Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters











Publication year range
1.
Biochem Biophys Res Commun ; 671: 350-356, 2023 09 03.
Article in English | MEDLINE | ID: mdl-37329658

ABSTRACT

Gallbladder carcinoma (GBC) is the most prevalent cancer of the bile tract, with unexpected GBC accounting for almost half of all GBC cases in some tertiary medical centers. Although the involvement of microcystin-leucine-arginine (MC-LR) in the development of intrahepatic cholangiocarcinoma has been established, there is a paucity of data regarding its association with GBC. The present study aims to investigate whether MC-LR level in the gallbladder of patients is associated with GBC development and, if so, to characterize the underlying mechanism in GBC cells. Our clinical data revealed that MC-LR level was significantly increased in GBC patients compared to patients with gallbladder stones only (P = 0.009). Moreover, our findings demonstrated that MC-LR could promote the proliferation and metastasis of human GBC cell lines. Furthermore, ELAC2 was identified as a critical mRNA involved in GBC progression through RNA sequencing. Collectively, our study suggests that MC-LR might be involved in the development of GBC by modulating the expression of ELAC2.


Subject(s)
Arginine , Gallbladder Neoplasms , Humans , Leucine , Gallbladder Neoplasms/genetics , Microcystins , Cell Line , Cell Proliferation , Cell Line, Tumor , Neoplasm Proteins
2.
J Inflamm Res ; 16: 1979-1993, 2023.
Article in English | MEDLINE | ID: mdl-37193070

ABSTRACT

Background: Microcystin-leucine-arginine (MC-LR) is the most abundant and most toxic variant of microcystin isomers. Various experiments have clearly shown that MC-LR has hepatotoxicity and carcinogenicity, but there are relatively few studies on its immune damage effect. In addition, numerous studies have shown that microRNAs (miRNAs) are involved in a wide range of biological processes. Do miRNAs also play a role in inflammatory response caused by microcystin exposure? This is the question to be answered in this study. Moreover, this study can also provides experimental evidence for the significance of miRNA applications. Objective: To investigate the effect of MC-LR on the expressions of miR-146a and pro/anti-inflammatory cytokines in human peripheral blood mononuclear cells (PBMCs) and to further explore the role of miR-146a in the inflammatory responses caused by MC-LR. Methods: Serum samples from 1789 medical examiners were collected and detect the concentrations of MCs, and 30 serum samples with concentrations of MCs around P25, P50, and p75 were randomly selected for the detection of inflammatory factors. PBMCs from fresh peripheral blood extracted from these 90 medical examiners were subsequently tested for relative miR-146a expression. In vitro, the MC-LR were exposed to the PBMCs to detect the levels of inflammatory factors as well as the relative expression of miR-146a-5p. Then, a miRNA transfection assay was performed to verify the regulation of inflammatory factors by miR-146a-5p. Results: In population samples, the expression of inflammatory factors and miR-146a-5p increased with increasing MCs concentration. In vitro experiments showed that the expression of inflammatory factors and miR-146a-5p in PBMCs increased with MC-LR exposure time or exposure dose too. In addition, inhibiting the expression of miR-146a-5p in PBMCs reduced inflammatory factor levels. Conclusion: miR-146a-5p exerts a promoting effect on the MC-LR-induced inflammatory response by positively regulating inflammatory factor levels.

3.
Ecotoxicol Environ Saf ; 252: 114592, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36731181

ABSTRACT

Microcystin-LR (MC-LR), one of aquatic environmental contaminants with reproductive toxicity produced by cyanobacterial blooms, but its toxic effects and mechanisms on the ovary are not fully understood. Here, proteomic techniques and molecular biology experiments were performed to study the potential mechanism of MC-LR-caused ovarian toxicity. Results showed that protein expression profile of ovarian granulosa cells (KK-1) was changed by 17 µg/mL MC-LR exposure. Comparing with the control group, 118 upregulated proteins as well as 97 downregulated proteins were identified in MC-LR group. Function of differentially expressed proteins was found to be enriched in pathways related to adherent junction, such as cadherin binding, cell-cell junction, cell adhesion and focal adherens. Furthermore, in vitro experiments, MC-LR significantly downregulated the expression levels of proteins associated with adherent junction (ß-catenin, N-cadherin, and α-catenin) as well as caused cytoskeletal disruption in KK-1 cells (P < 0.05), indicating that the adherent junction was damaged. Results of in vivo experiments have shown that after 14 days of acute MC-LR exposure (40 µg/kg), damaged adherent junction and an increased number of atretic follicles were observed in mouse ovaries. Moreover, MC-LR activated JNK, an upstream regulator of adherent junction proteins, in KK-1 cells and mouse ovarian tissues. In contrast, JNK inhibition alleviated MC-LR-induced adherent junction damage in vivo and in vitro, as well as the number of atretic follicles. Taken together, findings from the present study indicated that JNK is involved in MC-LR-induced granulosa cell adherent junction damage, which accelerated follicular atresia. Our study clarified a novel mechanism of MC-LR-caused ovarian toxicity, providing a theoretical foundation for protecting female reproductive health from environmental pollutants.


