Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 333
Filter
1.
J Adv Res ; 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39216686

ABSTRACT

INTRODUCTION: Hepatocellular carcinoma (HCC) is a fatal cancer that is often diagnosed at the advanced stages which limits the available therapeutic options. The interaction of HGF with c-MET (a receptor tyrosine kinase) results in the activation of c-MET which subsequently triggers the PI3K/Akt/mTOR axis. Overexpression of c-MET in HCC tissues has been demonstrated to contribute to tumor progression and metastasis. OBJECTIVES: We aimed to synthesize triazole-indirubin conjugates, examine their growth suppressor efficacy in cell-based assays, and investigate the antitumor as well as antimetastatic activity of lead cytotoxic agent in the orthotopic mice model. METHODS: New triazole-indirubin hybrids were synthesized in a multi-step reaction. The cytotoxicity, apoptogenic, and antimigratory effect of the new compound (CRI9) was evaluated using MTT assay, cell cycle analysis, annexin-V/PI assay, TUNEL assay, and wound healing assay. The effect of CRI9 on the operation of the HGF/c-MET/PI3K/Akt/mTOR axis was examined with western blotting and transfection experiments. Acute toxicity, antitumor, and antimetastatic activity of CRI9 were examined in NCr nude mice. The expression of c-MET/PI3K/Akt/mTOR, CD31, and Ki-67 was examined by immunohistochemistry and western blotting. RESULTS: Among the new compounds, CRI9 consistently displayed potent cytotoxicity against HGF-induced HCC cells. CRI9 induced apoptosis as evidenced by increased sub G1 cells, annexin-V+/PI+ cells, TUNEL+ cells, and cleavage of procaspase-3 and PARP. CRI9 inhibited HGF-induced phosphorylation of c-METY1234/1235 and subsequently suppressed the PI3K/Akt/mTOR axis. Also, depletion of c-MET or inhibition of c-MET by CRI9 resulted in suppression of the PI3K/Akt/mTOR axis. CRI9 showed no toxic effects in NCr nude mice and displayed a potent antitumor and antimetastatic effect in the orthotopic HCC mice model. CRI9 also reduced the levels of phospho-c-MET, CD31, and Ki-67 and suppressed the activation of the PI3K/Akt/mTOR axis in tumor tissues. CONCLUSION: CRI9 has been identified as a new inhibitor of the c-MET/PI3K/Akt/mTOR axis in HCC preclinical models.

2.
Inflamm Res ; 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39212675

ABSTRACT

BACKGROUND: Calprotectin, a calcium-binding protein, plays a crucial role in inflammation and has been associated with various inflammatory diseases, including asthma. However, its regulation and impact on steroid hyporesponsiveness, especially in severe asthma, remain poorly understood. METHODS: This study investigated the regulation of calprotectin proteins (S100A8 and S100A9) by IL-17 and its role in steroid hyporesponsiveness using in vitro and in vivo models. Calprotectin expression was assessed in primary bronchial fibroblasts from healthy controls and severe asthmatic patients, as well as in mouse models of steroid hyporesponsive lung inflammation induced by house dust mite (HDM) allergen and cyclic-di-GMP (cdiGMP) adjuvant. The effects of IL-17A stimulation on calprotectin expression and steroid response markers in bronchial epithelial and fibroblast cells were examined. Additionally, the therapeutic potential of paquinimod, a calprotectin inhibitor, in mitigating airway inflammation and restoring steroid response signatures in the mouse model was evaluated. RESULTS: The results demonstrated upregulation of calprotectin expression in asthmatic bronchial fibroblasts compared to healthy controls, as well as in refractory asthma samples compared to non-refractory asthma. IL-17 stimulation induced calprotectin expression and dysregulated glucocorticoid response signatures in lung epithelial and fibroblast cells. Treatment with paquinimod reversed IL-17-induced dysregulation of steroid signatures, indicating the involvement of calprotectin in this process. In the HDM/cdiGMP mouse model, paquinimod significantly attenuated airway inflammation and hyperresponsiveness, and restored steroid response signatures, whereas dexamethasone showed limited efficacy. Mechanistically, paquinimod inhibited MAPK/ERK and NF-κB pathways downstream of calprotectin, leading to reduced lung inflammation. CONCLUSION: These findings highlight calprotectin as a potential therapeutic target regulated by IL-17 in steroid hyporesponsive asthma. Targeting calprotectin may offer a promising approach to alleviate airway inflammation and restore steroid responsiveness in severe asthma. Further investigations are warranted to explore its therapeutic potential in clinical settings and elucidate its broader implications in steroid mechanisms of action.

