Associated Proteins/genetics
4.
Mol Cancer ; 23(1): 91, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715012

ABSTRACT

BACKGROUND: Recent evidence has demonstrated that abnormal expression and regulation of circular RNA (circRNAs) are involved in the occurrence and development of a variety of tumors. The aim of this study was to investigate the effects of circ_PPAPDC1A in Osimertinib resistance in NSCLC. METHODS: Human circRNAs microarray analysis was conducted to identify differentially expressed (DE) circRNAs in Osimertinib-acquired resistance tissues of NSCLC. The effect of circ_PPAPDC1A on cell proliferation, invasion, migration, and apoptosis was assessed in both in vitro and in vivo. Dual-luciferase reporter assay, RT-qPCR, Western-blot, and rescue assay were employed to confirm the interaction between circ_PPAPDC1A/miR-30a-3p/IGF1R axis. RESULTS: The results revealed that circ_PPAPDC1A was significantly upregulated in Osimertinib acquired resistance tissues of NSCLC. circ_PPAPDC1A reduced the sensitivity of PC9 and HCC827 cells to Osimertinib and promoted cell proliferation, invasion, migration, while inhibiting apoptosis in Osimertinib-resistant PC9/OR and HCC829/OR cells, both in vitro and in vivo. Silencing circ_PPAPDC1A partially reversed Osimertinib resistance. Additionally, circ_PPAPDC1A acted as a competing endogenous RNA (ceRNA) by targeting miR-30a-3p, and Insulin-like Growth Factor 1 Receptor (IGF1R) was identified as a functional gene for miR-30a-3p in NSCLC. Furthermore, the results confirmed that circ_PPAPDC1A/miR-30a-3p/IGF1R axis plays a role in activating the PI3K/AKT/mTOR signaling pathway in NSCLC with Osimertinib resistance. CONCLUSIONS: Therefore, for the first time we identified that circ_PPAPDC1A was significantly upregulated and exerts an oncogenic role in NSCLC with Osimertinib resistance by sponging miR-30a-3p to active IGF1R/PI3K/AKT/mTOR pathway. circ_PPAPDC1A may serve as a novel diagnostic biomarker and therapeutic target for NSCLC patients with Osimertinib resistance.


Subject(s)
Acrylamides , Aniline Compounds , Carcinoma, Non-Small-Cell Lung , Cell Proliferation , Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic , Lung Neoplasms , MicroRNAs , RNA, Circular , Receptor, IGF Type 1 , Signal Transduction , Humans , MicroRNAs/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Receptor, IGF Type 1/genetics , Receptor, IGF Type 1/metabolism , Drug Resistance, Neoplasm/genetics , Acrylamides/pharmacology , RNA, Circular/genetics , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Aniline Compounds/pharmacology , Cell Line, Tumor , Animals , Mice , Apoptosis , Cell Movement/genetics , Xenograft Model Antitumor Assays , Male , Female , Indoles , Pyrimidines
5.
Brain Res Bull ; 212: 110953, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38636610

ABSTRACT

OBJECTIVE: Chronic cerebral hypoperfusion (CCH) is a common cause of brain dysfunction. As a microRNA (also known as miRNAs or miRs), miR-30a-5p participates in neuronal damage and relates to ferroptosis. We explored the in vivo and in vitro effects and functional mechanism of miR-30a-5p in CCH-triggered cognitive impairment through the silent information regulator 1 (SIRT1)/nuclear factor erythroid 2-related factor 2 (NRF2) pathway. METHODS: After 1 month of CCH modeling through bilateral common carotid artery stenosis, mice were injected with 2 µL antagomir (also known as anti-miRNAs) miR-30a-5p, with cognitive function evaluated by Morris water maze and novel object recognition tests. In vitro HT-22 cell oxygen glucose deprivation (OGD) model was established, followed by miR-30a-5p inhibitor and/or si-SIRT1 transfections, with Fe2+ concentration, malonaldehyde (MDA) and glutathione (GSH) contents, reactive oxygen species (ROS), miR-30a-5p and SIRT1 and glutathione peroxidase 4 (GPX4) protein levels, NRF2 nuclear translocation, and miR-30a-5p-SIRT1 targeting relationship assessed. RESULTS: CCH-induced mice showed obvious cognitive impairment, up-regulated miR-30a-5p, and down-regulated SIRT1. Ferroptosis occurred in hippocampal neurons, manifested by elevated Fe2+ concentration and ROS and MDA levels, mitochondrial atrophy, and diminished GSH content. Antagomir miR-30a-5p or miR-30a-5p inhibitor promoted SIRT1 expression and NRF2 nuclear translocation, increased GPX4, cell viability and GSH content, and reduced Fe2+ concentration and ROS and MDA levels. miR-30a-5p negatively regulated SIRT1. In vitro, miR-30a-5p knockout increased NRF2 nuclear translocation by up-regulating SIRT1, inhibiting OGD-induced ferroptosis in HT-22 cells. CONCLUSION: miR-30a-5p induces hippocampal neuronal ferroptosis and exacerbates post-CCH cognitive dysfunction by targeting SIRT1 and reducing NRF2 nuclear translocation.


