Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 186
Filter
1.
Front Immunol ; 15: 1454116, 2024.
Article in English | MEDLINE | ID: mdl-39176087

ABSTRACT

Objective: This study aimed to investigate the regulatory role of astrocyte-derived exosomes and their microRNAs (miRNAs) in modulating neuronal pyroptosis during cerebral ischemia. Methods: Astrocyte-derived exosomes were studied for treating cerebral ischemia in both in vitro and in vivo models. The effects of astrocyte-derived exosomes on neuroinflammation were investigated by analyzing exosome uptake, nerve damage, and pyroptosis protein expression. High throughput sequencing was used to identify astrocyte-derived exosomal miRNAs linked to pyroptosis, followed by validation via qRT‒PCR. The relationship between these miRNAs and NLRP3 was studied using a dual luciferase reporter assay. This study used miR-378a-5p overexpression and knockdown to manipulate OGD injury in nerve cells. The impact of astrocyte-derived exosomal miR-378a-5p on the regulation of cerebral ischemic neuroinflammation was assessed through analysis of nerve injury and pyroptosis protein expression. Results: Our findings demonstrated that astrocyte-derived exosomes were internalized by neurons both in vitro and in vivo. Additionally, Astrocyte-derived exosomes displayed a neuroprotective effect against OGD-induced neuronal injury and brain injury in the ischemic cortical region of middle cerebral artery occlusion (MCAO) rats while also reducing pyroptosis. Further investigations revealed the involvement of astrocyte-derived exosomal miR-378a-5p in regulating pyroptosis by inhibiting NLRP3. The overexpression of miR-378a-5p mitigated neuronal damage, whereas the knockdown of miR-378a-5p increased NLRP3 expression and exacerbated pyroptosis, thus reversing this neuroprotective effect. Conclusion: Astrocyte-derived exosomal miR-378a-5p has a neuroprotective effect on cerebral ischemia by suppressing neuroinflammation associated with NLRP3-mediated pyroptosis.Further research is required to comprehensively elucidate the signaling pathways by which astrocyte-derived exosomal miR-378a-5p modulates neuronal pyroptosis.


Subject(s)
Astrocytes , Brain Ischemia , Exosomes , MicroRNAs , NLR Family, Pyrin Domain-Containing 3 Protein , Neuroinflammatory Diseases , Pyroptosis , Animals , Pyroptosis/genetics , MicroRNAs/genetics , Exosomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Astrocytes/metabolism , Rats , Male , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/etiology , Brain Ischemia/metabolism , Brain Ischemia/genetics , Rats, Sprague-Dawley , Disease Models, Animal , Neurons/metabolism , Neurons/pathology , Infarction, Middle Cerebral Artery/metabolism
2.
Cytokine ; 181: 156681, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38963941

ABSTRACT

Interleukin-17A (IL-17A) plays a pivotal role in the pathogenesis of Graves' disease (GD), an autoimmune disorder affecting thyroid function, but the detailed regulatory mechanisms remain elusive. Circular RNAs (circRNAs) have emerged as key regulators of IL-17A expression and secretion in autoimmune diseases, yet their specific role in GD, especially within CD4 + T lymphocytes, are not well understood. In this study, a circRNA, circPHF16 (hsa_circ_0090364) was found to be highly expressed in the peripheral blood mononuclear cells and serum of GD patients. In vitro experiments in Jurkat T cells revealed that silencing of circPHF16 suppressed IL-17A expression and secretion, while overexpression of circPHF16 had the opposite effect. Furthermore, bioinformatics analysis demonstrated a circPHF16/miR-378a-3p/IL6ST pathway, in which circPHF16 regulates IL6ST expression, which, in turn, influences IL-17A expression and secretion by interacting with miR-378a-3p. In vivo studies in a mouse model of GD showed similar trends in molecular expression levels, consistent with competitive endogenous RNA interactions. Together the results of the study identify circPHF16 as a potential target in the development of new strategies for GD diagnosis and treatment, and thus, offer a theoretical foundation for clinical therapeutic approaches in GD.


Subject(s)
Graves Disease , Interleukin-17 , MicroRNAs , RNA, Circular , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Humans , Interleukin-17/metabolism , Interleukin-17/genetics , Graves Disease/genetics , Graves Disease/metabolism , Animals , Mice , Jurkat Cells , Male , Female , Gene Expression Regulation , Adult
3.
Cell Biochem Funct ; 42(4): e4020, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38702967