3.
J Ethnopharmacol ; : 118710, 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39197803

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The clinical application of the traditional Chinese medicinal formula Jiedu Xiaozheng Yin (JXY) for gastrointestinal tumors, particularly colorectal cancer (CRC), is well-established, yet the precise biological mechanism underlying its efficacy in CRC treatment remains elusive. AIMS OF THE STUDY: This study endeavors to unravel the intricate mechanism through which JXY modulates colorectal cancer stem cells, thus elucidating the pathways by which it exerts its potent anti-tumor effects. MATERIALS AND METHODS: In this study, the regulatory impact of JXY on the signaling pathway and function of CRC cells was analyzed through Network pharmacology. The ethyl acetate extract of JXY was detected the major compounds using HPLC and then treated the HCT-116 cells for RNA-Sequencing (RNA-Seq). Protein expression and stemness of HCT-15 and HCT-116 cells following JXY extract treatment were assessed using western blot analysis and matrigel spheroid assays. Additionally, the ß-catenin transcriptional activity was evaluated using a TOPflash reporter assay with or without Lithium chloride (LiCl) stimulation. Patient-derived organoids of CRC (CRC PDOs) were cultured using a stemness maintenance medium, and their viability was measured using ATP assays after treatment of JXY extract. Furthermore, the anti-tumor efficacy of JXY extract was assessed using a xenograft mice model derived from HCT-15 cells. RESULTS: Network pharmacology emphasized the influence of JXY on cancer stem cells and the Wnt signaling pathway. HPLC analysis confirmed that the JXY extract contained the three most prevalent pharmaceutical compounds among the four herbs documented in the Chinese Pharmacopoeia (rosmarinic acid, quercetin, and kaempferol). RNA-Seq results further elucidated the effect of JXY extract, particularly targeting cancer stem cells and the Wnt signaling pathway. Furthermore, JXY extract inhibited spheroid formation in CRC cells and downregulated CRC CSC markers (CD133, DCLK1, and C-MYC). Additionally, JXY extract suppressed the ß-catenin expression and transcriptional activity as well as the Wnt pathway target proteins, including C-MYC and Cyclin D1. Consistent with findings from cell lines, JXY extract suppressed the growth of CRC PDOs exhibiting stemness characteristics. And JXY extract demonstrated a significant inhibitory effect on tumor growth, C-MYC, and ß-catenin protein levels in xenograft tumors. CONCLUSIONS: These results highlight the novel function of JXY extract in targeting CRC CSCs by regulating Wnt signaling pathway, underscoring its potential as a therapeutic agent for treating CRC.

4.
J Nutr Biochem ; 134: 109721, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39128608

ABSTRACT

Malnutrition is a complicated illness that affects people worldwide and is linked to higher death rates, a heightened vulnerability to infections, and delayed cognitive development. Experimental models have been constructed to comprehend the mechanisms associated with hunger. In this regard, the current study used two different types of food aiming to validate a murine model of malnutrition based on dietary restriction. The study was conducted with fifty-six Swiss male mice (eight-week-old) divided into eight groups (n=7 each) and fed the following experimental diets (10 weeks): Standard Diet (ST) ad libitum; ST 20% dietary restriction; ST 40% dietary restriction; ST 60% dietary restriction; AIN93-M diet ad libitum; AIN93-M 20% dietary restriction; AIN93-M 40% dietary restriction; AIN93-M 60% dietary restriction. Body, biochemical, and histological parameters were measured, and the restriction effects on genes related to oxidative stress (GPX1 and GPX4) in epididymal adipose tissue were evaluated. The results obtained showed that 20%, 40%, and 60% of dietary restrictions were able to reduce body weight when compared to controls, highlighting the accentuated weight loss in animals with 60% restrictions, especially those fed with AIN-93 M, which showed physical changes such as whitish skin and dull coat, voracious eating, and hunched posture. The present animal model also showed biochemical changes with hypoalbuminemia, as well as histological epididymal adipose tissue modulation. The presence of increased oxidative stress was observed when evaluating the GPX4 gene. Given the results, 60% food restriction using the AIN93-M diet was the best protocol for inducing malnutrition.

5.
Neuromolecular Med ; 26(1): 32, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090268

ABSTRACT

Parkinson's disease is a progressive neurodegenerative disorder marked by the death of dopaminergic neurons in the substantia nigra region of the brain. Aggregation of alpha-synuclein (α-synuclein) is a contributing factor to Parkinson's disease pathogenesis. The objective of this study is to investigate the neuroprotective effects of gut microbes on α-synuclein aggregation using both in silico and in vivo approaches. We focussed on the interaction between α-synuclein and metabolites released by gut bacteria that protect from PD. We employed three probiotic microbe strains against α-synuclein protein: Lactobacillus casei, Escherichia coli, and Bacillus subtilis, with their chosen PDB IDs being Dihydrofolate reductase (3DFR), methionine synthetase (6BM5), and tryptophanyl-tRNA synthetase (3PRH), respectively. Using HEX Dock 6.0 software, we examined the interactions between these proteins. Among the various metabolites, methionine synthetase produced by E. coli showed potential interactions with α-synuclein. To further evaluate the neuroprotective benefits of E. coli, an in vivo investigation was performed using a rotenone-induced Parkinsonian mouse model. The motor function of the animals was assessed through behavioural tests, and oxidative stress and neurotransmitter levels were also examined. The results demonstrated that, compared to the rotenone-induced PD mouse model, the rate of neurodegeneration was considerably reduced in mice treated with E. coli. Additionally, histopathological studies provided evidence of the neuroprotective effects of E. coli. In conclusion, this study lays the groundwork for future research, suggesting that gut bacteria may serve as potential therapeutic agents in the development of medications to treat Parkinson's disease. fig. 1.