Subject(s)
Follicular Atresia , Proteomics , Animals , Female , Mice , Granulosa Cells , Microcystins/toxicity , MAP Kinase Kinase 4/metabolism
4.
J Environ Sci (China) ; 127: 69-81, 2023 May.
Article in English | MEDLINE | ID: mdl-36522098

ABSTRACT

Microcystin-leucine-arginine (MC-LR) is positively linked with multiple cancers in humans. However, the association between MC-LR and the risk and prognosis of prostate cancer has not been conducted in epidemiological studies. No reported studies have linked MC-LR exposure to the poor prognosis of prostate cancer by conducting experimental studies. The content of MC-LR was detected in most of the aquatic food in wet markets and supermarkets in Nanjing and posed a health risk for consumers. MC-LR levels in both prostate cancer tissues and serum were significantly higher than controls. The adjusted odds ratio (OR) for prostate cancer risk by serum MC-LR was 1.75 (95%CI: 1.21-2.52) in the whole subjects, and a positive correlation between MC-LR and advanced tumor stage was observed. Survival curve analysis indicated patients with higher MC-LR levels in tissues exhibited poorer overall survival. Human, animal, and cell studies confirmed that MC-LR exposure increases the expression of estrogen receptor-α (ERα) and promotes epithelial-mesenchymal transition (EMT) in prostate cancer. Moreover, MC-LR-induced decreased E-cadherin levels, increased vimentin levels, and increased migratory and invasive capacities of prostate cancer cells were markedly suppressed upon ERα knockdown. MC-LR-induced xenograft tumor growth and lung metastasis in BALB/c nude mice can be effectively alleviated with ERα knockdown. Our data demonstrated that MC-LR upregulated vimentin and downregulated E-cadherin through activating ERα, promoting migration and invasion of prostate cancer cells. Our findings highlight the role of MC-LR in prostate cancer, providing new perspectives to understand MC-LR-induced prostatic toxicity.


Subject(s)
Microcystins , Prostatic Neoplasms , Mice , Male , Animals , Humans , Microcystins/toxicity , Estrogen Receptor alpha , Vimentin , Mice, Nude , Cadherins , Case-Control Studies
5.
Oncol Rep ; 49(1)2023 Jan.
Article in English | MEDLINE | ID: mdl-36453240

ABSTRACT

Microcystin­leucine arginine (MC­LR) is an environmental toxin produced by cyanobacteria and is considered to be a potent carcinogen. However, to the best of our knowledge, the effect of MC­LR on colorectal cancer (CRC) cell proliferation has never been studied. The aim of the present study was to investigate the effect of MC­LR on CRC cell proliferation and the underlying mechanisms. Firstly, a Cell Counting Kit­8 (CCK­8) assay was conducted to determine cell viability at different concentrations, and 50 nM MC­LR was chosen for further study. Subsequently, a longer CCK­8 assay and a cell colony formation assay showed that MC­LR promoted SW620 and HT29 cell proliferation. Furthermore, western blotting analysis showed that MC­LR significantly upregulated protein expression of PI3K, p­Akt (Ser473), p­GSK3ß (Ser9), ß­catenin, c­myc and cyclin D1, suggesting that MC­LR activated the PI3K/Akt and Wnt/ß­catenin pathways in SW620 and HT29 cells. Finally, the pathway inhibitors LY294002 and ICG001 were used to validate the role of the PI3K/Akt and Wnt/ß­catenin pathways in MC­LR­accelerated cell proliferation. The results revealed that MC­LR activated Wnt/ß­catenin through the PI3K/Akt pathway to promote cell proliferation. Taken together, these data showed that MC­LR promoted CRC cell proliferation by activating the PI3K/Akt/Wnt/ß­catenin pathway. The present study provided a novel insight into the toxicological mechanism of MC­LR.


