Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Language
Publication year range
1.
Epigenomics ; 16(19-20): 1273-1286, 2024.
Article in English | MEDLINE | ID: mdl-39382450

ABSTRACT

Aim: Childhood maltreatment (CM) may affect not only directly exposed individuals but also their offspring. However, the underlying biological mechanisms remain unclear. microRNAs (miRNAs) may play a regulatory role in this process. This study investigates the relationship between maternal exposure to CM and miRNA expression in maternal and perinatal tissues.Methods: We enrolled 43 pregnant women and assessed their CM exposure. We collected maternal blood, cord blood and placental tissue samples during childbirth and performed miRNA profiling using next generation sequencing.Results: Maternal CM was inversely associated with hsa-miR-582-3p levels in cord blood. Pathway analysis revealed that this miRNA regulates genes involved in intrauterine development.Conclusion: Our findings highlight the potential impact of maternal CM exposure on offspring epigenetic mechanisms.


Child maltreatment (CM) includes physical, sexual and emotional abuse, as well as physical and emotional neglect. CM not only harms those directly exposed but can also negatively impact their offspring. However, the biological reasons behind this are not well understood. To explore this further, our study investigates how CM affects the biology of pregnant women and their newborns through changes in small regulatory molecules called microRNAs (miRNAs). We recruited 43 pregnant women and assessed their exposure to CM. During childbirth, we collected blood samples from the mothers, blood from the umbilical cord and placental samples. We then analyzed the levels of miRNAs in these samples using advanced sequencing technology. We observed that more severe maternal exposure to CM was associated with lower levels of a miRNA named hsa-miR-582-3p in umbilical cord blood. This miRNA regulates genes involved in fetal development in utero and has been linked to spontaneous preterm birth. It may also influence immunologic and stress-related processes. Thus, newborns of mothers who had been exposed to CM may be more vulnerable to adverse effects on their brain development and overall health. Despite our small sample size, our study highlights the importance of addressing CM as an intergenerational concern and provides new insights into the biological mechanisms through which maternal CM can affect offspring.


Subject(s)
Fetal Blood , Maternal Exposure , MicroRNAs , Humans , Female , Fetal Blood/metabolism , MicroRNAs/genetics , MicroRNAs/blood , Pregnancy , Adult , Maternal Exposure/adverse effects , Child Abuse , Placenta/metabolism , Epigenesis, Genetic , Child
2.
Clinics ; Clinics;76: e3036, 2021. graf
Article in English | LILACS | ID: biblio-1339698

ABSTRACT

OBJECTIVES: Malignant melanoma (MM) is an invasive tumor that poses a threat to patient health. Circular RNAs (circRNAs) are important regulators of MM carcinogenesis. In this study, we investigated the expression characteristics and biological functions of, and mechanism underlying, circ_0119872 expression in MM. METHODS: Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was employed to examine the circ_0119872, microRNA (miR)-582-3p, and E2F transcription factor 3 (E2F3) mRNA expression levels in MM tissues and cell lines. Western blotting was performed to quantify E2F3 protein expression. MM cells with circ_0119872 knockdown were established, and cell counting kit 8 (CCK-8) and transwell assays were utilized to examine the function of circ_0119872 and its effects on the malignant characteristics of MM cells. The MiRDB and TargetScan databases were used to predict the target genes of miR-582-3p. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was used to explore the biological functions of the target genes of miR-582-3p. Additionally, a dual-luciferase reporter gene experiment was performed to verify the targeting relationship between circ_0119872 and miR-582-3p as well as that between miR-582-3p and E2F3. RESULTS: Circ_0119872 was remarkably upregulated in MM tissues and cell lines. Circ_0119872 knockdown suppressed the cell proliferation and metastasis In addition, miR-582-3p was identified as a downstream target of circ_0119872. The target genes of miR-193a-3p are involved in melanogenesis and cancer-related signaling pathways. Mechanistically, circ_0119872 facilitated MM progression by adsorbing miR-582-3p and upregulating E2F3 expression. CONCLUSION: Circ_0119872 is an oncogenic circRNA that participates in the promotion of MM progression by regulating the miR-582-3p/E2F3 axis.


Subject(s)
Humans , MicroRNAs/genetics , Melanoma/genetics , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , E2F Transcription Factors
SELECTION OF CITATIONS
SEARCH DETAIL