ABSTRACT

The regulatory potential of long noncoding RNA (lncRNA) FBXL19-AS1 has been highlighted in various cancers, but its effect on triple-negative breast cancer (TNBC) remains unclear. Here, we aimed to elucidate the role of FBXL19-AS1 in TNBC and its underlying mechanism. RT-qPCR was employed to detect the expressions of FBXL19-AS1 and miR-378a-3p in tissues and cells. Immunohistochemical staining and western blot were utilized to detect the expression levels of proteins. Cell activities were detected using flow cytometry, CCK-8, and transwell assay. Dual-luciferase reporter and RNA immunoprecipitation (RIP) assays were deployed to investigate interactions of different molecules. Protein-protein interaction (PPI) network, gene ontology (GO), and Kyoto encyclopedia of genes and genomes (KEGG) pathways were used to analyze the downstream pathway. In vivo xenograft model was conducted to detect the effect of FBXL19-AS1 on tumor growth. FBXL19-AS1 was overexpressed in TNBC tissues and cell lines compared with counterparts. FBXL19-AS1 knockdown suppressed TNBC cell activities, whereas its overexpression exhibited the opposite effect. Mechanistically, FBXL19-AS1 was found to interact with miR-378a-3p. Further analysis revealed that miR-378a-3p exerted tumor-suppressive effects in TNBC cells. Additionally, miR-378a-3p targeted and downregulated the expression of ubiquitin aldehyde binding 2 (OTUB2), a deubiquitinase associated with TNBC progression. In vivo experiments substantiated the inhibitory effects of FBXL19-AS1 knockdown on TNBC tumorigenesis, and a miR-378a-3p inhibitor partially rescued these effects. The downstream pathway of the miR-378a-3p/OTUB2 axis was explored, revealing connections with proteins involved in modifying other proteins, removing ubiquitin molecules, and influencing signaling pathways, including the Hippo signaling pathway. Western blot analysis confirmed changes in YAP and TAZ expression levels, indicating a potential regulatory network. In summary, FBXL19-AS1 promotes exacerbation in TNBC by suppressing miR-378a-3p, leading to increased OTUB2 expression. The downstream mechanism may be related to the Hippo signaling pathway. These findings propose potential therapeutic targets for TNBC treatment.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Triple Negative Breast Neoplasms , Animals , Female , Humans , Mice , Cell Line, Tumor , Cell Proliferation , Deubiquitinating Enzymes/metabolism , F-Box Proteins/metabolism , F-Box Proteins/genetics , Gene Expression Regulation, Neoplastic , Mice, Inbred BALB C , Mice, Nude , MicroRNAs/metabolism , MicroRNAs/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/genetics
4.
J Gastroenterol Hepatol ; 39(7): 1299-1309, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38646884

ABSTRACT

BACKGROUND AND AIM: Circular RNA (circRNA) has been found to mediate ulcerative colitis (UC) progression by regulating intestinal mucosal barrier function. However, the role of circSOD2 in UC process and its underlying molecular mechanism still need to be further elucidated. METHODS: Lipopolysaccharide (LPS)-induced Caco2 cells were used to mimic UC cell models. CircSOD2, miR-378g, and Snail1 levels were determined by quantitative real-time PCR. Cell viability was detected using MTT assay, and inflammatory cytokine levels were measured using ELISA. The intestinal mucosal barrier function was evaluated by testing transepithelial electrical resistance and fluorescein isothiocyanate (FITC)-dextran permeability. Snail1 and tight junction-related markers (Zo-1 and Claudin2) protein levels were examined using western blot. The interaction between miR-378g and circSOD2 or Snail1 was confirmed by dual-luciferase reporter assay. Dextran sulfate sodium (DSS) was used to induce UC rat models in vivo. RESULTS: CircSOD2 was overexpressed in UC patients, and its knockdown significantly increased cell viability, transepithelial electrical resistance, and tight junction-related protein expression, while reduced inflammation cytokine levels and the permeability of FITC-dextran in LPS-induced Caco2 cells. In terms of mechanism, circSOD2 sponged miR-378g to positively regulate Snail1 expression. MiR-378g inhibitor reversed the effect of circSOD2 knockdown on intestinal mucosal barrier injury and Snail1 expression in LPS-induced Caco2 cells. In DSS-induced UC rat models, circSOD2 knockdown also could repair the intestinal mucosal barrier injury through regulating miR-378g/Snail1 axis. CONCLUSION: CircSOD2 could destroy intestinal mucosal barrier function in LPS-induced Caco2 cells and DSS-induced UC rats by miR-378g/Snail1 axis.


Subject(s)
Colitis, Ulcerative , Intestinal Mucosa , MicroRNAs , Snail Family Transcription Factors , Snail Family Transcription Factors/metabolism , Snail Family Transcription Factors/genetics , MicroRNAs/metabolism , MicroRNAs/genetics , Humans , Colitis, Ulcerative/genetics , Colitis, Ulcerative/pathology , Colitis, Ulcerative/metabolism , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Caco-2 Cells , Animals , RNA, Circular/genetics , RNA, Circular/metabolism , RNA, Circular/physiology , Male , Disease Models, Animal , Rats , Rats, Sprague-Dawley , Lipopolysaccharides , Permeability , Gene Expression , Intestinal Barrier Function
5.
Environ Toxicol ; 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38572808