Subject(s)
Cognitive Dysfunction , Ferroptosis , Hippocampus , MicroRNAs , NF-E2-Related Factor 2 , Neurons , Sirtuin 1 , Animals , MicroRNAs/metabolism , MicroRNAs/genetics , Ferroptosis/physiology , Sirtuin 1/metabolism , Sirtuin 1/genetics , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Hippocampus/metabolism , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/etiology , Mice , Neurons/metabolism , Male , Mice, Inbred C57BL , Brain Ischemia/metabolism , Signal Transduction/physiology
6.
Mol Cell Probes ; 75: 101957, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38513992

ABSTRACT

With rising society stress, depression-induced osteoporosis is increasing. However, the mechanism involved is unclear. In this study, we explored the effect of plasma exosomal miRNAs on bone marrow mesenchymal stem cell (BMSC) osteogenic differentiation in a chronic unpredictable mild stress (CUMS)-induced depression rat model. After 12 weeks of CUMS-induced depression, the pathological changes in the bone tissue and markers of osteogenic differentiation were tested by micro-computed tomography, hematoxylin-eosin staining, and quantitative real-time reverse transcription PCR (qRT-PCR). Plasma exosomes from rats were isolated and co-incubated with BMSCs for 14 d to detect the effect on osteogenic markers. Next-generation sequencing identified the miRNAs in the plasma exosomes, and the differential miRNAs were analyzed and verified by qRT-PCR. BMSCs were infected with lentivirus to upregulate miRNA-30a-5p and incubated in a medium that induced osteogenic differentiation for 14 d. The effect of miR-30a-5p on osteogenic differentiation was determined by qPCR and alizarin red staining. CUMS-induced depression rat model was established successfully, and exhibited reduced bone mass and damaged bone microstructure compared to that of the controls. The observed pathological changes suggested the occurrence of osteoporosis in the CUMS group, and the mRNA expression of osteogenic markers was also significantly reduced. Incubation of BMSCs with plasma exosomes from the CUMS group for 14 d resulted in a significant decrease in the expression of osteogenic markers. Twenty-five differentially expressed miRNAs in plasma exosomes were identified and upregulation of miR-30a-5p was observed to significantly inhibit the expression of osteogenic markers in BMSCs. Our findings contributed to a comprehensive understanding of the mechanism of osteoporosis caused by depression, and demonstrated the potential of miR-30a-5p as a novel biomarker or therapeutic target for the treatment of osteoporosis.


Subject(s)
Cell Differentiation , Depression , Disease Models, Animal , Exosomes , Mesenchymal Stem Cells , MicroRNAs , Osteogenesis , Rats, Sprague-Dawley , Animals , Mesenchymal Stem Cells/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , MicroRNAs/blood , Osteogenesis/genetics , Exosomes/metabolism , Exosomes/genetics , Cell Differentiation/genetics , Depression/genetics , Depression/blood , Rats , Male , Stress, Psychological/complications , Stress, Psychological/blood , Osteoporosis/genetics , Osteoporosis/blood
7.
Mol Neurobiol ; 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38427212

ABSTRACT

This study aimed to analyze the possible association of miR-30a-5p, miR-30e-5p, and miR-34a-5p identified as potential candidate miRNAs in schizophrenia, with the COMT gene. Candidate miRNAs were obtained from the TargetScan database. The SH-SY5Y human neuroblastoma cell line was used as a cellular model for schizophrenia. miR-30a-5p, miR-30e-5p, and miR-34a-5p mimics were transfected into the SH-SY5Y cell line. Total RNA was isolated from transfected cells and RNA-IP samples and reverse transcripted for miRNA and mRNA analysis. RT-qPCR and western blot were performed to observe changes in expression levels of COMT. RNA-immunoprecipitation was performed to determine RNA-protein interactions after mimic transfection. In the study, it was observed that COMT gene expression levels decreased significantly after miR-30a-5p and miR-34a-5p expressions, whereas increased significantly as a result of miR-30e-5p transfection. RNA-IP data have shown that the amount of COMT pulled down by Ago2 was increased after miR-30a-5p and miR-34a-5p transfections. RNA-IP results revealed that miR-30a-5p and miR-34a-5p are direct targets for the COMT gene.