Subject(s)
Bacillus subtilis , Escherichia coli , Gastrointestinal Microbiome , Molecular Docking Simulation , Oxidative Stress , Probiotics , Rotenone , alpha-Synuclein , Animals , Mice , Gastrointestinal Microbiome/physiology , Probiotics/therapeutic use , Probiotics/pharmacology , alpha-Synuclein/metabolism , Oxidative Stress/drug effects , Rotenone/toxicity , Lacticaseibacillus casei/physiology , Methionine-tRNA Ligase , Tryptophan-tRNA Ligase/physiology , Male , Tetrahydrofolate Dehydrogenase/metabolism , Computer Simulation , Parkinsonian Disorders/microbiology , Humans , Neuroprotective Agents/therapeutic use , Mice, Inbred C57BL , Disease Models, Animal , Parkinson Disease, Secondary/chemically induced , Dopaminergic Neurons/drug effects , Parkinson Disease/microbiology
6.
Int J Biol Macromol ; 276(Pt 2): 133859, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39009260

ABSTRACT

Intestinal immunity plays a pivotal role in overall immunological defenses, constructing mechanisms against pathogens while maintaining balance with commensal microbial communities. Existing therapeutic interventions may lead to drug resistance and potential toxicity when immune capacity is compromised. Dendrobium officinale, a traditional Chinese medicine, contains components identified to bolster immunity. Employing network pharmacology strategies, this study identified constituents of Dendrobium officinale and their action targets in the TCMSP and Swiss Target Prediction databases, and compared them with intestinal immunity-related targets. Protein-protein interaction networks revealed the core targets of Dendrobium officinale polysaccharides, encompassing key pathways such as cell proliferation, inflammatory response, and immune reactions, particularly in association with the Toll-like receptor 4. Molecular docking and molecular dynamics simulation further confirmed the high affinity and stability between Dendrobium officinale polysaccharides and Toll-like receptor 4. In vivo experiments demonstrated that Dendrobium officinale polysaccharides modulates the expression of Toll-like receptor 4 and its downstream key proteins in the colonic mucosa of mice. Consequently, these findings suggest that Dendrobium officinale polysaccharides may serve as a potential modulator for intestinal immune functions, with its mechanism potentially related to the Toll-like receptor 4.


Subject(s)
Dendrobium , Molecular Docking Simulation , Molecular Dynamics Simulation , Polysaccharides , Toll-Like Receptor 4 , Dendrobium/chemistry , Polysaccharides/pharmacology , Polysaccharides/chemistry , Animals , Mice , Toll-Like Receptor 4/metabolism , Network Pharmacology , Protein Interaction Maps/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Intestinal Mucosa/immunology , Male , Intestines/drug effects , Intestines/immunology
7.
Sci Rep ; 14(1): 17495, 2024 07 30.
Article in English | MEDLINE | ID: mdl-39079980

ABSTRACT

Short-chain fatty acids (SCFAs) have been proposed to have anti-inflammatory effects and improve immune homeostasis. We aimed to examine the effects of SCFAs on skin phenotype, systemic inflammation, and gut microbiota in mice with psoriasis-like inflammation. Imiquimod (IMQ)-treated C57BL/6 mice served as the study model. We conducted a metagenomic association study of IMQ-mice treated with SCFAs or anti-IL-17 antibody using whole-genome shotgun sequencing. The associations among SCFA supplements, skin thickness, circulating inflammatory profiles, and fecal microbiota profiles were investigated. The microbiome study was performed using pipelines for phylogenetic analysis, functional gene analysis, and pathway analysis. In IMQ-treated mice, there were increases in skin thickness and splenic weight, as well as unique fecal microbial profiles. SCFAs ameliorated IMQ-induced skin thickening, splenic weight gain, and serum IL-17F levels, with results that were comparable with those receiving anti-IL-17 treatment. IMQ-treated mice receiving SCFAs had greater microbial diversity than mice treated with IMQ alone. SCFAs and anti-IL17 treatment were associated with alteration of gut microbiota, with increased prevalences of Oscillospiraceae and Lachnopiraceae and decreased prevalences of Muribaculaceae and Bacteroides, which have been predicted to be associated with increased glycan degradation, phenylalanine metabolism, and xylene degradation. SCFAs may mitigate IMQ-induced skin thickening and IL-17F levels and alter fecal microbiota profiles in IMQ-treated mice.