ABSTRACT

BACKGROUND: Antiapoptosis is a major factor in the resistance of tumor cells to chemotherapy and radiotherapy. Thus, activation of cell pyroptosis may be an effective option to deal with antiapoptotic cancers such as esophageal adenocarcinoma (EAC). METHODS: Differential expression of ubiquitin-like versus PHD and ring finger structural domain 1 (UHRF1) in EAC and near normal tissues was analyzed, as well as the prognostic impact on survival in EAC. Also, the same study was done for globular adiponectin (gAD). Simultaneously, the mRNA expression of UHRF1 was observed in different EAC cell lines. Real time cellular analysis (RTCA) was used to detect cell proliferation, and flow cytometry and inverted fluorescence microscopy were used to detect pyroptosis. Biocredit analysis was conducted to observe the correlation between UHRF1 and key pyroptosis proteins. OD values and CCK8 assay were used to determine the effect of miR-378a-3p on EAC cells. Quantitative real-time polymerase chain reaction and Western blot were used to detect the correlation between UHRF1, gAD, and miR-378a-3p in EAC cells. Moreover, in vivo and in vitro experiments were performed to detect the relevant effects on tumor migration and invasion after inhibiting UHRF1 expression. RESULTS: UHRF1 was negatively correlated with the survival of patients with EAC, while miR-378a-3p showed the opposite effect. Additionally, gAD promoted EAC cell pyroptosis, upregulated miR-378a-3p, and significantly inhibited the proliferation of EAC cells. gAD directly reduced UHRF1 expression in EAC cells by upregulating miR-378a-3p. In cell migration and invasion assays, inhibition of UHRF1 expression significantly suppressed EAC cell metastasis. In animal experiments, we again demonstrated that gAD induced pyroptosis in EAC cells by inhibiting the expression of UHRF1. CONCLUSION: gAD-induced upregulation of miR-378a-3p significantly inhibited the proliferation of EAC by targeting UHRF1. Therefore, gAD may serve as an alternative therapy for chemotherapy- and radiation-refractory EAC or other cancers with the same mechanism of pyroptosis action.

6.
Cancer Biol Ther ; 25(1): 2308165, 2024 12 31.
Article in English | MEDLINE | ID: mdl-38389136

ABSTRACT

BACKGROUND: MiRNAs are closely related to tumor radiosensitivity. MiR-378a-5p level is down-regulated in colorectal cancer (CRC). Therefore, this study intends to explore the role of miR-378a-5p in CRC, especially radiosensitivity. METHODS: The expression of miR-378a-5p was analyzed in CRC samples. CRC cell lines were treated with different doses of X-rays. Bioinformatics analysis, dual-luciferase reporter assay and RT-qPCR were used to detect the expressions and binding relationship of miR-378a-5p and low-density lipoprotein receptor-related protein 8 (LRP8). MiR-378a-5p inhibitor or/and siLRP8 were transfected into CRC cells with or without irradiation. Subsequently, clonogenic assay, flow cytometry and in vivo experiments including tumorigenesis assay, immunohistochemistry, RT-qPCR and Western blot were performed to clarify the role of miR-378a-5p/LRP8 axis in the radiosensitivity of CRC. RESULTS: The down-regulated expression of miR-378a-5p in CRC is related to histological differentiation and tumor-node-metastasis (TNM) stage. After irradiation, the survival fraction of CRC cells was decreased, while the apoptotic rate and the level of miR-378a-5p were increased. Restrained miR-378a-5p repressed apoptosis and apoptosis-related protein expressions, yet promoted the proliferation and the radioresistance of cells by regulating ß-catenin in CRC cells. LRP8 was highly expressed in CRC, and targeted by miR-378a-5p. SiLRP8 improved radiosensitivity and reversed the effect of miR-378a-5p down-regulation on CRC cells. Overexpressed miR-378a-5p and irradiation enhanced the level of miR-378a-5p, yet suppressed the expressions of Ki67 and LRP8 as well as tumorigenesis. CONCLUSION: MiR-378a-5p may exert a radiosensitizing effect on CRC through the LRP8/ß-catenin axis, which may be a new therapeutic target for CRC radioresistance.


Subject(s)
Colorectal Neoplasms , MicroRNAs , Neoplasms , Radiation-Sensitizing Agents , Humans , beta Catenin/genetics , Carcinogenesis , Cell Proliferation , Colorectal Neoplasms/genetics , Colorectal Neoplasms/radiotherapy , Colorectal Neoplasms/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Radiation-Sensitizing Agents/pharmacology
7.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1021502