Subject(s)
Colorectal Neoplasms , beta Catenin , Humans , Leucine/pharmacology , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Microcystins/toxicity , Arginine , Cell Proliferation , Receptor Protein-Tyrosine Kinases
6.
Environ Toxicol ; 38(2): 343-358, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36288207

ABSTRACT

Environmental cyanotoxin exposure may be a trigger of testicular cancer. Activation of PI3K/AKT/mTOR signaling pathway is the critical molecular event in testicular carcinogenesis. As a widespread cyanotoxin, microcystin-leucine arginine (MC-LR) is known to induce cell malignant transformation and tumorigenesis. However, the effects of MC-LR on the regulatory mechanism of PI3K/AKT/mTOR pathway in seminoma, the most common testicular tumor, are unknown. In this study, mouse spermatogonia cell line (GC-1) and nude mice were used to investigate the effects and mechanisms of MC-LR on the malignant transformation of spermatogonia by nude mouse tumorigenesis assay, cell migration invasion assay, western blot, and cell cycle assay, and so forth. The results showed that, after continuous exposure to environmentally relevant concentrations of MC-LR (20 nM) for 35 generations, the proliferation, migration, and invasion abilities of GC-1 cells were increased by 120%, 340%, and 370%, respectively. In nude mice, MC-LR-treated GC-1 cells formed tumors with significantly greater volume (0.998 ± 0.768 cm3 ) and weight (0.637 ± 0.406 g) than the control group (0.067 ± 0.039 cm3 ; 0.094 ± 0.087 g) (P < .05). Furthermore, PI3K inhibitor Wortmannin inhibited the PI3K/AKT/mTOR pathway and its downstream proteins (c-MYC, CDK4, CCND1, and MMP14) activated by MC-LR. Blocking PI3K alleviated MC-LR-induced cell cycle disorder and malignant proliferation, migration and invasive of GC-1 cells. Altogether, our findings suggest that MC-LR can induce malignant transformation of mouse spermatogonia, and the PI3K/AKT/mTOR pathway-mediated cell cycle dysregulation may be an important target for malignant proliferation. This study provides clues to further reveal the etiology and pathogenesis of seminoma.


Subject(s)
Cell Cycle , Seminoma , Spermatogonia , Testicular Neoplasms , Animals , Male , Mice , Arginine/pharmacology , Arginine/metabolism , Carcinogenesis/metabolism , Cell Division , Cell Proliferation , Leucine , Mice, Nude , Microcystins/toxicity , Microcystins/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Seminoma/chemically induced , Seminoma/metabolism , Seminoma/pathology , Spermatogonia/metabolism , Spermatogonia/pathology , Testicular Neoplasms/chemically induced , Testicular Neoplasms/metabolism , Testicular Neoplasms/pathology , TOR Serine-Threonine Kinases/metabolism , Signal Transduction
7.
Ecotoxicol Environ Saf ; 244: 114033, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36075121

ABSTRACT

Microcystin-leucine-arginine (MC-LR) is a cyclic heptapeptide compound produced by cyanobacteria with strong cytotoxicity. Previous studies have confirmed that MC-LR could exert toxic effects on the genitourinary system, but there are few reports about its toxicity to the bladder. In this study, we investigated the effects of MC-LR on mouse bladder and human bladder epithelial cells (SV-HUC-1 cells). We observed that the bladder weight and the number of bladder epithelial cells were markedly increased in mice following chronic low-dose exposure to MC-LR. Further investigation showed that MC-LR activates AKT/NF-kB signaling pathway to induce the production of proinflammatory cytokines TNF-α and IL-6. In addition, the expression of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) in bladder tissue was increased and the relative migration and invasion capacities of SV-HUC-1 cells were enhanced upon exposure to MC-LR. In conclusion, these results suggest that chronic exposure to MC-LR induced epithelial hyperplasia and inflammation, upregulated the expression of matrix metalloproteinases (MMPs) and promoted the migration and invasion of bladder epithelial cells, which provides a basis for further exploring the potential mechanism by which environmental factors increasing the risk of bladder cancer.


Subject(s)
Matrix Metalloproteinase 2 , Microcystins , Animals , Arginine , Humans , Hyperplasia , Inflammation/chemically induced , Interleukin-6 , Leucine , Matrix Metalloproteinase 9 , Mice , Microcystins/toxicity , NF-kappa B , Proto-Oncogene Proteins c-akt/metabolism , Tumor Necrosis Factor-alpha , Urinary Bladder/metabolism
8.
Toxicol In Vitro ; 84: 105450, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35905885