8.
J Ovarian Res ; 17(1): 29, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38302986

ABSTRACT

BACKGROUND: Polycystic ovary syndrome (PCOS) is a frequent and complicated endocrine disease that remains a major reason for infertility. Bushenhuoluo Decotion (BSHLD) has been validated to exhibit curative effects on PCOS. This study was aimed to explore the potential mechanism underlying the therapeutic action of BSHLD. METHODS: PCOS rat model was induced by dehydroepiandrosterone (DHEA). Serum hormone and cytokines levels and ovarian pathological alterations were measured to assess ovarian function. Exosomes (Exos) were identified by Transmission electron microscopy and Nanoparticle Tracking Analysis. RT-qPCR, Western blotting, immunohistochemical staining, and immunofluorescence staining were performed to detect molecule expressions. Proliferation and pyroptosis of granulosa cells (GCs) were evaluated by CCK-8 and flow cytometry, respectively. The binding relationship between miR-30a-5p and suppressor of cytokine signaling 3 (SOCS3) was verified by dual luciferase reporter and RIP assays. RESULTS: BSHLD treatment improved serum hormone abnormality, insulin sensitivity, and ovarian morphologic changes of PCOS rats. Moreover, BSHLD treatment restrained the excessive autophagy and pyroptosis in ovarian tissues of PCOS rats. Moreover, BSHLD reduced the expression of miR-30a-5p in serum, serum-derived Exos, and ovarian tissues, thus inhibiting autophagy and NLRP3-mediated pyroptosis in GCs. Mechanistically, SOCS3 was proved as a target of miR-30a-5p and could activate mTOR/P70S6K pathway to repress autophagy. The inhibitory effect of miR-30a-5p deficiency on autophagy and pyroptosis of GCs was attenuated by rapamycin. CONCLUSION: Collectively, BSHLD suppressed autophagy and pyroptosis to improve POCS by regulating exosomal miR-30a-5p/SOCS3/mTOR signaling.


Subject(s)
Drugs, Chinese Herbal , MicroRNAs , Plant Extracts , Polycystic Ovary Syndrome , Animals , Female , Humans , Rats , Autophagy , Hormones , MicroRNAs/genetics , MicroRNAs/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Polycystic Ovary Syndrome/pathology , Pyroptosis , Suppressor of Cytokine Signaling 3 Protein/genetics , Suppressor of Cytokine Signaling 3 Protein/metabolism , TOR Serine-Threonine Kinases/metabolism , Plant Extracts/therapeutic use , Drugs, Chinese Herbal/therapeutic use
9.
Curr Med Chem ; 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38251697

ABSTRACT

AIM: Providing insights into the chemoresistance of esophageal squamous cell carcinoma (ESCC) and its dependence on chemotherapy-induced autophagy. BACKGROUND: Autophagy is induced during chemotherapy of cancer cells, promoting resistance to anti-cancer treatments. OBJECTIVE: The objective of this study is to investigate the modulation of microRNA-30a (miR-30a), a known regulator of autophagy, in ESCC cells by all-trans retinoic acid (ATRA). METHODS: Treatment involved ESCC cells KYSE-30 and TE8 with cis-dichloro-diamine platinum (CDDP), enriching CDDP-surviving cells (CDDP-SCs). qRT-PCR and dual luciferase reporter assay (DLRA) were employed to evaluate miR-30a expression and its interaction with Beclin-1 (BECN1) in both CDDP-SCs and those treated with ATRA. RESULTS: Chemotherapy using CDDP led to a significant decrease in miR-30a expression within ESCC cells. Increased autophagy levels were identified in cancer cells exhibiting stem cell-like properties, characterized by the overexpression of specific stem cell markers. These results suggest that the downregulation of miR-30a induced by CDDP treatment may represent a potential underlying mechanism for increased autophagic activity, as evidenced by the upregulation of autophagy-related proteins, such as BECN1 and an elevated LC3-II/LC3-I ratio. ATRA treatment elevated miR-30a expression and disrupted hallmark cancer stem cell (CSC) features in ESCC cells. Further investigations demonstrated that increased miR-30a expression led to a reduction in the expression of its target gene, BECN1, and attenuated BECN1-mediated autophagy. This resulted in an augmentation of CDDP-induced apoptosis in ESCC cells and a G2/M cell cycle arrest. CONCLUSION: CDDP chemotherapy reduced miR-30a, promoting ESCC cell resistance through autophagy and CSC-like features, a process that may be modulated by ATRA.