ABSTRACT

BACKGROUND:M2 macrophages have the function of reducing inflammatory factors and promoting tissue healing.Therefore,how to regulate M2 polarization of macrophages has been a hot research topic in recent years,and some miRNAs have been found to have this function. OBJECTIVE:To investigate the effects of miR-378a on the polarization of the Raw264.7 macrophage cell line. METHODS:The M1 polarization of macrophages was induced by lipopolysaccharide and interferon-γ.Interleukin-4 induced M2 polarization and the expression of endogenous miR-378a in each cell type was detected using qRT-PCR to verify whether miR-378a was involved in the polarization of macrophages.By transfection with lentivirus as the vector of overexpression of miR-378a,the stable expression of miR-378a cell lines was screened.Macrophage M1 polarization was induced synergically by lipopolysaccharide and interferon-γ.Macrophage M2 polarization was induced by interleukin-4.The levels of M1/M2 polarization-related cytokines in the supernatant of the macrophage culture medium were determined by enzyme-linked immunosorbent assay.qRT-PCR was used to detect the polarization characteristics of M1/M2-type macrophages and the mRNA expression levels of related cytokines. RESULTS AND CONCLUSION:(1)The expression level of endogenous miR-378a in Raw264.7 cells of each group increased after macrophage polarization.(2)Compared with the non-transfected group,the expressions of proinflammatory cytokine-induced nitric oxide synthase,tumor necrosis factor-α,interleukin-6 and interleukin-1β in macrophage M1 induced polarization were significantly decreased in the miR-378a transfection group(P<0.05);the levels of inducible nitric oxide synthase,tumor necrosis factor-α and interleukin-6 in cell supernatant were also significantly decreased(P<0.05).(3)Compared with the non-transfected group,the expressions of CD206,interleukin-10 and arginase-I in macrophage M2 induced polarization were significantly increased(P<0.05);the levels of CD206 and interleukin-10 in cell supernatant were also significantly increased(P<0.05)in the miR-378a transfection group.(4)It is indicated that overexpression of miR-378a promotes the M2 polarization of macrophages and inhibits the M1 polarization of macrophages.

8.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1032173

ABSTRACT

Objective To explore the mechanism of microRNA-378a-3p (miR-378a-3p) affecting the development of breast cancer (BC) cells. Methods The expression of miR-378a-3p in BC cells based on the Cancer Genome Atlas Program database was analyzed. The starBase, miRDB, and miRWalk databases were used to predict the target genes of miR-378a-3p. Double-luciferase reporter experiments were performed to verify the targeted regulation of miR-378a-3p on NUAK family kinase 2 (NUAK2). Real-time fluorescence quantitative PCR and Western blot analyses were used to detect the expression of miR-378a-3p and NUAK2 mRNA and protein in BC cells. Cell proliferation ability was detected through cell-proliferation experiments. Cell scratch assay and invasion assay were used to detect the migration and invasion abilities of cells, respectively. Apoptosis and cell-cycle experiments were conducted to detect cell apoptosis rate and cell cycle distribution. Results The expression of miR-378a-3p was significantly downregulated in BC cells, and miR-378a-3p overexpression inhibited the proliferation, migration, and invasion of BC cells. miR-378a-3p directly targeted NUAK2 and inhibited the mRNA and protein expression of NUAK2. Conclusion miR-378a-3p inhibits the proliferation, migration, and invasion of BC cells by targeting NUAK2.

9.
Open Med (Wars) ; 18(1): 20230831, 2023.
Article in English | MEDLINE | ID: mdl-38025533

ABSTRACT

miR-378 is known to suppress myocardial fibrosis, while its upstream regulators have not been identified. lncRNA LENGA is a recently identified lncRNA in cancer biology. We observed the altered expression of LENGA in atrial fibrillation (AF) patients and predicted its interaction with miR-378. We then explored the interaction between LENGA and miR-378 in AF. Angiotensin-II (Ang-II)-induced human atrial cardiac fibroblasts and human atrial muscle tissues were collected and the expression of LENGA and miR-378 was determined by RT-qPCR. The interaction between LENGA and miR-378 was analyzed through bioinformatics analysis and confirmed by RNA pulldown assay. Cell proliferation and collagen production were analyzed through in vitro assay to analyze the role of LENGA and miR-378 in MF. AF patients showed increased expression of LENGA and deceased expression of miR-378 compared to the sinus rhythm group. LENGA and miR-378 interacted with each other, while they are not closely correlated with each other. Overexpression assay showed that LENGA and miR-378 overexpression failed to affect each other's expression. LENGA promoted collagen production and proliferation of Ang-II-induced atrial fibroblasts, while miR-378 played opposite roles. Moreover, LENGA suppressed the function of miR-378. Therefore, LENGA may sponge miR-378 to promote MF in AF.

10.
J Orthop Surg (Hong Kong) ; 31(3): 10225536231219637, 2023.
Article in English | MEDLINE | ID: mdl-38031987

ABSTRACT

BACKGROUND: Osteoporotic fractures (OFs) are a significant public health issue, which can lead to pain and impaired mobility. The underlying mechanisms of OFs remain unclear, but recent studies have suggested that the circRNA-miRNA-mRNA pathway may play a crucial role. PURPOSE: This study aimed to investigate the potential involvement of the circHIPK3/miR-378a-3p/HDAC4 pathway in the pathogenesis of OFs. METHODS: We collected tissue and serum samples from 10 patients with OFs and 10 healthy controls. The expression levels of circHIPK3, miR-378a-3p, and HDAC4 were measured by qPCR and WB. Additionally, we quantified the serum levels of bone metabolism-related indicators (ALP, OC, TRAP, OCIF, ODF) using ELISA. RESULTS: Our results revealed significant upregulation of circHIPK3 and HDAC4 in both tissue and serum samples from OF patients compared with controls. Simultaneously, we detected a lower expression level of miR-378a-3p in OF tissues and serum than that in the control group. Furthermore, the serum levels of bone metabolism-related indicators ALP, TRAP, OCIF, and ODF were significantly higher in OF patients than in the control group. Interestingly, the serum level of OCIF was lower in OF patients than in the control group. CONCLUSION: Our study provides important evidence for the involvement of the circHIPK3/miR-378a-3p/HDAC4 pathway in the pathogenesis of OFs. The upregulation of circHIPK3 and HDAC4 and downregulation of miR-378a-3p observed in OF patients suggests their potential regulatory effects on bone metabolism. Meanwhile, abnormal expression of serum bone metabolism-related indicators may contribute to the development of OFs by disrupting the balance of bone remodeling.


Subject(s)
MicroRNAs , Osteoporotic Fractures , Humans , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Osteoporotic Fractures/genetics , Repressor Proteins/genetics , Repressor Proteins/metabolism , Up-Regulation
11.
J Innate Immun ; 15(1): 893-910, 2023.
Article in English | MEDLINE | ID: mdl-37926093

ABSTRACT

This study investigates whether bone marrow mesenchymal stem cell (BMSC)-derived extracellular vesicles (EVs) can affect rheumatoid arthritis (RA) by delivering microRNA (miR)-378a-5p to regulate the interferon regulatory factor 1/signal transducer and transcription 1 (IRF1/STAT1) axis. We identified RA-associated miRNAs using the GEO microarray dataset GSE121894. We found the most important miRNAs in RA synovial tissues using RT-qPCR. BMSC-derived EVs were ultracentrifuged and cocultured with human synovial microvascular endothelial cells (HSMECs) in vitro. Dual-luciferase and RNA immunoprecipitation studies examined miR-378a-5p's specific binding to IRF1. We also measured angiogenesis, migration, and proliferation using CCK-8, Transwell, and tube formation assays. Collagen-induced arthritis (CIA) mice models were created by inducing arthritis and scoring it. RA synovial tissues had low miR-378a-5p expression, whereas BMSC-derived EVs had high levels. The transfer of miR-378a-5p by BMSC-derived EVs to HSMECs boosted proliferation, migration, and angiogenesis. miR-378a-5p inhibited IRF1. MiR-378a-5p-containing BMSC-derived EVs decreased STAT1 phosphorylation and HSMEC IRF1 expression. EVs with miR-378a-5p mimic promoted HSMEC proliferation, migration, and angiogenesis, whereas dexmedetomidine inhibited STAT1 phosphorylation. In CIA mice, BMSC-derived EVs containing miR-378a-5p enhanced synovial vascular remodeling and histopathology. Thus, miR-378a-5p from BMSC-derived EVs promotes HSMEC proliferation, migration, and angiogenesis, inactivating the IRF1/STAT1 axis and preventing RA.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Extracellular Vesicles , Mesenchymal Stem Cells , MicroRNAs , Animals , Humans , Mice , Arthritis, Experimental/genetics , Arthritis, Experimental/metabolism , Arthritis, Rheumatoid/metabolism , Endothelial Cells , Extracellular Vesicles/genetics , Mesenchymal Stem Cells/metabolism , MicroRNAs/genetics
12.
J Interferon Cytokine Res ; 43(11): 531-537, 2023 11.
Article in English | MEDLINE | ID: mdl-37956249

ABSTRACT

The most well-known forms of inflammatory bowel disease (IBD) that affect the entire gastrointestinal tract are ulcerative colitis (UC) and Crohn's disease (CD). The serum profile of inflammatory biomarkers and noncoding RNA and their role in the propagation of the inflammatory process remains controversial. Thus, this study was designed to examine the relationship between hematological profile, C-reactive protein (CRP), tumor necrosis factor-alpha (TNF-α), interferon-gamma (INF-γ), and the expression of LINC00641 and miR-378a in individuals with IBDs. In addition, we elucidated the correlation between the expression of LINC00641 and miR-378a and the biochemical variables analyzed. This retrospective study analyzed 94 unrelated participants. Group I included healthy controls, Group II consisted of participants diagnosed with UC, and Group III consisted of participants diagnosed with CD. Patients with IBDs experienced significant elevations in CRP, total leukocyte count, platelets, erythrocyte sedimentation rate, TNF-α, and INF-γ. However, participants with IBD had lower hemoglobin and albumin levels than healthy control participants. Moreover, the expression levels of LINC00641 and miR-378a were elevated in participants with IBD, with a significant difference between participants with IBD and healthy controls. The most striking observation was a clear association between serum LINC00641 and miR-378a levels and the biochemical variables assessed. This study demonstrated a positive correlation between the expression of LINC00641/miR-378a and TNF-α in patients with UC and CD patients. This study suggests that LINC00641 and miR-378a are prospective biomarkers and noninvasive screening tools for IBDs, which may help predict the progression of complications.


Subject(s)
Colitis, Ulcerative , Crohn Disease , Inflammatory Bowel Diseases , MicroRNAs , RNA, Long Noncoding , Humans , Biomarkers , C-Reactive Protein , Colitis, Ulcerative/diagnosis , Colitis, Ulcerative/genetics , Colitis, Ulcerative/metabolism , Crohn Disease/diagnosis , Crohn Disease/genetics , Crohn Disease/pathology , Interferon-gamma/genetics , MicroRNAs/genetics , Retrospective Studies , Tumor Necrosis Factor-alpha/metabolism , RNA, Long Noncoding/genetics
13.
Inflamm Regen ; 43(1): 47, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37798761

ABSTRACT

BACKGROUND: Extracellular vesicles derived from mesenchymal stem/stromal cells (MSCs) have shown therapeutic effects on liver fibrosis. This study aimed to evaluate the effects of extracellular vesicles from placenta-derived MSCs (Pd-MSCs-EVs) on liver fibrosis at 3D/2D levels and explore the potential mechanisms. METHODS: The multicellular liver organoids, consisting of hepatocytes, hepatic stellate cells (HSCs), Kupffer cells, and liver sinusoidal endothelial cells, were observed for growth status, morphological changes, and metabolism. Human transformation growth factor- beta 1 (TGF-ß1) was used to induce fibrosis at optimal concentration. The anti-fibrosis effects of Pd-MSCs-EVs were evaluated in liver organoids and HSCs models. Anti-fibrotic content of Pd-MSCs-EVs was identified by multiple experimental validations. RESULTS: TGF-ß1 induced fibrosis in liver organoids, while Pd-MSCs-EVs significantly alleviated fibrotic phenotypes. Following serial verifications, miR-378c was identified as a potential key anti-fibrosis content. In contrast, miR-378c depletion decreased the anti-fibrotic effects of Pd-MSCs-EVs. Additionally, Pd-MSCs-EVs administration repressed TGF-ß1-mediated HSCs activation at 2D or 3D levels. Mechanistically, exosomal miR-378c inactivated HSCs by inhibiting epithelial-mesenchymal transition (EMT) through stabilizing E-cadherin via targeting its E3 ubiquitin ligase S-Phase Kinase Associated Protein 2 (SKP2). CONCLUSION: Pd-MSCs-EVs ameliorated TGF-ß1-induced fibrosis by deactivating HSCs in a miR-378c/SKP2-dependent manner, which may be an efficient therapeutic candidate for liver fibrosis.

14.
Oncol Lett ; 26(4): 421, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37664650

ABSTRACT

Esophageal squamous cell carcinoma (ESCC) is an aggressive malignancy of the digestive system with increasing incidence and mortality rates. The biological roles of microRNA (miR)-378a-3p in tumor cells remain contested, and the mechanisms underlying the functions, energy metabolism, and cell survival mechanisms in ESCC cells are yet to be fully elucidated. In the present study, miR-378a-3p overexpression and negative control plasmids were transfected into ECA-109 cells using electroporation. Western blotting was used to detect the relative expression of proteins, and flow cytometry was used to detect cell apoptosis. Subsequently, ELISA assays were performed to determine enzyme activity, and an ATP detection kit was used to measure ATP content. Dual-luciferase reporter assays were performed to identify the target genes of miR-378a-3p. The results of the present study demonstrated that miR-378a-3p inhibited the gene expression and enzyme activities of glucose transporter protein 1 (GLUT-1), Aldolase A (ALDOA), and pyruvate kinase M2 (PKM2), all of which are involved in the glycolytic pathway of cells. Energy metabolism was suppressed by miR-378a-3p by reducing ATP content, and this downregulated the expression of Bcl-2 and Survivin. Moreover, increased miR-378a-3p expression promoted cell apoptosis in the early stages by increasing the expression levels and the activity of Bad and Caspase-3, while inhibiting the expression levels of Bcl-2 and Survivin. The results of the present study also demonstrated that GLUT-1/ALDOA/PKM2 were target genes of miR-378a-3p. Notably, miR-378a-3p blocked energy production and promoted the apoptosis of tumor cells via the downregulation of glycolytic enzyme expression and by reducing the mitochondrial membrane potential in ESCC. Bad, Caspase-3, Survivin, and Bcl-2 may be associated with blocking energy production and promoting apoptosis via miR-378a-3p in ESCC cells.

15.
Int J Mol Sci ; 24(17)2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37686231

ABSTRACT

Promising approaches to the treatment of obesity include increasing energy expenditure and slowing down fibrogenesis of adipose tissue. The neurotransmitter reuptake inhibitor sibutramine affects appetite and activates lipolysis in a catecholaminergic way. MicroRNAs (miRs) are considered as biomarkers of molecular genetic mechanisms underlying various processes. The profile of a number of miRs is altered in obesity, both in the circulation and in adipose tissue. The aim of this study was to assess the expression levels of miRs (hsa-miR-378a-3p, hsa-miR-142-3p) by real-time polymerase chain reaction in subcutaneous adipose tissue (SAT) and in plasma in patients with different degrees and duration of obesity and during sibutramine therapy. This study included 51 obese patients and 10 healthy subjects with normal weight who formed a control group. The study found that, before treatment, obese patients had no significant difference in the expression level of miR-378 in SAT and plasma compared to the control group, while the expression of miR-142 was significantly decreased in SAT and increased in plasma. A significant elevation in miR-378 expression level was noted in patients with first-degree obesity and duration of less than 10 years, and the decline in miR-142 increased with the duration of obesity. These data indicate a maximal increase in the expression of the adipogenesis inducer miR-378 in the early stages of obesity, a progressive decrease in the expression of the fibrogenesis inhibitor miR-142 in SAT with growth of duration of obesity and the likely presence of antifibrogenic effects of sibutramine realized through miR-142 activation.


Subject(s)
Cyclobutanes , MicroRNAs , Humans , MicroRNAs/genetics , Biomarkers , Obesity/genetics
16.
Mol Med Rep ; 28(3)2023 Sep.
Article in English | MEDLINE | ID: mdl-37503766

ABSTRACT

Cardiovascular disease (CVD) is a common chronic clinical condition and is the main cause of death in humans worldwide. Understanding the genetic and molecular mechanisms involved in the development of CVD is essential to develop effective prevention strategies and therapeutic measures. An increasing number of CVD­related genetic studies have been conducted, including those on the potential roles of microRNAs (miRs). These studies have demonstrated that miR­378 is involved in the pathological processes of CVD, including those of myocardial infarction, heart failure and coronary heart disease. Despite the potential importance of miR­378 CVD, a comprehensive summary of the related literature is lacking. Thus, the present review aimed to summarize the findings of previous studies on the roles and mechanisms of miR­378 in a variety of CVDs and provide an up­to date basis for further r research targeting the prevention and treatment of CVDs.


Subject(s)
Cardiovascular Diseases , Heart Failure , MicroRNAs , Myocardial Infarction , Humans , Cardiovascular Diseases/drug therapy , MicroRNAs/genetics , MicroRNAs/therapeutic use , Myocardial Infarction/genetics , Myocardial Infarction/drug therapy , Heart Failure/drug therapy
17.
FEBS Open Bio ; 13(9): 1737-1755, 2023 09.
Article in English | MEDLINE | ID: mdl-37517032

ABSTRACT

Lung cancer is the most common cause of cancer-related death worldwide, accounting for 1.8 million deaths annually. Analysis of The Cancer Genome Atlas data showed that all members of the minichromosome maintenance (MCM) family (hexamers involved in DNA replication: MCM2-MCM7) were upregulated in lung adenocarcinoma (LUAD) tissues. High expression of MCM4 (P = 0.0032), MCM5 (P = 0.0032), and MCM7 (P = 0.0110) significantly predicted 5-year survival rates in patients with LUAD. Simurosertib (TAK-931) significantly suppressed the proliferation of LUAD cells by inhibiting cell division cycle 7-mediated MCM2 phosphorylation. This finding suggested that MCM2 might be a therapeutic target for LUAD. Moreover, analysis of the epigenetic regulation of MCM2 showed that miR-139-3p, miR-378a-5p, and miR-2110 modulated MCM2 expression in LUAD cells. In patients with LUAD, understanding the role of these miRNAs may improve prognoses.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , MicroRNAs , Humans , Clinical Relevance , Epigenesis, Genetic , Adenocarcinoma of Lung/metabolism , Minichromosome Maintenance Proteins/genetics , Minichromosome Maintenance Proteins/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/pathology , MicroRNAs/genetics , MicroRNAs/metabolism
18.
Environ Mol Mutagen ; 64(6): 359-370, 2023 07.
Article in English | MEDLINE | ID: mdl-37357410

ABSTRACT

Circular RNAs (circRNAs), including circ_0000033, were shown to be abnormally expressed in breast cancer (BC) and play an important regulatory function in the development of this cancer. This study aimed to investigate the action and mechanism of circ_0000033 in BC carcinogenesis. Specifically, levels of genes and proteins were analyzed using quantitative real-time PCR (qRT-PCR) and western blotting. Circ_0000033 was highly expressed in BC tissues and cells. Properties of cells with modified expression of circ_0000033 were characterized using an in vitro colony formation assay, EdU assay, flow cytometry, caspase-3 activity analysis, transwell assay, and tube formation assay, respectively. Functionally, knockdown of circ_0000033 suppressed BC cell proliferation, migration, invasion, angiogenesis, and induced apoptosis and cell cycle arrest in vitro. An in vivo experiment was conducted using a murine xenograft model and showed circ_0000033 silencing also impeded the growth of BC in nude mice. The binding between miR-378a-3p and circ_0000033 or NUAK2 (NUAK Family Kinase 2) was validated using a dual-luciferase reporter assay. Circ_0000033 sequestered miR-378a-3p and resulted in NUAK2 release, indicating a circ_0000033/miR-378a-3p/NUAK2 regulatory network operates in BC cells. Circ_0000033 down-regulation in BC cells was accompanied by decreased NUAK2 and increased miR-378a-3p expression. Moreover, the anticancer effects mediated by circ_0000033 knockdown were abolished by miR-378a-3p inhibition or NUAK2 overexpression in BC cells. Overall, circ_0000033 up-regulates NUAK2 through sequestration miR-378a-3p, which promoted breast tumorigenesis, suggesting circ_0000033 is a promising therapeutic target for BC treatment.


Subject(s)
Breast Neoplasms , MicroRNAs , Humans , Animals , Mice , Female , Mice, Nude , Cell Transformation, Neoplastic , Carcinogenesis/genetics , Breast Neoplasms/genetics , MicroRNAs/genetics , Cell Proliferation/genetics , Cell Line, Tumor , Protein Serine-Threonine Kinases
19.
Open Med (Wars) ; 18(1): 20230676, 2023.
Article in English | MEDLINE | ID: mdl-37025425

ABSTRACT

Myocardial infarction-associated transcript (MIAT) is a long noncoding RNA that plays a critical role in a variety of diseases. Accordingly, this study probed into the possible interaction mechanism between MIAT and miR-378a-5p in breast cancer. Concretely, MIAT and miR-378a-5p expressions in breast cancer tissues and cells were measured. After transfection with siMIAT and miR-378a-5p inhibitor, the viability and proliferation of breast cancer cells were examined by cell counting kit-8 and colony formation assays. The expressions of apoptosis-related proteins were detected. According to the results, MIAT was highly expressed in breast cancer tissues and cells. MIAT silencing could decrease Bcl-2 expression, viability, and proliferation of breast cancer cells and increase the expressions of cleaved caspase-3 and Bax. MIAT and miR-378a-5p could directly bind to each other, and MIAT silencing promoted the expression of miR-378a-5p. miR-378a-5p expression was low in breast cancer tissues. The miR-378a-5p inhibitor enhanced the viability and proliferation of breast cancer cells and partially reversed the effects of MIAT silencing on the breast cancer cells. In conclusion, MIAT silencing inhibits the viability and proliferation of breast cancer cells by promoting miR-378a-5p, indicating the potential of MIAT as a new target for the treatment of breast cancer.

20.
Epigenetics ; 18(1): 2204772, 2023 12.
Article in English | MEDLINE | ID: mdl-37092305

ABSTRACT

Background: Circular RNA (circRNA) plays a critical role in tumour progression. Circ-CCT3, a particularly abundant circRNA, was proposed to be involved in tumorigenesis. However, the role of circ-CCT3 in hepatocellular carcinoma remains elusive.Methods: Here, circ-CCT3 (a circRNA derived from exons 3, 4 and 5 of the CCT3 gene, hsa_circ_0004680) was identified by circRNA microarray and validated by qRT-PCR. RNA immunoprecipitation (RIP) was performed to confirm the binding between ALKBH5 along with METTL3 and circ-CCT3. Methylated RNA Immunoprecipitation (MeRIP) was used to detect the N6-methyladenosine (m 2A) levels of circ-CCT3. CircRNAs in vivo precipitation, luciferase reporter assay, biotin-coupled microRNA capture, and fluorescence in situ hybridization were conducted to assess the interaction between circ-CCT3 and miR-378a-3p. The functions of circ-CCT3 in HCC were evaluated both in vitro and in vivo.Results: We demonstrated that circ-CCT3 was highly expressed in HCC which indicated the poor prognosis. Circ-CCT3 expression served as an independent risk factor for overall survival in patients with HCC. Knocking-down of circ-CCT3 inhibited the proliferation, invasion and migration of HCC cells, and angiogenesis of HUVEC. Mechanistically, ALKBH5 and METTL3 could bind and regulate m A-modification of circ-CCT3. Further, circ-CCT3 upregulated the expression of FLT-1 by sponging miR-378a-3p.Conclusions: Circ-CCT3 was significantly up-regulated in HCC and promoted liver cancer development via miR-378a-3p-FLT1 axis. It was also found that circ-CCT3 was under m A-modification mediated by ALKBH5 and METTL3. Our study highlights circ-CCT3 as a potential therapeutic target of HCC treatment, which provides a novel understanding on mechanisms of circRNAs in HCC progression.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , MicroRNAs , Humans , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Chaperonin Containing TCP-1/genetics , Chaperonin Containing TCP-1/metabolism , DNA Methylation , Gene Expression Regulation, Neoplastic , In Situ Hybridization, Fluorescence , Liver Neoplasms/metabolism , Methyltransferases/genetics , Methyltransferases/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular/genetics
SELECTION OF CITATIONS
SEARCH DETAIL