Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Language
Publication year range
1.
Front Immunol ; 13: 991346, 2022.
Article in English | MEDLINE | ID: mdl-36177008

ABSTRACT

Inflammatory Bowel Disease (IBD) is characterized by chronic inflammation of the gastrointestinal tract that associates with, among others, increased risk of colorectal cancer. There is a growing evidence that miRNAs have important roles in pathological processes, such as inflammation or carcinogenesis. Understanding the molecular mechanisms such as alterations in microRNAome upon chronic intestinal inflammation is critical for understanding the exact pathomechanism of IBD. Hence, we conducted a genome wide microRNAome analysis by applying miRNA-Seq in a rat model of experimental colitis, validated the data by QPCR, examined the expression of a selection of precursor and mature miRNAs, performed in depth biological interpretation using Ingenuity Pathway Analysis and tested the obtained results on samples derived from human patients. We identified specific, interdependent expression pattern of activator/repressor transcription factors, miRNAs and their direct targets in the inflamed colon samples. Particularly, decreased expression of the miR-200 family members (miR-200a/b/c,-141, and -429) and miR-27b correlates with the reduced level of their enhancers (HNF1B, E2F1), elevated expression of their repressors (ZEB2, NFKB1) and increased expression of their target genes (ZEB2, RUNX1). Moreover, the marked upregulation of six miR-27b target genes (IFI16, GCA, CYP1B1, RUNX1, MEF2C and MMP13) in the inflamed colon tissues is a possible direct consequence of the lack of repression due to the downregulated miRNA-27b expression. Our data indicate that changes in microRNAome are associated with the pathophysiology of IBD, consequently, microRNAs offer potential targets for the diagnosis, prognosis and treatment of IBD.


Subject(s)
Inflammatory Bowel Diseases , MicroRNAs , Animals , Colon/pathology , Core Binding Factor Alpha 2 Subunit , Humans , Inflammation/metabolism , Inflammatory Bowel Diseases/metabolism , Matrix Metalloproteinase 13/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Rats
2.
J Investig Allergol Clin Immunol ; 32(6): 471-478, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-34489228

ABSTRACT

BACKGROUND AND OBJECTIVES: Asthma is a chronic inflammatory condition of the airways with a complex pathophysiology. Stratification of asthma subtypes into phenotypes and endotypes should move the field forward, making treatment more effective and personalized. Eosinophils are the key inflammatory cells involved in severe eosinophilic asthma. Given the health threat posed by eosinophilic asthma, there is a need for reliable biomarkers to identify affected patients and treat them properly with novel biologics. microRNAs (miRNAs) are a promising diagnostic tool. The aim of this study was to identify serum miRNAs that can phenotype asthma patients. METHODS: Serum miRNAs of patients with eosinophilic asthma (N=40) and patients with noneosinophilic asthma (N=36) were evaluated using next-generation sequencing, specifically miRNAs-seq, and selected miRNAs were validated using RT-qPCR. Pathway enrichment analysis of deregulated miRNAs was performed. RESULTS: Next-generation sequencing revealed 15 miRNAs that were expressed differentially between eosinophilic and noneosinophilic asthma patients, although no differences were observed in the miRNome between atopic and nonatopic asthma patients. Of the 15 miRNAs expressed differentially between eosinophilic and noneosinophilic asthma patients, hsa-miR-26a-1-3p and hsa-miR-376a-3p were validated by RT-qPCR. Expression levels of these 2 miRNAs were higher in eosinophilic than in noneosinophilic asthma patients. Furthermore, expression values of hsa-miR-26a-1-3p correlated inversely with peripheral blood eosinophil count, and hsa-miR-376a-3p expression values correlated with FeNO values and the number of exacerbations. Additionally, in silico pathway enrichment analysis revealed that these 2 miRNAs regulate signaling pathways associated with the pathogenesis of asthma. CONCLUSIONS: hsa-miR-26a-1-3p and hsa-miR-376a-3p could be used to differentiate between eosinophilic and noneosinophilic asthma.


Subject(s)
Asthma , MicroRNAs , Humans , MicroRNAs/genetics , High-Throughput Nucleotide Sequencing , Biomarkers , Phenotype , Asthma/diagnosis , Asthma/genetics
3.
J. investig. allergol. clin. immunol ; 32(6): 471-478, 2022. graf
Article in English | IBECS | ID: ibc-213398

ABSTRACT

Background: Asthma is a chronic inflammatory condition of the airways with a complex pathophysiology. Stratification of asthma subtypes into phenotypes and endotypes should move the field forward, making treatment more effective and personalized. Eosinophils are the key inflammatory cells involved in severe eosinophilic asthma. Given the health threat posed by eosinophilic asthma, there is a need for reliable biomarkers to identify affected patients and treat them properly with novel biologics. microRNAs (miRNAs) are a promising diagnostic tool. Objective: The aim of this study was to identify serum miRNAs that can phenotype asthma patients. Methods: Serum miRNAs of patients with eosinophilic asthma (N=40) and patients with noneosinophilic asthma (N=36) were evaluated using next-generation sequencing, specifically miRNAs-seq, and selected miRNAs were validated using RT-qPCR. Pathway enrichment analysis of deregulated miRNAs was performed. Results: Next-generation sequencing revealed 15 miRNAs that were expressed differentially between eosinophilic and noneosinophilic asthma patients, although no differences were observed in the miRNome between atopic and nonatopic asthma patients. Of the 15 miRNAs expressed differentially between eosinophilic and noneosinophilic asthma patients, hsa-miR-26a-1-3p and hsa-miR-376a-3p were validated by RT-qPCR. Expression levels of these 2 miRNAs were higher in eosinophilic than in noneosinophilic asthma patients. Furthermore, expression values of hsa-miR-26a-1-3p correlated inversely with peripheral blood eosinophil count, and hsa-miR-376a-3p expression values correlated with FeNO values and the number of exacerbations. Additionally, in silico pathway enrichment analysis revealed that these 2 miRNAs regulate signaling pathways associated with the pathogenesis of asthma. Conclusion: hsa-miR-26a-1-3p and hsa-miR-376a-3p could be used to differentiate between eosinophilic and noneosinophilic asthma (AU)


Subject(s)
Humans , Adolescent , Young Adult , Adult , Middle Aged , Aged , MicroRNAs/blood , Asthma/blood , Asthma/genetics , Phenotype , Reverse Transcriptase Polymerase Chain Reaction , Biomarkers/blood , Cohort Studies
4.
Anim Genet ; 52(5): 598-607, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34350996

ABSTRACT

Fat deposition is an important economic trait in farm animals. However, it is difficult to genetically improve intramuscular fat deposition via trait-based cattle breeding. The main objectives of this study were to analyze the factors about beef flavor, and to detect functional microRNA (miRNA, miR) associated with intramuscular fat deposition in Yanbian cattle. Longissimus dorsi samples from six steers were separated into high- and low-fat groups (n = 3 each) based on the marbling score, and transcriptomic analysis was performed using miRNA sequencing. A total of 33 miRNAs and 38 genes were found to be differentially expressed in the high- and low-fat groups. Quantitative real-time polymerase chain reaction was performed to validate the sequencing results. Integrated miRNA-mRNA analysis revealed that miRNA-associated target genes were primarily associated with skeletal muscle development. However, some of the miRNAs (miR-424 etc.) and genes (ATF3 etc.) were also associated with fat metabolism. A targeted relationship between miR-22-3p and the WFIKKN2 gene and its involvement in adipocyte differentiation were confirmed experimentally. The study findings may provide potential candidate molecular targets for the selection of cattle with improved meat quality.


Subject(s)
Cattle/genetics , Lipid Metabolism/genetics , MicroRNAs/genetics , Muscle Development/genetics , RNA, Messenger/genetics , Adipocytes , Animals , Cells, Cultured , Male , Transcriptome
5.
Diabetes Res Clin Pract ; 165: 108251, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32531327

ABSTRACT

AIMS: Negative pressure wound therapy (NPWT) is commonly used in diabetic foot ulceration (DFU). The molecular mechanisms of NPWT action, particularly outside of the wound site, have not been described. We assessed NPWT's effect on circulating miRNA expression levels in type 2 diabetes (T2DM) patients with DFU. METHODS: We examined 34 T2DM patients treated with either NPWT (n = 24) or standard therapy (ST, n = 10). The group assignment was based on clinical criteria and local practice. Next-generation sequencing-based microRNA expression was determined on the patient's plasma collected before therapy and after 8 days. RESULTS: NPWT patients were similar to the ST group in terms of age, BMI, and HbA1c level; however, they differed by mean wound area (12.6 cm2 vs. 1.1 cm2 p = 0.0005). First, we analyzed the change of miRNA after NPWT or ST and observed an upregulation of let-7f-2 only in the NPWT group. Then, we analyzed the differential expression between NPWT and ST groups, looking at possible wound size effects. We found 12 differentially expressed miRNAs in pre-treatment comparison, including let-7f-2, while in post-treatment analysis we identified 28 miRNAs. The pathway enrichment analysis suggests that identified miRNAs may be involved in wound healing, particularly through angiogenesis. CONCLUSION: We found initial evidence that NPWT in T2DM patients with DFU affects miRNA expression in plasma. Additionally, some differences in plasma miRNA expression may be related to wound size.


Subject(s)
Circulating MicroRNA/therapeutic use , Diabetes Mellitus, Type 2/complications , Diabetic Foot/therapy , Negative-Pressure Wound Therapy/methods , Aged , Female , Humans , Male
6.
Genomics ; 112(5): 3525-3536, 2020 09.
Article in English | MEDLINE | ID: mdl-32259572

ABSTRACT

Xenopus laevis survive severe dehydration during the summer months in their natural range. MicroRNA regulate translation of target mRNAs and have shown to be differentially expressed in response to dehydration in X. laevis. During dehydration, heart rate is elevated which appears to compensate for the reduced oxygen delivery capability due to increased hematocrit. We hypothesized that microRNAs would be differentially expressed in the heart to modulate gene expression levels in response to dehydration. The present study assessed changes in the microRNAome of X. laevis heart in response to severe dehydration (30% loss of body water) using microRNA-seq. We show that target genes are enriched for RNA, DNA, and transcription factor binding activities, cardiac muscle contraction, and glycolysis/gluconeogenesis. These results suggest that microRNAs contribute to gene expression reorganization in the heart in response to dehydration, putatively supporting the increased physiological demands and ATP production needs by the heart under these conditions.


Subject(s)
Acclimatization/genetics , MicroRNAs/metabolism , Myocardium/metabolism , Xenopus laevis/genetics , Animals , Dehydration/genetics , Gene Expression Regulation , Gene Ontology , MicroRNAs/chemistry , Sequence Analysis, RNA , Xenopus laevis/metabolism
7.
Genomics ; 112(3): 2564-2571, 2020 05.
Article in English | MEDLINE | ID: mdl-32059995

ABSTRACT

Marek's disease (MD) is a lymphoproliferative disease of domestic chickens caused by a cell-associated oncogenic alpha-herpesvirus, Marek's disease virus (MDV). Clinical signs of MD include bursal/thymic atrophy, neurologic disorders, and T cell lymphomas. MiRNAs play key roles in regulation of gene expression by targeting translational suppression or mRNA degradation. MDV encodes miRNAs that are associated with viral pathogenicity and oncogenesis. In this study, we performed miRNA sequencing in the bursal tissues, non-tumorous but viral-induced atrophied lymphoid organ, from control and infected MD-resistant and susceptible chickens at 21 days post infection. In addition to some known miRNAs, a minimum of 300 novel miRNAs were identified in each group that mapped to the chicken genome with no sequence homology to existing miRNAs in chicken miRbase. Comparative analysis identified 54 deferentially expressed miRNAs between the chicken lines that might shed light on underlying mechanism of bursal atrophy and resistance or susceptibility to MD.


Subject(s)
Bursa of Fabricius/metabolism , Chickens/genetics , Marek Disease/genetics , MicroRNAs/metabolism , Animals , Disease Resistance/genetics , Genetic Predisposition to Disease , Marek Disease/metabolism , Polymerase Chain Reaction , RNA-Seq
8.
Front Genet ; 10: 1386, 2019.
Article in English | MEDLINE | ID: mdl-32117424

ABSTRACT

Bovine tuberculosis is caused by infection with Mycobacterium bovis, which can also cause disease in a range of other mammals, including humans. Alveolar macrophages are the key immune effector cells that first encounter M. bovis and how the macrophage epigenome responds to mycobacterial pathogens is currently not well understood. Here, we have used chromatin immunoprecipitation sequencing (ChIP-seq), RNA-seq and miRNA-seq to examine the effect of M. bovis infection on the bovine alveolar macrophage (bAM) epigenome. We show that H3K4me3 is more prevalent, at a genome-wide level, in chromatin from M. bovis-infected bAM compared to control non-infected bAM; this was particularly evident at the transcriptional start sites of genes that determine programmed macrophage responses to mycobacterial infection (e.g. M1/M2 macrophage polarisation). This pattern was also supported by the distribution of RNA Polymerase II (Pol II) ChIP-seq results, which highlighted significantly increased transcriptional activity at genes demarcated by permissive chromatin. Identification of these genes enabled integration of high-density genome-wide association study (GWAS) data, which revealed genomic regions associated with resilience to infection with M. bovis in cattle. Through integration of these data, we show that bAM transcriptional reprogramming occurs through differential distribution of H3K4me3 and Pol II at key immune genes. Furthermore, this subset of genes can be used to prioritise genomic variants from a relevant GWAS data set.

SELECTION OF CITATIONS
SEARCH DETAIL
...