10.
Neurochem Res ; 49(1): 222-233, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37715822

ABSTRACT

The role of microglia in traumatic brain injury (TBI) has gained considerable attention. The present study aims to elucidate the potential mechanisms of Long intergenic non-protein coding RNA 707 (LINC00707) in TBI-induced microglia activation and inflammatory factor release. An in vivo model of rat TBI and in vitro microglia model was established using Controlled cortex injury (CCI) and lipopolysaccharide (LPS) stimulation. RT-qPCR to detect LINC00707 levels in rat cerebral cortex or cells. Modified Neurological Impairment Score (mNSS) and Morris Water Maze test was conducted to assess the neurological deficits and cognitive impairment. ELISA analysis of pro-inflammatory factors levels. CCK-8 and flow cytometry for cell viability and apoptosis levels. Dual-luciferase report and RIP assay to validate the targeting relationship between LINC00707 and miR-30a-5p. LINC00707 was elevated in the TBI rat cerebral cortex and LPS-induced microglia, while miR-30a-5p was noticeably decreased (P < 0.05). Increased mNSS, cognitive dysfunction, and brain edema in TBI rats were all prominently reversed by silencing of LINC00707, but this reversal was partially abrogated by decreasing miR-30a-5p (P < 0.05). Inhibition of LINC00707 suppressed the overproduction of inflammatory factors in TBI rats (P < 0.05). LPS decreased microglial cell viability, increased apoptosis, and promoted inflammatory overproduction than control, but the silencing of LINC00707 reversed its effect. Suppression of miR-30a-5p attenuated this reversal (P < 0.05). miR-30a-5p was the target miRNA of LINC00707. All in all, the results suggested that inhibiting LINC00707/miR-30a-5p axis could alleviate the progression of TBI by suppressing the inflammation and apoptosis of microglia cells.


Subject(s)
Brain Injuries, Traumatic , MicroRNAs , Rats , Animals , Microglia , Lipopolysaccharides/pharmacology , MicroRNAs/genetics , Inflammation/genetics , Apoptosis
11.
Curr Gene Ther ; 24(2): 159-177, 2024.
Article in English | MEDLINE | ID: mdl-37767799

ABSTRACT

BACKGROUND: Diabetic nephropathy (DN) is one of the microvascular complications of diabetes. Endothelial-mesenchymal transition (EndMT) and endothelial damage lead to abnormal angiogenesis in DN. OBJECTIVES: This study aimed to investigate the role of exosome miR-30a-5p in high glucose (HG)-induced glomerular endothelial cells (GECs) dysfunction and explore the underlying mechanisms. METHODS: GECs were cultured in normal glucose (5.5 mM) and HG (30 mM) conditions. The recipient GECs were transfected with exosome or miR-30a-5p mimic/inhibitor and then detected by using CCK-8 and flow cytometry assay. Luciferase analysis was used to verify miR-30a-5p acted on notch homolog protein 1 (Notch1). RT-qPCR and Western blot were used to detect the expression of VE-cadherin, α-SMA, vascular endothelial growth factor (VEGF) and Notch1. In vivo, exosome miR-30a-5p was administered to DN mice, and periodic acid-Schiff (PAS) staining, UTP levels, and HbA1c levels were measured. RESULTS: The expression of miR-30a-5p was downregulated in HG-treated GECs. Exosome miR-30a-5p significantly promoted cell proliferation, and migration and reduced apoptosis of GECs under HG conditions. MiR-30a-5p directly targeted the 3-UTR region of Notch1. Exosome miR-30a-5p reduced the expression levels of Notch1 and VEGF, both at mRNA and protein levels. Furthermore, exosome miR-30a-5p inhibited HG-induced EndMT, as evidenced by increased VE-cadherin and reduced α-SMA. In vivo studies demonstrated that exosome miR-30a-5p reduced serum HbA1c levels and 24-hour urine protein quantification. CONCLUSION: This study provides evidence that exosome miR-30a-5p suppresses EndMT and abnormal angiogenesis of GECs by modulating the Notch1/VEGF signaling pathway. These findings suggest that exosome miR-30a-5p could be a potential therapeutic strategy for the treatment of DN.