ABSTRACT

Microcystin-leucine arginine (MC-LR) is a kind of toxin produced by cyanobacteria, which can do harm to human and livestock health. MC-LR can easily enter tissues and organs through the blood circulation and accumulate in certain target organs. Vessels are prone to contact with MC-LR during growth and development. Previous study had demonstrated that MC-LR had potential vascular toxicity. However, it is not clear whether MC-LR has adverse effects on vascular smooth muscle cells. In this study, we evaluated the cytotoxicity of MC-LR exposure (0.01, 0.05, 0.1, 0.5, and 1 µM) on human aortic vascular smooth muscle cells (HAVSMCs) in vitro. The data showed that MC-LR exposure inhibited the HAVSMC proliferation and migration, induced HAVSMC apoptosis, cytoskeleton destruction, S-phase arrest, mitochondrial transmembrane potential (MMP) loss, and reactive oxygen species (ROS) production. In addition, MC-LR exposure resulted in the imbalance between oxidants and antioxidants, increased the caspase-3 and caspase-9 activities, and down-regulated the gene expressions (integrin ß1, Rho, ROCK, MLC). Taken together, MC-LR could induce the generation of ROS in HAVSMCs, leading to apoptosis by the mitochondrial signaling pathway. MC-LR could also induce cytoskeletal disruption by integrin-mediated FAK/ROCK signaling pathway, leading to cell cycle arrest and the inhibition of HAVSMCs proliferation and migration. The current findings facilitate an understanding of the mechanism of MC-LR toxicity involved in angiocardiopathy.


Subject(s)
Arginine , Microcystins , Apoptosis , Humans , Leucine/pharmacology , Microcystins/toxicity , Muscle, Smooth, Vascular/metabolism , Reactive Oxygen Species/metabolism
9.
Ecotoxicol Environ Saf ; 236: 113454, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35367887

ABSTRACT

Microcystin-leucine arginine (MC-LR), an emerging water pollutant, produced by cyanobacteria, has an acute testicular toxicity. However, little is known about the chronic toxic effects of MC-LR exposure on the testis at environmental concentrations and the underlying molecular mechanisms. In this study, C57BL/6 J mice were exposed to different low concentrations of MC-LR for 6, 9 and 12 months. The results showed that MC-LR could cause testis structure loss, cell abscission and blood-testis barrier (BTB) damage. Long-term exposure of MC-LR also activated RhoA/ROCK pathway, which was accompanied by the rearrangement of α-Tubulin. Furthermore, MC-LR reduced the levels of the adherens junction proteins (N-cadherin and ß-catenin) and the tight junction proteins (ZO-1 and Occludin) in a dose- and time-dependent way, causing BTB damage. MC-LR also reduced the expressions of Occludin, ZO-1, ß-catenin, and N-cadherin in TM4 cells, accompanied by a disruption of cytoskeletal proteins. More importantly, the RhoA inhibitor Rhosin ameliorated these MC-LR-induced changes. Together, these new findings suggest that long-term exposure to MC-LR induces BTB damage through RhoA/ROCK activation: involvement of tight junction and adherens junction changes and cytoskeleton disruption. This study highlights a new mechanism for MC-LR-induced BTB disruption and provides new insights into the cause and treatment of BTB disruption.


Subject(s)
Blood-Testis Barrier , beta Catenin , Animals , Cadherins , Male , Mice , Mice, Inbred C57BL , Microcystins/toxicity , Occludin/metabolism
10.
Toxicol Lett ; 358: 6-16, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35032610

ABSTRACT

Early experimental studies have demonstrated that microcystin-leucine arginine (MC-LR) is able to induce multiple organ damage. Female reproductive disorders caused by MC-LR have attracted increased attention in recent years. However, the underlying mechanisms of female reproductive malfunctions are not yet fully understood. Our previous study confirmed that MC-LR could enter mice ovary, induce apoptosis of ovarian granulosa cell and lead to follicular atresia. Research shows that ovary inflammation is positively related to the decline of female reproductive function. This study was aimed to find out the relationship between inflammation response and ovarian injury caused by MC-LR. MC-LR were administrated at 0, 7.5, 22.5 and 45 µg/kg for two weeks by intraperitoneal injection in female BALB/c mice. Histopathological analysis of ovary was performed. We found that MC-LR exposure induced inflammation response and fibrosis in ovary. In the present study, we observed that MC-LR could enter ovary and was mainly distributed in mGCs (mouse ovarian granulosa cells), but not in the theca-interstitial cells. We isolated and cultured mGCs with different concentrations of MC-LR at 0, 0.01, 0.1, 1 and 10 µM. MC-LR exposure caused mitochondrial DNA (mtDNA) leakage which was detected by qPCR andimmunofluorescence staining. Subsequently, mtDNA leakage activated cGAS-STING signaling, leading to elevated production of inflammatory cytokines TNF-α in mGCs.Diffusion of TNF-α in ovary resulted in inflammatory cell infiltration and interstitial cell proliferation. Ovarian inflammation provides a new perspective to explore the underlying mechanisms associated with MC-LR-induced female reproductive dysfunction.