Subject(s)
Fatty Acids, Volatile , Gastrointestinal Microbiome , Imiquimod , Interleukin-17 , Mice, Inbred C57BL , Skin , Animals , Imiquimod/adverse effects , Gastrointestinal Microbiome/drug effects , Interleukin-17/metabolism , Fatty Acids, Volatile/metabolism , Mice , Skin/drug effects , Skin/pathology , Skin/microbiology , Skin/metabolism , Metagenomics/methods , Psoriasis/drug therapy , Psoriasis/chemically induced , Psoriasis/microbiology , Metagenome , Feces/microbiology
8.
J Biophotonics ; 17(7): e202400028, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38877699

ABSTRACT

Skin burns that include tissue coagulation necrosis imply variations in stiffness. Dynamic phase-sensitive optical coherence elastography (OCE) is used to evaluate the stiffness of burned skin nondestructively in this paper. The homemade dynamic OCE was initially verified through tissue-mimicking phantom experiments regarding Rayleigh wave speed. After being burned with a series of temperatures and durations, the corresponding structure and stiffness variations of mice skin were demonstrated by histological images, optical coherence tomography B-scans, and OCE elastic wave speed maps. The results clearly displayed the variation in elastic properties and stiffness of the scab edge extending in the lateral direction. Statistical analysis revealed that murine skin burned at temperatures exceeding 100°C typically exhibited greater stiffness than skin burned at temperatures below 100°C. The dynamic OCE technique shows potential application for incorporating elasticity properties as a biomechanical extension module to diagnose skin burn injuries.


Subject(s)
Burns , Elasticity Imaging Techniques , Skin , Tomography, Optical Coherence , Animals , Burns/diagnostic imaging , Mice , Skin/diagnostic imaging , Skin/pathology , Elasticity , Phantoms, Imaging , Disease Models, Animal
9.
Transl Pediatr ; 13(5): 705-715, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38840676

ABSTRACT

Background: The calcium-binding protein 4 (CABP4) gene is a newly identified epilepsy-related gene that might be associated with a rare type of genetic focal epilepsy; that is, autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE). In vitro, mutant CABP4 causes an increased inward flow voltage of calcium ions and a significant increase in the electrical signal discharge in hippocampus neurons; however, the role of CABP4 in epilepsy has not yet been specifically described, and there is not yet a CABP4 mutant animal model recapitulating the epilepsy phenotype. Methods: We introduced a human CABP4 missense mutation into the C57BL/6J mouse genome and generated a knock-in strain carrying a glycine-to-aspartic acid mutation in the gene. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot were performed to evaluate the CABP4 expression level. Slice patch-clamp recording was carried out on pyramidal cells of prefrontal cortex layers II and III. Results: The CABP4G155D/+ mutant mice were viable and born at an expected Mendelian ratio. Surprisingly, the heterozygous (HE) mice did not display either an abnormal appearance or an overt seizure phenotype, and there was no statistically significant difference between the HE and wild-type (WT) mice in terms of overall messenger RNA (mRNA) and protein expression. However, the HE mutant mice showed an imbalance in the amount of protein expressed in the brain regions. Additionally, the patch-clamp recordings from the HE mouse layer II/III cortical pyramidal cells revealed an increase in the frequency of micro-excitatory post-synaptic currents (mEPSCs) but no change in the amplitude was observed. Conclusions: The findings of this study suggest that the CABP4 p.G155D mutation might be one of the mechanisms underlying seizure onset.

10.
Mol Cell Biol ; 44(5): 165-177, 2024.
Article in English | MEDLINE | ID: mdl-38758542

ABSTRACT

Systemic amyloid A (AA) amyloidosis, which is considered the second most common form of systemic amyloidosis usually takes place several years prior to the occurrence of chronic inflammation, generally involving the kidney. Activated HSF1, which alleviated unfolded protein response (UPR) or enhanced HSR, is the potential therapeutic target of many diseases. However, the effect of HSF1 on AA amyloidosis remains unclear. This study focused on evaluating effect of HSF1 on AA amyloidosis based on HSF1 knockout mice. As a result, aggravated amyloid deposits and renal dysfunction have been found in HSF1 knockout mice. In progressive AA amyloidosis, HSF1 deficiency enhances serum amyloid A production might to lead to severe AA amyloid deposition in mice, which may be related to deactivated unfolded protein response as well as enhanced inflammation. Thus, HSF1 plays a significant role on UPR related pathway impacting AA amyloid deposition, which can mitigate amyloidogenic proteins from aggregation pathologically and is the possible way for intervening with the pathology of systemic amyloid disorder. In conclusion, HSF1 could not only serve as a new target for AA amyloidosis treatment in the future, but HSF1 knockout mice also can be considered as a valuable novel animal model for renal AA amyloidosis.


Subject(s)
Amyloidosis , Heat Shock Transcription Factors , Kidney , Mice, Knockout , Unfolded Protein Response , Animals , Amyloidosis/metabolism , Amyloidosis/genetics , Amyloidosis/pathology , Heat Shock Transcription Factors/metabolism , Heat Shock Transcription Factors/genetics , Mice , Kidney/pathology , Kidney/metabolism , Serum Amyloid A Protein/metabolism , Serum Amyloid A Protein/genetics , Disease Models, Animal , Kidney Diseases/metabolism , Kidney Diseases/pathology , Kidney Diseases/genetics , Kidney Diseases/etiology , Mice, Inbred C57BL
11.
Am J Physiol Lung Cell Mol Physiol ; 327(2): L250-L257, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38810241

ABSTRACT

In the field of pulmonary hypertension (PH), a well-established protocol to induce severe angioproliferation in rats (SuHx) involves combining the VEGF-R inhibitor Sugen 5416 (SU5416) with 3 wk of hypoxia (Hx). In addition, injecting monocrotaline (MCT) into rats can induce inflammation and shear stress in the pulmonary vasculature, leading to neointima-like remodeling. However, the SuHx protocol in mice is still controversial, with some studies suggesting it yields higher and reversible PH than Hx alone, possibly due to species-dependent hypoxic responses. To establish an alternative rodent model of PH, we hypothesized mice would be more sensitive to hemodynamic changes secondary to shear stress compared with Hx. We attempted to induce severe and irreversible PH in mice by combining SU5416 or monocrotaline pyrrole (MCTP) injection with pneumonectomy (PNx). However, our experiments showed SU5416 administered to mice at various time points after PNx did not result in severe PH. Similarly, mice injected with MCTP after PNx (MPNx) showed no difference in right ventricular systolic pressure or exacerbated pulmonary vascular remodeling compared with PNx alone. These findings collectively demonstrate that C57/B6 mice do not develop severe and persistent PH when PNx is combined with either SU5416 or MCTP.NEW & NOTEWORTHY We attempted to establish a mouse model of severe and irreversible pulmonary hypertension by substituting hypoxia with pulmonary overcirculation. To do so, we treated mice with either SU5416 or monocrotaline pyrrole after pneumonectomy and performed hemodynamic evaluations for PH. Despite this "two-hit" protocol, mice did not exhibit signs of severe pulmonary hypertension or exacerbated pulmonary vascular remodeling compared with PNx alone.


Subject(s)
Hypertension, Pulmonary , Indoles , Mice, Inbred C57BL , Monocrotaline , Pneumonectomy , Pyrroles , Animals , Monocrotaline/analogs & derivatives , Pyrroles/pharmacology , Hypertension, Pulmonary/pathology , Hypertension, Pulmonary/chemically induced , Indoles/pharmacology , Mice , Male , Disease Models, Animal , Hypoxia/pathology , Vascular Remodeling/drug effects , Lung/pathology , Lung/drug effects , Lung/metabolism , Hemodynamics/drug effects
12.
Gut Pathog ; 16(1): 27, 2024 May 12.
Article in English | MEDLINE | ID: mdl-38735967

ABSTRACT

BACKGROUND: Enhancing our understanding of the underlying influences of medical interventions on the microbiome, resistome and mycobiome of preterm born infants holds significant potential for advancing infection prevention and treatment strategies. We conducted a prospective quasi-intervention study to better understand how antibiotics, and probiotics, and other medical factors influence the gut development of preterm infants. A controlled neonatal mice model was conducted in parallel, designed to closely reflect and predict exposures. Preterm infants and neonatal mice were stratified into four groups: antibiotics only, probiotics only, antibiotics followed by probiotics, and none of these interventions. Stool samples from both preterm infants and neonatal mice were collected at varying time points and analyzed by 16 S rRNA amplicon sequencing, ITS amplicon sequencing and whole genome shotgun sequencing. RESULTS: The human infant microbiomes showed an unexpectedly high degree of heterogeneity. Little impact from medical exposure (antibiotics/probiotics) was observed on the strain patterns, however, Bifidobacterium bifidum was found more abundant after exposure to probiotics, regardless of prior antibiotic administration. Twenty-seven antibiotic resistant genes were identified in the resistome. High intra-variability was evident within the different treatment groups. Lastly, we found significant effects of antibiotics and probiotics on the mycobiome but not on the microbiome and resistome of preterm infants. CONCLUSIONS: Although our analyses showed transient effects, these results provide positive motivation to continue the research on the effects of medical interventions on the microbiome, resistome and mycobiome of preterm infants.

13.
Magn Reson Med Sci ; 2024 May 25.
Article in English | MEDLINE | ID: mdl-38797683

ABSTRACT

PURPOSE: We aimed to investigate the changes in intravoxel incoherent motion (IVIM) and diffusion parameters between in vivo and post-mortem conditions and the time dependency of these parameters using two different mouse tumor models with different vessel lumen sizes. METHODS: Six B16 and six MDA-MB-231 xenograft mice were scanned using 7 Tesla MRI under both in vivo/post-mortem conditions. Diffusion weighted imaging with 17 b-values (0-3000 s/mm2) were obtained at two diffusion times (9 and 27.6 ms). The shifted apparent diffusion coefficient (sADC) using 2 b-values (200 and 1500 s/mm2), non-Gaussian diffusion and IVIM parameters (ADC0, K, fIVIM) were estimated at each of the diffusion times. The results were evaluated by repeated measures two-way analysis of variance and post hoc Bonferroni test. RESULTS: In B16 tumors, fIVIM significantly decreased with post-mortem conditions (from 12.6 ± 6.5% to 5.2 ± 1.9%, P < 0.05 at long diffusion time; from 11.0 ± 2.4% to 4.6 ± 2.7%, P < 0.05 at short diffusion time). In MDA-MB-231 tumors, fIVIM also significantly decreased (from 8.8 ± 3.8% to 2.6 ± 1.1%, P < 0.05 at long; from 7.9 ± 5.4% to 2.9 ± 1.1%, P < 0.05 at short). No diffusion time dependency was observed (P = 0.59 in B16 and P = 0.77 in MDA-MB-231). The sADC and ADC0 values tended to decrease and the K value tended to increase after sacrificing and when increasing the diffusion time. CONCLUSION: The fIVIM values dropped after sacrificing, confirming that IVIM MRI is a promising quantitative parameter to evaluate blood microcirculation. The presence of residual post-mortem fIVIM values suggested that the influence of water molecule diffusion in the blood lumen may contribute to the IVIM effect. Diffusion MRI parameter's time dependency and those changes after sacrificing could possibly provide additional insights into diffusion hindrance mechanisms.