Subject(s)
Diabetic Nephropathies , Exosomes , MicroRNAs , Animals , Mice , Angiogenesis , Diabetic Nephropathies/metabolism , Endothelial Cells/metabolism , Endothelial-Mesenchymal Transition , Exosomes/genetics , Exosomes/metabolism , Glucose/pharmacology , Glucose/metabolism , Glycated Hemoglobin , MicroRNAs/genetics , MicroRNAs/metabolism , Signal Transduction/genetics , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism
12.
J Diabetes Investig ; 15(3): 300-314, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38149724

ABSTRACT

OBJECTIVE: The molecular mechanism of the protective effect of Cordyceps cicadae polysaccharides (CCPs) on renal tubulointerstitial fibrosis in diabetic nephropathy (DN) is still unclear. This study aims to further understand the molecular mechanisms behind the therapeutic benefits of CCP on diabetic nephropathy. METHODS: Mice were randomly assigned into six groups (n = 8). Cordyceps cicadae polysaccharide dissolved in 5% dimethyl sulfoxide was administered by gavage for 12 consecutive weeks. The CCP doses were divided into low, medium, and high, 75, 150, and 300 mg/kg/day, respectively. The efficacy of CCP was determined by assessing the renal function and histological alterations in diabetic db/db mice. The degree of glomerular mesangial dilatation and sclerosis was evaluated using semiquantitative markers. Cell viability, apoptosis, epithelial-mesenchymal transition (EMT), inflammation, oxidative stress, and mitochondrial reactive oxygen species (ROS) in high glucose (HG)-cultured MPC5 podocytes were determined. The interaction of miR-30a-3p and tripartite motif-containing protein 16 (TRIM16) was examined by luciferase reporter assay. Western blotting, reverse transcription-polymerase chain reaction, and immunofluorescence were used to analyze gene and protein expressions. RESULTS: The in vivo findings illustrated that CCP may protect mice with type 2 diabetes from inflammation and oxidative damage (P < 0.05). Furthermore, CCP has a therapeutic value in protecting renal function and morphology in diabetic nephropathy by reversing podocyte EMT. The in vitro results indicated that CCP dose-dependently inhibited HG-induced apoptosis, EMT, inflammation, oxidative stress, and mitochondrial ROS levels in MPC5 podocytes (P < 0.05). Luciferase reporter assay confirmed the interaction between miR-30a-3p and TRIM16 in MPC5 podocytes cultured in high glucose (P < 0.05). CONCLUSION: The protective effect of CCP on HG-induced MPC5 can be achieved by miR-30a-3p/TRIM16 axis.


Subject(s)
Cordyceps , Diabetes Mellitus, Type 2 , Diabetic Nephropathies , MicroRNAs , Animals , Mice , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/prevention & control , Reactive Oxygen Species , Antibodies , Inflammation , Luciferases , Glucose
13.
Cell Div ; 18(1): 20, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37915096

ABSTRACT

BACKGROUND: Ovarian cancer (OC) causes the highest rates of mortality among women's genital tract malignancies. Micro-ribonucleic acid (miRNA), the most abundant long noncoding RNAs transmitted by exosomes, has been revealed to be a potential marker for OC since 2008. In this study, we aimed to determine the possible roles of miRNAs derived from exosomes in the early diagnosis of OC through miRNA microarray, besides, exploring the underlying mechanisms of miRNAs in the OC progression. METHODS: We isolated exosomes from high invasive OC cell line HO8910PM and its parent cell line HO8910 using transmission electron microscopy and western blot, and performed miRNA microarray to identify the exosome-transmitted miRNA from the two cell lines, respectively. The expression profile was obtained by quantitative analysis, and then the differentially expressed individuals were screened. miRNA-30a-5p, a stable miRNA in both cells of our sequencing data was set for further study. MiR-30a-5p mimics, inhibitor and their corresponding negative controls were applied in OC cells. Then the cell proliferation, migration, and invasion of different groups were analyzed via cell counting-kit 8 (CCK8), wound healing, and Transwell analyses. Besides, ZBE2 and LDH2 expressions were detected by qRT-PCR. RESULTS: Combined with the data report of miRNA microarray technology, we set miR-30a-5p as our target miRNA to analyze its molecular function in regulating proliferation, migration, and invasion in OC cells. Our results showed that the miR-30a-5p overexpression could significantly enhance the capability of proliferation, migration, and invasion of HO8910 and HO8910PM cells, whereas the miR-30a-5p inhibition showed the opposite tendency (all P < 0.05). Besides, miR-30a-5p may be involved in these oncogenic processes through the upregulation of ZEB2 and LDH2. CONCLUSION: Our results demonstrate that exosome-transmitted miRNA-30a-5p promotes the malignant behavior of OC cells, which may be served as a promising diagnostic and prognostic marker for patients with OC.

14.
Int J Biol Sci ; 19(14): 4571-4587, 2023.
Article in English | MEDLINE | ID: mdl-37781039

ABSTRACT

Tumor-associated angiogenesis positively associates with malignant metastasis of intrahepatic cholangiocarcinoma (ICCA). Cancer cell-derived exosomes carrying microRNAs involves in tumor microenvironment (TME) regulation. We aimed to evaluate exosomal miR-30a-5p in ICCA development. Our data showed that increased miR-30a-5p level was correlated with higher microvascular density (MVD) and worse prognosis. Augmented miR-30a-5p expression was induced by hypoxia induced factor 1α (HIF-1α) in ICCA cell. Further exploration revealed that ICCA-derived miR-30a-5p could be transferred to endothelial and increased endothelial cells recruitment and proliferation, induced angiogenesis and vascular permeability in exosome dependent manner. In addition, circulating exosomal miR-30a-5p was higher in ICCA patients, and correlated with ICCA tissues-expressing miR-30a-5p. Hypoxic stress enhanced the effects of exosomal miR-30a-5p on endothelial-associated phenotypes. Rescued experiments showed that exosomal miR-30a-5p modulated endothelial-associated phenotypes in a way relied on programmed cell death 10 (PDCD10). Moreover, we revealed that the packing of miR-30a-5p into ICCA cells-derived exosomes was mediated by eukaryotic translation initiation factor 4B (EIF4B). More importantly, the combined application of targeting miR-30a-5p and apatinib could synergistically improve antiangiogenic efficacy in ICCA. Combined, ICCA-derived exosomal miR-30a-5p could be an excellent therapeutic and monitoring indicator for ICCA patients.


Subject(s)
Cholangiocarcinoma , Exosomes , MicroRNAs , Humans , Apoptosis Regulatory Proteins/metabolism , Capillary Permeability , Cell Line, Tumor , Cell Proliferation/genetics , Cholangiocarcinoma/genetics , Cholangiocarcinoma/metabolism , Endothelial Cells/metabolism , Exosomes/genetics , Exosomes/metabolism , Hypoxia/metabolism , Membrane Proteins/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Neovascularization, Pathologic/metabolism , Proto-Oncogene Proteins/metabolism , Tumor Microenvironment/genetics
15.
Toxicol In Vitro ; 92: 105657, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37543170

ABSTRACT

The mechanism of action of MicroRNA-30a(miR-30a) and Snail, a transcription factor, in silica(SiO2) dust-induced pulmonary EMT and secondary pulmonary fibrosis remains elusive. In this study, the cellular EMT model induced by the stimulation of A549 cells with SiO2 was established. A549 cells were transfected with miR-30a mimic and miR-30a inhibitor and the SNAIL gene was silenced to examine the mechanism of miR-30a targeting Snail to regulate silica dust-induced EMT. The results showed that 50 µg/mL SiO2 stained A549 cells for 24 h could induce EMT in A549 cells. Exposure of A549 cells to SiO2 dust decreased miR-30a expression, as well as mRNA and protein expression levels of E-cad. Conversely, SiO2 exposure increased mRNA and protein expression levels of α-SMA, vimentin, and Snail. The miR-30a mimic upregulated mRNA and protein expression levels of E-cadherin in SiO2-induced A549 cells, while downregulating mRNA and protein expression levels of α-SMA, vimentin and Snail. MiR-30a inhibitors have the opposite effect. Silencing the SNAIL gene, followed by SiO2 dust-induced stimulation of A549 cells, could enhance mRNA and protein expression levels of E-cad, whereas those of α-SMA and vimentin were reduced. Altogether, we found that miR-30a directly targeted Snail and inhibited its expression, thereby delaying silica induced pulmonary EMT.


Subject(s)
Epithelial-Mesenchymal Transition , MicroRNAs , Silicon Dioxide , Snail Family Transcription Factors , MicroRNAs/genetics , RNA, Messenger/metabolism , Silicon Dioxide/toxicity , Snail Family Transcription Factors/genetics , Vimentin , Humans , A549 Cells , Pulmonary Fibrosis
16.
Mol Med Rep ; 28(3)2023 Sep.
Article in English | MEDLINE | ID: mdl-37477126

ABSTRACT

Glucocorticoid receptor (GR) is expressed in normal renal podocytes; however, its expression differs among renal diseases. The expression of GR as well as its epigenetic regulators microRNA (miR)30a, miR24 and miR370 was studied in the renal tissues of patients with systemic lupus nephritis (LN), minimal changes disease (MCD) and pauci-immune glumeronephritis (PIN). A total of 51 patients undergoing renal biopsy and 22 nephrectomised controls with no history of parenchymal renal disease were recruited from the Clinic of Nephrology and Renal Transplantation of General Laikon hospital between November 2016 and March 2019. All patients were newly-diagnosed and they were naïve of any treatment. The mRNA and protein expression were analyzed through reverse transcription-quantitative PCR and immunohistochemistry respectively. Written consent was obtained from all participants. GR mRNA expression was significantly reduced in all pathological samples compared with the 'normal' renal tissues used as controls (P=0.023 for LN, P=0.05 for MCD and P=0.004 for PIN). Similarly, GR protein expression was lower in all pathological samples (>6 GR positive podocytes/glomerulus in 50% of patients with LN and MCD and 18% with PIN) compared with controls (>6 positive podocytes/glomerulus in all the controls). PIN samples presented significantly lower GR mRNA and protein expression compared with LN and MCD samples. No significant differences were observed in the miR30a expression when comparing pathological with 'normal' renal samples. miR24 and miR370 expression demonstrated statistically significant difference in all pathological compared with 'normal' tissues. Moreover, GR expression was not significantly associated with either LN disease activity score or the response to the treatment. GR and miR24 expression was significantly reduced whereas miR370 significantly increased in all pathological compared with 'normal' renal tissues implying their protentional role in nephritis pathogenesis and treatment. Analysis of larger samples are required for more robust statistical analysis.


Subject(s)
Lupus Nephritis , MicroRNAs , Nephrosis, Lipoid , Humans , Receptors, Glucocorticoid/genetics , Receptors, Glucocorticoid/metabolism , Kidney/pathology , Lupus Nephritis/pathology , Nephrosis, Lipoid/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
17.
Ann Clin Lab Sci ; 53(3): 418-426, 2023 May.
Article in English | MEDLINE | ID: mdl-37437929

ABSTRACT

OBJECTIVE: Ovarian cancer (OC) is a common malignant tumor in females with high recurrence and poor prognosis. Cisplatin is commonly used for OC clinical treatment, but its efficacy is usually challenged by the chemotherapy resistance of cancer cells. MicroRNAs (miRNAs), including miR-30a-5p, were identified to modulate drug resistance in numerous tumors. However, molecular mechanisms of miR-30a-5p in OC chemoresistance need more illumination. METHODS: MiR-30a-5p and Rap1 interacting factor 1 (RIF1) expression in OC tissues and cells were measured by qRT-PCR. The IC50 of cisplatin-resistant and cisplatin-sensitive OC cells was assessed by MTT assays. OC cell proliferation, apoptosis and migration were measured by EdU assays, TUNEL staining, and wound healing assays, respectively. The protein levels of EMT markers and RIF1 in OC cells were examined by western blotting. The binding capacity between miR-30a-5p and RIF1 was validated by luciferase reporter assays. RESULTS: Our study disclosed miR-30a-5p as a remarkably lowly-expressed miRNA in OC tissues in comparison to matched noncancerous tissues. Compared to parental cell lines, miR-30a-5p was also greatly downregulated in cisplatin-resistant OC cell lines. Additionally, functional assays indicated that miR-30a-5p suppressed malignant behaviors and cisplatin resistance of OC cells. Further, miR-30a-5p was revealed to target and negatively regulate RIF1 expression in OC. Moreover, it was validated that overexpressing RIF1 reverses the inhibitory influence of miR-30a-5p overexpression on malignant behaviors and cisplatin resistance of OC cells. CONCLUSION: MiR-30a-5p reduced cisplatin resistance in OC through downregulation of RIF1, which may be meaningful for targeting drug-resistant tumors.


Subject(s)
Cisplatin , MicroRNAs , Ovarian Neoplasms , Telomere-Binding Proteins , Female , Humans , Apoptosis/genetics , Cisplatin/pharmacology , Fibrinogen , MicroRNAs/genetics , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Drug Resistance, Neoplasm
18.
Mutat Res ; 826: 111818, 2023.
Article in English | MEDLINE | ID: mdl-37196609

ABSTRACT

BACKGROUND: This investigation studied the impacts of the miR-30a-5p/CBX2 axis on esophageal cancer (EC). METHODS: Research objects were ascertained using The Cancer Genome Atlas database. Followed by qRT-PCR, western blot, dual-luciferase reporter, MTT, Transwell, and wound healing approaches, we tested gene expression and varying cell behaviors RESULTS: Conspicuously miR-30 family members (miR-30a-5p, miR-30b-5p, miR-30c-5p, miR-30d-5p, miR-30e-5p) downregulation and CBX2 upregulation were discovered in EC cells. miR-30 family members target CBX2 and inhibited CBX2 expression. EC cell behaviors were inhibited by miR-30a-5p/CBX2 axis. CONCLUSION: MiR-30a-5p draws a new inspiration for EC treatment.


Subject(s)
Esophageal Neoplasms , MicroRNAs , Humans , Cell Line, Tumor , Cell Proliferation/genetics , Down-Regulation , Esophageal Neoplasms/genetics , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , Polycomb Repressive Complex 1/genetics , Polycomb Repressive Complex 1/metabolism
19.
Reprod Toxicol ; 117: 108340, 2023 04.
Article in English | MEDLINE | ID: mdl-36731640

ABSTRACT

The role of spermatogonial stem cells (SSCs) is crucial in spermatogenesis, and extracellular vesicles (EVs) have been the focus of research as an important intercellular communication mechanism. Various endogenous regulatory factors secreted by Sertoli cells (SCs) can affect the self-maintenance and regeneration of SSCs, but little is known about the roles of SCs-derived exosomal microRNAs (miRNAs) on SSCs. In this study, we aimed to explore the regulation of the SCs-derived exosomal miR-30a-5p on SSCs proliferation and differentiation. EVs from the SCs were detected by electron microscopy and nanoparticle tracking analysis (NTA). Subsequently, the SSCs were treated with the SCs-derived extracellular vesicles (SCs-EVs). CCK-8 assay and EdU staining was applied to detect the cell proliferation, and the results indicated that SCs-EVs promoted the SSCs proliferation. Western blot detection of the SSCs markers (Gfrα1, Plzf, Stra8, and C-kit) indicated that SCs-EVs promoted the SSCs differentiation. Additionally, we found that SCs-EVs secreted miR-30a-5p to show the promoting effects. Besides, we discovered that miR-30a-5p targeted zinc finger E-box binding homeobox 2 (Zeb2) to regulate the ubiquitination of fibroblast growth factor 9 (Fgf9) in SSCs. miR-30a-3p/Zeb2/Fgf9 promoted the SSCs proliferation and differentiation by activating the mitogen­activated protein kinase (MAPK) signaling pathway. Taken together, our study showed that SCs-EVs can transport miR-30a-5p to SSCs and affect SSCs proliferation and differentiation by regulating the MAPK signaling pathway via Zeb2/Fgf9. This paper disclosed a novel molecular mechanism that regulates SSCs proliferation and differentiation, which could be valuable for the treatment of male infertility.


Subject(s)
MicroRNAs , Ubiquitin-Protein Ligases , Humans , Male , Sertoli Cells/metabolism , Ubiquitin , MicroRNAs/genetics , Cell Differentiation , Cell Proliferation , Stem Cells
20.
Epigenomics ; 15(2): 61-73, 2023 01.
Article in English | MEDLINE | ID: mdl-36802727

ABSTRACT

A key concept in drug discovery is the identification of candidate therapeutic targets such as long noncoding RNAs (lncRNAs) because of their extensive involvement in neoplasms, and impressionability by smoking. Induced by exposure to cigarette smoke, lncRNA H19 targets and inactivates miR-29, miR-30a, miR-107, miR-140, miR-148b, miR-199a and miR-200, which control the rate of angiogenesis by inhibiting BiP, DLL4, FGF7, HIF1A, HIF1B, HIF2A, PDGFB, PDGFRA, VEGFA, VEGFB, VEGFC, VEGFR1, VEGFR2 and VEGFR3. Nevertheless, these miRNAs are often dysregulated in bladder cancer, breast cancer, colorectal cancer, glioma, gastric adenocarcinoma, hepatocellular carcinoma, meningioma, non-small-cell lung carcinoma, oral squamous cell carcinoma, ovarian cancer, prostate adenocarcinoma and renal cell carcinoma. As such, the present perspective article seeks to establish an evidence-based hypothetical model of how a smoking-related lncRNA known as H19 might aggravate angiogenesis by interfering with miRNAs that would otherwise regulate angiogenesis in a nonsmoking individual.


A primary goal in the treatment of cancer is preventing the formation of new blood vessels, or angiogenesis, within the tumor, because these newly formed capillaries serve to supply tumor cells with oxygen, letting them live for longer periods of time and develop several other unfavorable traits that would complicate the entire treatment process. Although certain molecules are responsible for regulating angiogenesis, others such as lncRNA H19, cause significant deregulation in the level of these antiangiogenic molecules, enhancing tumor vascularization. Because H19 is induced in response to cigarette smoke, individuals who smoke might be at higher risk of treatment failure as a result of accelerated angiogenesis.


Subject(s)
Adenocarcinoma , Carcinoma, Non-Small-Cell Lung , Carcinoma, Squamous Cell , Head and Neck Neoplasms , Lung Neoplasms , MicroRNAs , Mouth Neoplasms , RNA, Long Noncoding , Male , Humans , MicroRNAs/genetics , RNA, Long Noncoding/genetics , Smokers , Cell Line, Tumor , Cell Proliferation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...