Subject(s)
Arginine , Microcystins , Animals , Cytokines , DNA, Mitochondrial , Female , Follicular Atresia , Granulosa Cells , Inflammation/chemically induced , Leucine , Marine Toxins , Mice , Mice, Inbred BALB C , Microcystins/toxicity , Nucleotidyltransferases , Tumor Necrosis Factor-alpha
11.
Toxicology ; 460: 152887, 2021 08.
Article in English | MEDLINE | ID: mdl-34352349

ABSTRACT

Microcystin-leucine-arginine (MLCR) is a cyanobacterial toxin, and has been demonstrated to cause neurotoxicity. In addition, MCLR has been identified as an inhibitor of protein phosphatase (PP)1 and PP2A, which are known to regulate the phosphorylation of various molecules related to synaptic excitability. Thus, in the present study, we examined whether MCLR exposure affects seizures induced by a low dose of kainic acid (KA; 0.05 µg, i.c.v.) administration. KA-induced seizure occurrence and seizure score significantly increased after repeated exposure to MCLR (2.5 or 5.0 µg/kg, i.p., once a day for 10 days), but not after acute MCLR exposure (2.5 or 5.0 µg/kg, i.p., 2 h and 30 min prior to KA administration), and hippocampal neuronal loss was consistently facilitated by repeated exposure to MCLR. In addition, repeated MCLR significantly elevated the membrane expression of kainate receptor GluK2 subunits, p-pan-protein kinase C (PKC), and p-extracellular signal-related kinase (ERK) at 1 h after KA. However, KA-induced membrane expression of Ca2+/calmodulin-dependent kinase II (CaMKII) was significantly reduced by repeated MCLR exposure. Consistent with the enhanced seizures and neurodegeneration, MCLR exposure significantly potentiated KA-induced oxidative stress and microglial activation, which was accompanied by increased expression of p-ERK and p-PKCδ in the hippocampus. The combined results suggest that repeated MCLR exposure potentiates KA-induced excitotoxicity in the hippocampus by increasing membrane GluK2 expression and enhancing oxidative stress and neuroinflammation through the modulation of p-CaMKII, p-PKC, and p-ERK.


Subject(s)
Arginine/toxicity , Kainic Acid/toxicity , Leucine/toxicity , Microcystins/toxicity , Neurotoxins/toxicity , Oxidative Stress/drug effects , Animals , Bacterial Toxins/toxicity , Hippocampus/drug effects , Hippocampus/metabolism , Kainic Acid/administration & dosage , Male , Mice , Mice, Inbred C57BL , Microglia/drug effects , Microglia/metabolism , Neurotoxins/administration & dosage , Oxidative Stress/physiology , Seizures/chemically induced , Seizures/metabolism
12.
Environ Sci Pollut Res Int ; 28(47): 67108-67119, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34244946

ABSTRACT

The main characteristic of eutrophication is cyanobacteria harmful algae blooms. Microcystin-leucine arginine (MC-LR) is considered to be the most toxic and most commonly secondary metabolite produced by cyanobacteria. It has been reported that MC-LR had potential vascular toxicity. However, the mechanism that MC-LR-induced vascular toxicity is very limited and remains to be clarified. The aim of this study was to evaluate the toxic hazard toward the vasculogenesis and angiogenesis of MC-LR. Its effects on vasculogenesis, sprouting angiogenesis, and endothelial cell tube formation were studied. The study showed that MC-LR exposure blocked vasculogenesis in zebrafish embryos, sprouting angiogenesis from rat aorta, and tube formation of human umbilical vein endothelial cells (HUVECs). In addition, MC-LR exposure also induced the disruption of cytoskeletal structures and markedly inhibited endothelial cell (EC) migration from caudal hematopoietic tissue in zebrafish and HUVEC migration. Western blot analysis showed that MC-LR exposure downregulated the expressions of integrin ß1, FAK, Rho, and ROCK. Combined with these results, MC-LR could induce disruption of cytoskeleton via downregulating integrin-mediated FAK/ROCK signaling pathway, leading to the inhibition of EC migration, which finally blocked vasculogenesis and angiogenesis.


Subject(s)
Arginine , Microcystins , Animals , Cytoskeleton , Endothelial Cells , Integrins , Leucine , Marine Toxins , Rats , Signal Transduction , Zebrafish
13.
Environ Sci Pollut Res Int ; 28(42): 60032-60040, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34155591

ABSTRACT

Microcystin-leucine arginine (MC-LR) has reproductive and developmental toxicities. Previous studies indicated that gestational exposure to MC-LR induced fetal growth restriction in mice. The aim of this study was to further evaluate the effect of paternal MC-LR exposure before mating on fetal development. Male mice were intraperitoneally injected with either normal saline or MC-LR (10 µg/kg) daily for 35 days. Male mouse was then mated with female mice with 1:1 ratio. There was no significant difference on the rates of mating and pregnancy between MC-LR-exposed male mice and controls. Body weight and crown-rump length were reduced in fetuses whose fathers were exposed to MC-LR. Despite no difference on relative thickness of labyrinthine layer, cell proliferation, as measured by Ki67 immunostaining, was reduced in labyrinth layer of MC-LR-exposed mice. Moreover, blood sinusoid area in labyrinth layer was decreased in the fetus whose father was exposed to MC-LR before mating. Correspondingly, cross-sectional area of CD34-positive blood vessel in labyrinth layer was lower in fetuses whose fathers were exposed to MC-LR than in controls. These results provide evidence that paternal MC-LR exposure before mating induces fetal growth restriction partially through inhibiting cell proliferation and vascular development in labyrinth layer.


Subject(s)
Microcystins , Animals , Cell Proliferation , Female , Fetal Growth Retardation , Humans , Male , Marine Toxins , Mice , Paternal Exposure , Placenta , Pregnancy
14.
Cell Prolif ; 54(2): e12961, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33241617

ABSTRACT

BACKGROUND & AIMS: Intrahepatic cholangiocarcinoma (ICC) has over the last 10 years become the focus of increasing concern largely due to its rising incidence and high mortality rates worldwide. Microcystin-leucine-arginine (MC-LR) has been reported to be carcinogenic, but there are no data on the linkage between MC-LR and ICC. This study aimed to explore whether the content levels of MC-LR in the tumour tissues of ICC patients be associated with the prognosis and if so, to characterize the mechanism in ICC cells. METHODS: We conducted a retrospective study to evaluate the prognostic value of MC-LR in ICC after resection. All patients were divided into two groups according to the content of MC-LR in tumour via immunohistochemistry: low-MC-LR group (n = 28) and high-MC-LR group (n = 30). RESULTS: Multivariate analysis showed high-MC-LR level was the prognostic factor for OS and RFS after hepatectomy (P = .011 and .044). We demonstrated that MC-LR could promote the survival of human ICC cell lines and SET was identified as an important mRNA in the progression via RNA array. CONCLUSIONS: We provide evidence that MC-LR was an independent prognostic factor for ICC in humans by modulating the expression of SET in human ICC cells.


Subject(s)
Arginine/metabolism , Bile Duct Neoplasms/pathology , Cholangiocarcinoma/pathology , DNA-Binding Proteins/metabolism , Histone Chaperones/metabolism , Leucine/metabolism , Microcystins/metabolism , Arginine/pharmacology , Bile Duct Neoplasms/mortality , Bile Duct Neoplasms/surgery , Cell Proliferation/drug effects , Cholangiocarcinoma/mortality , Cholangiocarcinoma/surgery , DNA-Binding Proteins/antagonists & inhibitors , DNA-Binding Proteins/genetics , Disease-Free Survival , Female , Histone Chaperones/antagonists & inhibitors , Histone Chaperones/genetics , Humans , Leucine/pharmacology , Male , Microcystins/pharmacology , Middle Aged , Neoplasm Recurrence, Local , Prognosis , Proportional Hazards Models , RNA Interference , RNA, Messenger/metabolism , RNA, Small Interfering/metabolism , Retrospective Studies , Risk Factors
15.
Chemosphere ; 264(Pt 1): 128440, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33002802

ABSTRACT

Microcystin-leucine-arginine (MC-LR) has been identified to be a hazardous material to cause hepatotoxicity. In this study, mice were exposed to MC-LR dissolved in drinking water at doses of 1, 10, 20 and 30 µg/L for 90 and 180 days, respectively. We validated MC-LR accelerated spermatid exfoliation and caused large vacuoles in testes, reducing sperm count and increasing percentage of morphologically abnormal sperm. Furthermore, we found MC-LR induced the apical ectoplasmic specialization (ES) disassembly by disrupting F-actin organization. Further studies identified that downregulation of Palladin, the actin crosslinking protein, might be associated with disassembly of the apical ES in mice testis following MC-LR exposure. We also confirmed that MC-LR disrupted the interaction between Palladin and other actin-related proteins and thus impeded the F-actin organization. Additionally, we found that autophagy initiated by AMPK/ULK1 signaling pathway mediated the degradation of Palladin in Sertoli cells challenged with MC-LR. Following exposure to MC-LR, reduced PP2A activity and upregulated expression of LKB1 and CAMKK2 could activate AMPK. In conclusion, these results revealed MC-LR induced the degradation of Palladin via AMPK/ULK1-mediated autophagy, which might result in the apical ES disorder and spermatid exfoliation from spermatogenic epithelium. Our work may provide a new perspective to understand MC-LR-induced male infertility.


Subject(s)
Arginine , Microcystins , Animals , Leucine , Male , Mice , Microcystins/toxicity , Sertoli Cells , Testis
16.
Sci Total Environ ; 756: 144070, 2021 Feb 20.
Article in English | MEDLINE | ID: mdl-33288253

ABSTRACT

Microcystin-leucine arginine (MC-LR), an intracellular toxin to cause reproduction toxicity, is produced by blooming cyanobacteria and widely distributed in eutrophic waters. It is revealed that MC-LR-induced female reproductive toxicity is more severe than male reproductive toxicity. Previous studies mainly focused on male reproductive toxicity, and the molecular mechanisms of MC-LR-induced apoptosis, follicular atresia and infertility in female remain largely unclear. Here, it was found that MC-LR treatment could induce apoptosis, inflammation, follicular atresia, and decrease of gonadal index in mice ovaries. RNA-Seq data showed that the up-regulation of DNA-damage inducible transcript 3 (Ddit3) under endoplasmic reticulum (ER) stress had predominantly regulatory role in MC-LR-induced apoptotic pathway. Furthermore, MC-LR exposure promoted cleavage of activating transcription factor 6 (ATF6, 50kd), inositol-requiring enzyme 1 (Ire1) expression, phosphorylation of IRE1, mitogen-activated protein kinase 5 (Map3k5) and Ddit3 expression, which was accompanied by the upregulation of death receptor 5 (Dr5) and active-caspase-3, and a decrease in Bcl-2 expression. ER stress inhibitor 4-Phenyl butyric acid (4-PBA) ameliorated these MC-LR-induced changes in protein or mRNA level. More importantly, knockdown of Ddit3 suppressed MC-LR-induced cell apoptosis and follicular atresia by directly regulating Dr5 and Bcl-2. Additionally, it was also found that MC-LR increased Map3k5 phosphorylation by inhibiting protein phosphatase 2A (PP2A) activity, and then promoted Ddit3 expression. In short, our data suggests that Ddit3 promotes MC-LR-induced mice ovarian cells apoptosis and follicular atresia via ER stress activation, which provides a new insight into the relation between infertility in females and the emerging water pollutant MC-LR.


Subject(s)
Marine Toxins , Microcystins , Transcription Factor CHOP , Animals , Apoptosis , Arginine , Endoplasmic Reticulum Stress , Female , Follicular Atresia , Leucine , Male , Mice , Microcystins/toxicity , Ovary , Transcription Factor CHOP/drug effects
17.
Biochem Biophys Res Commun ; 533(4): 770-778, 2020 12 17.
Article in English | MEDLINE | ID: mdl-32988585

ABSTRACT

Microcystin-leucine-arginine (MC-LR), produced by cyanobacteria, accumulates in the liver through blood circulation. We investigated the impact of MC-LR on liver fibrosis. Mice received a daily injection of MC-LR at various concentrations for 14 consecutive days aa and then mouse liver was obtained for histopathological and immunoblot analysis. Next, a human hepatic stellate cell line (LX-2) was treated with MC-LR at various concentrations followed by measurement of cell viability, cell cycle and relevant protein expression levels. Our data confirmed the induction of mouse liver fibrosis after exposure to MC-LR at 15 µg/kg and 30 µg/kg. Furthermore, we demonstrated that LX-2 cells could uptake MC-LR, resulting in cell proliferation and differentiation through impacting the Hedgehog signaling after the treatment of MC-LR at 50 nM. Our data supported that MC-LR could induce liver fibrosis by modulating the expression of the transcription factor Gli2 in the Hedgehog signaling in hepatic stellate cells.


Subject(s)
Hedgehog Proteins/metabolism , Hepatic Stellate Cells/drug effects , Liver Cirrhosis/chemically induced , Marine Toxins/toxicity , Microcystins/toxicity , Animals , Apoptosis/drug effects , Cell Differentiation/drug effects , Cell Line , Cell Proliferation/drug effects , Hepatic Stellate Cells/cytology , Hepatic Stellate Cells/metabolism , Humans , Liver/drug effects , Liver/metabolism , Liver/pathology , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Male , Mice, Inbred BALB C , Nuclear Proteins/antagonists & inhibitors , Signal Transduction/drug effects , Zinc Finger Protein GLI1/antagonists & inhibitors , Zinc Finger Protein GLI1/metabolism , Zinc Finger Protein Gli2/antagonists & inhibitors , Zinc Finger Protein Gli2/metabolism
18.
Toxicol Rep ; 7: 583-595, 2020.
Article in English | MEDLINE | ID: mdl-32426239

ABSTRACT

The advent of new technologies has paved the rise of various chemicals that are being employed in industrial as well as consumer products. This leads to the accumulation of these xenobiotic compounds in the environment where they pose a serious threat to both target and non-target species. miRNAs are one of the key epigenetic mechanisms that have been associated with toxicity by modulating the gene expression post-transcriptionally. Here, we provide a comprehensive view on miRNA biogenesis, their mechanism of action and, their possible role in xenobiotic toxicity. Further, we review the recent in vitro and in vivo studies involved in xenobiotic exposure induced miRNA alterations and the mRNA-miRNA interactions. Finally, we address the challenges associated with the miRNAs in toxicological studies.

19.
Chemosphere ; 241: 125073, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31683423

ABSTRACT

Microcystin-leucine arginine (MC-LR) is a variant of microcystins (MCs), which poses a serious threat to the reproductive system. Histone acetylation modification can regulate the expressions of apoptosis-related genes. However the mechanisms of histone acetylation involving MC-LR-induced apoptosis were not understood. This study investigated the change of histone acetylation and its role in apoptosis and cell cycle arrest induced by MC-LR. MC-LR enhanced the activity of histone deacetylase (HDAC), decreased the activity of histone acetylase (HAT), up-regulated the expression of HDAC1, and down-regulated the expressions of Ac-H3 and Ac-H4 in vitro and vivo. Meanwhile, MC-LR induced testicular tissue injury and increased the expressions of apoptosis-related genes, such as Bax, Caspase3 and Caspase8, ultimately causing cells apoptosis in testicular tissues. Furthermore, MC-LR also induced cell cycle arrest in S phase, increased the expression of P21Wif1/Cip1, and inhibited the expressions of cyclinD1, cyclinE1, CDK2 and E2F1. Importantly, HDAC inhibitor Trichostatin A (TSA) could ameliorate MC-LR-induced apoptosis and cell cycle arrest by reverse-regulating the expressions of these proteins. These results indicated that MC-LR could activate the mitochondrial apoptotic pathway and disorder the cell cycle pathway to induce the cell apoptosis by enhancing HDAC activity and reducing histone acetylation of normal testicular cells in SD rats. Hence, histone acetylation has a vital function in MC-LR-induced apoptosis in SD rat testicular cells, which provides a new insight on the reproductive toxicity of male induced by MC-LR.


Subject(s)
Acetylation , Histones/physiology , Microcystins/toxicity , Animals , Apoptosis , Arginine , Cell Cycle , Humans , Hydroxamic Acids , Male , Rats , Rats, Sprague-Dawley , Reproduction , Testis/metabolism
20.
Bull Environ Contam Toxicol ; 103(2): 280-285, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31069404

ABSTRACT

Acorus calamus L., a semiaquatic plant with a high capacity to remove nitrogen and phosphorus from polluted water, is a potential candidate plant for use in the restoration of eutrophic aquatic ecosystems. However, it is not clear how microcystins (MCs), commonly found in eutrophic water, influence plant growth since the effects of MCs are likely to be dose and species dependent. The present study aimed to investigate the regulation of nitrogen metabolism, a key metabolic process related to plant growth, in the leaves of A. calamus L. exposed to microcystin-leucine-arginine (MC-LR) (1.0-29.8 µg/L). Nitrate (NO3-) uptake, assimilation and transformation was stimulated in the leaves of A. calamus L. when exposed to 1.0 µg/L MC-LR through the elevation of nitrate reductase (NR), glutamine synthetase (GS), glutamate synthase (GOGAT), glutamic-pyruvic transaminase (GPT), and glutamic-oxaloacetic transaminase (GOT) activity. Conversely, MC-LR inhibited nitrogen metabolism by decreasing NO3- uptake and the activities of enzymes related to nitrogen metabolism following exposure to MC-LR (9.9-29.8 µg/L) for 30 days, while, ammonium nitrogen (NH4+) content and glutamate dehydrogenase (GDH) activity increased significantly (p < 0.05, LSD test), when compared with the control group. Chronic exposure to MC-LR (9.9-29.8 µg/L) negatively influenced nitrogen metabolism in A. calamus L. leaves, which suggested that it may not be a suitable candidate species for use in the restoration of eutrophic aquatic ecosystems containing MC-LR at concentrations ≥ 9.9 µg/L.


Subject(s)
Acorus/metabolism , Microcystins/toxicity , Nitrogen/metabolism , Plant Leaves/metabolism , Water Pollutants, Chemical/toxicity , Acorus/drug effects , Acorus/growth & development , Dose-Response Relationship, Drug , Eutrophication , Marine Toxins , Models, Theoretical , Nitrates/metabolism , Phosphorus/metabolism , Plant Leaves/drug effects , Plant Leaves/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL