Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Front Cell Dev Biol ; 10: 932510, 2022.
Article in English | MEDLINE | ID: mdl-36200037

ABSTRACT

During metastasis, all cancer types must migrate through crowded multicellular environments. Simultaneously, cancers appear to change their biophysical properties. Indeed, cell softening and increased contractility are emerging as seemingly ubiquitous biomarkers of metastatic progression which may facilitate metastasis. Cell stiffness and contractility are also influenced by the microenvironment. Stiffer matrices resembling the tumor microenvironment cause metastatic cells to contract more strongly, further promoting contractile tumorigenic phenotypes. Prostate cancer (PCa), however, appears to deviate from these common cancer biophysics trends; aggressive metastatic PCa cells appear stiffer, rather than softer, to their lowly metastatic PCa counterparts. Although metastatic PCa cells have been reported to be more contractile than healthy cells, how cell contractility changes with increasing PCa metastatic potential has remained unknown. Here, we characterize the biophysical changes of PCa cells of various metastatic potential as a function of microenvironment stiffness. Using a panel of progressively increasing metastatic potential cell lines (22RV1, LNCaP, DU145, and PC3), we quantified their contractility using traction force microscopy (TFM), and measured their cortical stiffness using optical magnetic twisting cytometry (OMTC) and their motility using time-lapse microscopy. We found that PCa contractility, cell stiffness, and motility do not universally scale with metastatic potential. Rather, PCa cells of various metastatic efficiencies exhibit unique biophysical responses that are differentially influenced by substrate stiffness. Despite this biophysical diversity, this work concludes that mechanical microenvironment is a key determinant in the biophysical response of PCa with variable metastatic potentials. The mechanics-oriented focus and methodology of the study is unique and complementary to conventional biochemical and genetic strategies typically used to understand this disease, and thus may usher in new perspectives and approaches.

2.
Front Cardiovasc Med ; 8: 773978, 2021.
Article in English | MEDLINE | ID: mdl-34805326

ABSTRACT

The cardiogenesis of the fetal heart is absent in juveniles and adults. Cross-transplantation of decellularized extracellular matrix (dECM) can stimulate regeneration in myocardial infarct (MI) models. We have previously shown that dECM and tissue stiffness have cooperative regulation of heart regeneration in transiently regenerative day 1 neonatal mice. To investigate underlying mechanisms of mechano-signaling and dECM, we pharmacologically altered heart stiffness and administered dECM hydrogels in non-regenerative mice after MI. The dECM combined with softening exhibits preserved cardiac function, LV geometry, increased cardiomyocyte mitosis and lowered fibrosis while stiffening further aggravated ischemic damage. Transcriptome analysis identified a protein in cardiomyocytes, CLCA2, confirmed to be upregulated after MI and downregulated by dECM in a mechanosensitive manner. Synthetic knock-down of CLCA2 expression induced mitosis in primary rat cardiomyocytes in the dish. Together, our results indicate that therapeutic efficacy of extracellular molecules for heart regeneration can be modulated by heart microenvironment stiffness in vivo.

3.
Acta Biomater ; 113: 380-392, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32590172

ABSTRACT

The transient period of regeneration potential in the postnatal heart suggests molecular changes with maturation influence the cardiac response to damage. We have previously demonstrated that injury and exercise can stimulate cardiomyocyte proliferation in the adult heart suggesting a sensitivity to exogenous signals. Here, we consider whether exogenous fetal ECM and mechanically unloading interstitial matrix can drive regeneration after myocardial infarction (MI) surgery in low-regenerative hearts of day5 mice. Compared to controls, exogenous fetal ECM increases cardiac function and lowers fibrosis at 3 weeks post-injury and this effect can be augmented by softening heart tissue. In vitro experiments support a mechano-sensitivity to exogenous ECM signaling. We tested potential mechanisms and observed that fetal ECM increases nuclear YAP localization which could be enhanced by pharmacological stabilization of the cytoskeleton. Blocking YAP expression lowered fetal ECM effects though not completely. Lastly we observed mechanically unloading heart interstitial matrix increased agrin expression, an extracellular node in the YAP signaling pathway. Collectively, these data support a combined effect of exogenous factors and mechanical activity in altering agrin expression, cytoskeletal remodeling, and YAP signaling in driving cardiomyocyte cell cycle activity and regeneration in postnatal non-regenerative mice. STATEMENT OF SIGNIFICANCE: With the purpose of developing regenerative strategies, we investigate the influence of the local niche on the cardiac injury response. We conclude tissue stiffness, as anticipated in aging or disease, impairs regenerative therapeutics. Most novel, mechanical unloading facilitates enhanced cardiac regeneration only after cells are pushed into a permissive state by fetal biomolecules. Specifically, mechanical unloading appears to increase extracellular agrin expression that amplifies fetal-stimulation of nuclear YAP signaling which correlates with observed increases of cell cycle activity in cardiomyocytes. The results further suggest the cytoskeleton is critical to this interaction between mechanical unloading and independently actived YAP signaling. Using animal models, tissue explants, and cells, this work indicates that local mechanical stimuli can augment proliferating-permissive cardiomyocytes in the natural cardiac niche.


Subject(s)
Myocardial Infarction , Regeneration , Animals , Animals, Newborn , Extracellular Matrix , Heart , Mice , Myocytes, Cardiac
SELECTION OF CITATIONS
SEARCH DETAIL