14.
Front Immunol ; 15: 1345515, 2024.
Article in English | MEDLINE | ID: mdl-38469292

ABSTRACT

Background: Chronic Lymphocytic Leukemia (CLL) is characterized by the expansion of CD19+ CD5+ B cells but its origin remains debated. Mutated CLL may originate from post-germinal center B cells and unmutated CLL from CD5+ mature B cell precursors. Irrespective of precursor types, events initiating CLL remain unknown. The cytokines BAFF and APRIL each play a significant role in CLL cell survival and accumulation, but their involvement in disease initiation remains unclear. Methods: We generated novel CLL models lacking BAFF or APRIL. In vivo experiments were conducted to explore the impact of BAFF or APRIL loss on leukemia initiation, progression, and dissemination. Additionally, RNA-seq and quantitative real-time PCR were performed to unveil the transcriptomic signature influenced by BAFF in CLL. The direct role of BAFF in controlling the expression of tumor-promoting genes was further assessed in patient-derived primary CLL cells ex-vivo. Results: Our findings demonstrate a crucial role for BAFF, but not APRIL, in the initiation and dissemination of CLL cells. In the absence of BAFF or its receptor BAFF-R, the TCL1 transgene only increases CLL cell numbers in the peritoneal cavity, without dissemination into the periphery. While BAFF binding to BAFF-R is dispensable for peritoneal CLL cell survival, it is necessary to activate a tumor-promoting gene program, potentially linked to CLL initiation and progression. This direct role of BAFF in controlling the expression of tumor-promoting genes was confirmed in patient-derived primary CLL cells ex-vivo. Conclusions: Our study, involving both mouse and human CLL cells, suggests that BAFF might initiate CLL through mechanisms independent of cell survival. Combining current CLL therapies with BAFF inhibition could offer a dual benefit by reducing peripheral tumor burden and suppressing transformed CLL cell output.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Animals , Humans , Mice , B-Lymphocytes/metabolism , Cell Survival/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/pathology
15.
Int J Pharm ; 656: 124029, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38527566

ABSTRACT

α-Bisabolol (αBIS), a plant-derived compound with anti-inflammatory properties, is potentially a therapeutic agent for Atopic dermatitis. However, its poor water solubility and photoinstability limit its topical application. Therefore, the present study, aimed to develop cationic polymeric nanocapsules of αBIS to improve its skin delivery, photostability, and therapeutic efficacy. The αBIS-loaded nanocapsules were prepared using the solvent displacement technique. A Box-Behnken (BB) design was employed to statistically optimize formulation variables and αBIS-loaded nanocapsules characterized by particle size, surface charge and encapsulation efficiency. The optimal formulation was selected, and the spherical shape of the nanocapsules was confirmed by scanning electron microscopy (SEM). Furthermore, hydrogel containing αBIS-loaded nanocapsules was prepared by thickening of nanocapsule suspension with Carbopol 934 and evaluated for rheology, in vitro drug release and skin permeation. Furthermore, a mice model of atopic dermatitis was used to evaluate the anti-inflammatory potential of the hydrogels. The optimal formulation displayed a spherical morphology under scanning electron microscopy (SEM) with an optimum particle size of 133.00 nm, polydispersity index (PDI) of 0.12, high EE% of 93 %, and improved optical stability of αBIS in the prepared nanocapsules compared to the free drug. The nano-based hydrogels demonstrated non-Newtonian pseudoplastic behavior and an increased αBIS in vitro release profile without causing skin irritation in rabbits. Drug retention within the dermis and epidermis layers significantly surpassed that of drug-free hydrogel. Moreover, in vivo histopathological studies and myeloperoxidase (MPO) enzyme activity, revealed that hydrogel containing bisabolol nanocapsules exhibited The best anti-inflammatory effect. The results showed that hydrogels containing bisabolol nanocapsules markedly alleviated dermatitis-related inflammation and reduced skin thickness in Balb/c mice. Our findings support nanocapsules as an effective drug delivery system to enhance αBIS stability, bioavailability, and therapeutic efficacy in AD treatment.


Subject(s)
Anti-Inflammatory Agents , Dermatitis, Atopic , Drug Liberation , Hydrogels , Mice, Inbred BALB C , Monocyclic Sesquiterpenes , Nanocapsules , Animals , Hydrogels/chemistry , Hydrogels/administration & dosage , Nanocapsules/chemistry , Dermatitis, Atopic/drug therapy , Monocyclic Sesquiterpenes/administration & dosage , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Skin Absorption/drug effects , Particle Size , Disease Models, Animal , Mice , Administration, Cutaneous , Male , Skin/drug effects , Skin/metabolism , Skin/pathology , Sesquiterpenes/administration & dosage , Sesquiterpenes/chemistry , Sesquiterpenes/pharmacology , Sesquiterpenes/pharmacokinetics , Female
16.
Int J Mol Sci ; 25(5)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38474310

ABSTRACT

Obstructive sleep apnea (OSA) is characterized by intermittent repeated episodes of hypoxia-reoxygenation. OSA is associated with cerebrovascular consequences. An enhanced blood-brain barrier (BBB) permeability has been proposed as a marker of those disorders. We studied in mice the effects of 1 day and 15 days intermittent hypoxia (IH) exposure on BBB function. We focused on the dorsal part of the hippocampus and attempted to identify the molecular mechanisms by combining in vivo BBB permeability (Evans blue tests) and mRNA expression of several junction proteins (zona occludens (ZO-1,2,3), VE-cadherin, claudins (1,5,12), cingulin) and of aquaporins (1,4,9) on hippocampal brain tissues. After 15 days of IH exposure we observed an increase in BBB permeability, associated with increased mRNA expressions of claudins 1 and 12, aquaporins 1 and 9. IH seemed to increase early for claudin-1 mRNA expression as it doubled with 1 day of exposure and returned near to its base level after 15 days. Claudin-1 overexpression may represent an immediate response to IH exposure. Then, after 15 days of exposure, an increase in functional BBB permeability was associated with enhanced expression of aquaporin. These BBB alterations are possibly associated with a vasogenic oedema that may affect brain functions and accelerate neurodegenerative processes.


Subject(s)
Aquaporins , Sleep Apnea, Obstructive , Mice , Animals , Blood-Brain Barrier/metabolism , Claudin-1/metabolism , Disease Models, Animal , Hypoxia/metabolism , Claudins/metabolism , Sleep Apnea, Obstructive/metabolism , Permeability , Aquaporins/metabolism , RNA, Messenger/metabolism , Claudin-5/metabolism
17.
Biomedicines ; 12(2)2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38397855

ABSTRACT

Pseudomonas aeruginosa (P. aeruginosa) is a leading cause of nosocomial infections associated with a high mortality rate and represents a serious threat to human health and the increasing frequency of antimicrobial resistance. Cancer patients are more vulnerable to invasive infection due to ulcerative lesions in mucosal surfaces and immune suppression secondary to chemotherapy. In our in vitro study, we observed that probiotics have the potential to yield beneficial effects on intestinal epithelial cells infected with P. aeruginosa. Additionally, probiotics were found to confer advantageous effects on the innate immunity of mice suffering from Salmonella-induced colitis. As a result, we sought to investigate the impact of probiotics on gut-derived P. aeruginosa sepsis induced by chemotherapy. Following chemotherapy, gut-derived P. aeruginosa sepsis was induced in female C57BL/6 mice aged 6-8 weeks, which were raised under specific-pathogen-free (SPF) conditions in an animal center. Prior to the induction of the sepsis model, the mice were administered 1 × 108 colony-forming units (CFU) of the probiotics, namely Lactobacillus rhamnosus GG (LGG) and Bifidobacterium longum (BL) via oral gavage. We observed that LGG or BL amplified the inflammatory mRNA expression in mice undergoing chemotherapy and suffering from gut-derived P. aeruginosa sepsis. This led to a heightened severity of colitis, as indicated by histological examination. Meanwhile, there was a notable decrease in the expression of antimicrobial peptide mRNA along with reduced levels of zonulin and claudin-2 protein staining within mucosal tissue. These alterations facilitated the translocation of bacteria to the liver, spleen, and bloodstream. To our astonishment, the introduction of probiotics exacerbated gut-derived P. aeruginosa sepsis in mice undergoing chemotherapy. Conclusively, we must be prudent when using probiotics in mice receiving chemotherapy complicated with gut-derived P. aeruginosa sepsis.

18.
Chem Biol Interact ; 393: 110931, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38423378

ABSTRACT

The study investigates the anticancer activity of mefenamic acid against osteosarcoma, shedding light on its underlying mechanisms and therapeutic potential. Mefenamic acid exhibited robust inhibitory effects on the proliferation of MG-63, HOS, and H2OS osteosarcoma cells in a dose-dependent manner. Moreover, mefenamic acid induced cellular toxicity in MG63 cells, as evidenced by LDH leakage, reflecting its cytotoxic impact. Furthermore, mefenamic acid effectively suppressed the migration and invasion of MG-63 cells. Mechanistically, mefenamic acid induced apoptosis in MG-63 cells through mitochondrial depolarization, activation of caspase-dependent pathways, and modulation of the Bcl-2/Bax axis. Additionally, mefenamic acid promoted autophagy and inhibited the PI3K/Akt/mTOR pathway, further contributing to its antitumor effects. The molecular docking studies provide compelling evidence that mefenamic acid interacts specifically and strongly with key proteins in the PI3K/AKT/mTOR pathway, suggesting a novel mechanism by which mefenamic acid could exert anti-osteosarcoma effects. In vivo studies using a xenograft mouse model demonstrated significant inhibition of MG-63 tumor growth without adverse effects, supporting the translational potential of mefenamic acid as a safe and effective therapeutic agent against osteosarcoma. Immunohistochemistry staining corroborated the in vivo findings, highlighting mefenamic acid's ability to suppress tumor proliferation and inhibit the PI3K/AKT/mTOR pathway within the tumor microenvironment. Collectively, these results underscore the promising therapeutic implications of mefenamic acid in combating osteosarcoma, warranting further investigation for clinical translation and development.


Subject(s)
Bone Neoplasms , Osteosarcoma , Humans , Animals , Mice , Mefenamic Acid/pharmacology , Mefenamic Acid/therapeutic use , Signal Transduction , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Heterografts , Molecular Docking Simulation , Osteosarcoma/metabolism , TOR Serine-Threonine Kinases/metabolism , Cell Proliferation , Apoptosis , Cell Line, Tumor , Bone Neoplasms/metabolism , Tumor Microenvironment
19.
Article in English | MEDLINE | ID: mdl-38299562

ABSTRACT

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) selectively induces apoptosis of sensitive cancer cells, including colorectal cancer (CRC). Due to its short biological half-life after intravenous administration and related clinical ineffectiveness, novel formulations of TRAIL need to be developed. Here we propose Lactococcus lactis bacteria as a vehicle for local delivery of human soluble TRAIL (hsTRAIL) in CRC. The use of common probiotics targeting guts as carriers for TRAIL could ensure its sustained release at the tumor site and extend the duration of its activity. We have already engineered hsTRAIL-secreting L.lactis bacteria and showed their effectiveness in elimination of human CRC cells in vitro and in vivo in a mouse subcutaneous model. Here, L.lactis(hsTRAIL+) were administered by gastric gavage to SCID mice with orthotopically developed HCT116 tumor in cecum, in monotherapy or in combination with metformin (MetF), already shown to enhance the hsTRAIL anti-tumor activity in subcutaneous CRC model. Oral administration of L.lactis(hsTRAIL+) resulted in significant progression of HCT116 tumors and shortening of the colon crypts. Secretion of hsTRAIL in the colon was accompanied by infiltration of the primary tumor with M2-macrophages, while MetF promoted transient colonization of the gut by L.lactis. Our study indicates that L.lactis bacteria after oral administration enable delivery of biologically active hsTRAIL to colon, however its potential therapeutic effect in CRC treatment is abolished by its pro-tumorigenic signalling, leading to the recruitment of M2-macrophages and tumor growth promotion.


Subject(s)
Colorectal Neoplasms , Lactococcus lactis , Mice , Animals , Humans , Mice, SCID , Ligands , Apoptosis , Colorectal Neoplasms/therapy
20.
Int Immunopharmacol ; 130: 111681, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38368771

ABSTRACT

Immunotherapy resistance conducts the main reason for failure of PD-1-based immune checkpoint inhibitors (ICIs) in patients with hepatocellular carcinoma (HCC). This study aims to clarify the mechanism of nature kill cells (NK) depletion in immunotherapy resistance of HCC. Cancerous /paracancerous tissues and peripheral blood (PB) of 55 HCC patients were collected and grouped according to differentiation degree, FCM, IHC and lymphocyte culture drug intervention experiments were used to determine NK cell depletion degree. Furthermore, a mouse model of HCC in situ was constructed and divided into different groups according to intervention measures of ICIs. Immunofluorescence thermography was used to observe changes in tumor burden. NK cells in cancerous tissues significantly up-regulated TIGIT expression (P < 0.001). Intervention experiments revealed that TIGIT and PD-1 expression decreased gradually with increased PD-1 inhibitor dose in moderately-highly differentiated patients (P < 0.05). Animal experiment showed that tumors proliferation in experimental group was inhibited after PD-1 blockage, WB indicated that ICIs decreased TIGIT and PVRL1 protein expression while increased CD226 and PVRL3 protein expression. We concluded that TIGIT+NK cells competitively bind to PVR with CD226 and promote NK cell depletion. Anti-PD-1 decreases PVRL1 expression through PD-1/PD-L1 pathway, reducing the PVR/TIGIT inhibitory signal pathway, and enhancing function of PVR/CD226 activation signal.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Mice , Humans , Carcinoma, Hepatocellular/drug therapy , Nectins , Programmed Cell Death 1 Receptor/metabolism , Liver Neoplasms/drug therapy , Immunotherapy , Receptors, Immunologic/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL