Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.123
Filter
1.
Synth Syst Biotechnol ; 10(1): 86-101, 2025.
Article in English | MEDLINE | ID: mdl-39286054

ABSTRACT

Tissue on a chip or organ-on-chip (OOC) is a technology that's dignified to form a transformation in drug discovery through the use of advanced platforms. These are 3D in-vitro cell culture models that mimic micro-environment of human organs or tissues on artificial microstructures built on a portable microfluidic chip without involving sacrificial humans or animals. This review article aims to offer readers a thorough and insightful understanding of technology. It begins with an in-depth understanding of chip design and instrumentation, underlining its pivotal role and the imperative need for its development in the modern scientific landscape. The review article explores into the myriad applications of OOC technology, showcasing its transformative impact on fields such as radiobiology, drug discovery and screening, and its pioneering use in space research. In addition to highlighting these diverse applications, the article provides a critical analysis of the current challenges that OOC technology faces. It examines both the biological and technical limitations that hinder its progress and efficacy and discusses the potential advancements and innovations that could drive the OOC technology forward. Through this comprehensive review, readers will gain a deep appreciation of the significance, capabilities, and evolving landscape of OOC technology.

2.
Biomaterials ; 313: 122757, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39178558

ABSTRACT

Recent progress in stem cell therapy has demonstrated the therapeutic potential of intravenous stem cell infusions for treating the life-threatening lung disease of pulmonary fibrosis (PF). However, it is confronted with limitations, such as a lack of control over cellular function and rapid clearance by the host after implantation. In this study, we developed an innovative PF therapy through tracheal administration of microfluidic-templated stem cell-laden microcapsules, which effectively reversed the progression of inflammation and fibrotic injury. Our findings highlight that hydrogel microencapsulation can enhance the persistence of donor mesenchymal stem cells (MSCs) in the host while driving MSCs to substantially augment their therapeutic functions, including immunoregulation and matrix metalloproteinase (MMP)-mediated extracellular matrix (ECM) remodeling. We revealed that microencapsulation activates the MAPK signaling pathway in MSCs to increase MMP expression, thereby degrading overexpressed collagen accumulated in fibrotic lungs. Our research demonstrates the potential of hydrogel microcapsules to enhance the therapeutic efficacy of MSCs through cell-material interactions, presenting a promising yet straightforward strategy for designing advanced stem cell therapies for fibrotic diseases.


Subject(s)
Extracellular Matrix , Immunologic Factors , Pulmonary Fibrosis , Stem Cells , Capsules/chemistry , Immunologic Factors/chemistry , Immunologic Factors/pharmacology , Pulmonary Fibrosis/immunology , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/therapy , Cells, Cultured , Humans , Extracellular Matrix/chemistry , Microfluidics , Cell Survival/drug effects , Hydrogels/chemistry , Male , Animals , Mice , Mice, Inbred C57BL , Matrix Metalloproteinases/metabolism
3.
Biomaterials ; 313: 122810, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39243673

ABSTRACT

The development of biosensing electronics for real-time sweat analysis has attracted increasing research interest due to their promising applications for non-invasive health monitoring. However, one of the critical challenges lies in the sebum interference that largely limits the sensing reliability in practical scenarios. Herein, we report a flexible epidermal secretion-purified biosensing patch with a hydrogel filtering membrane that can effectively eliminate the impact of sebum and sebum-soluble substances. The as-prepared sebum filtering membranes feature a dual-layer sebum-resistant structure based on the poly(hydroxyethyl methacrylate) hydrogel functionalized with nano-brush structured poly(sulfobetaine) to eliminate interferences and provide self-cleaning capability. Furthermore, the unidirectional flow microfluidic channels design based on the Tesla valve was incorporated into the biosensing patch to prevent external sebum contamination and allow effective sweat refreshing for reliable sensing. By seamlessly combining these components, the epidermal secretion-purified biosensing patch enables continuous monitoring of sweat uric acid, pH, and sodium ions with significantly improved accuracy of up to 12 %. The proposed strategy for enhanced sweat sensing reliability without sebum interference shows desirable compatibility for different types of biosensors and would inspire the advances of flexible and wearable devices for non-invasive healthcare.


Subject(s)
Biosensing Techniques , Hydrogels , Sebum , Sweat , Biosensing Techniques/methods , Biosensing Techniques/instrumentation , Humans , Sebum/metabolism , Hydrogels/chemistry , Sweat/chemistry , Epidermis/metabolism , Wearable Electronic Devices , Microfluidics/methods , Uric Acid/analysis , Membranes, Artificial , Hydrogen-Ion Concentration
4.
Mol Pharm ; 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39367851

ABSTRACT

In this study, multivesicular liposomes (MVLs) were prepared by microfluidic technology and used for delivering gastrodin (GAS), a water-soluble drug, across the blood-brain barrier (BBB). The formulations and preparation parameters in preparing gastrodin multivesicular liposomes (GAS-MVLs) were both optimized. Some properties of GAS-MVLs including morphology, particle size, encapsulation efficiency, and in vitro release were evaluated. An in vitro BBB model was established by coculturing mouse brain endothelial cells (bEnd.3) and astrocytes (C8-D1A). The permeability of GAS-MVLs across the BBB model was evaluated. Finally, the permeability of GAS-MVLs across BBB was evaluated by in vivo pharmacokinetics in mice. The concentrations of GAS in the blood and brain were determined by high-performance liquid chromatography (HPLC), and then brain-targeting efficiency (BTE), relative uptake rate (Re), and peak concentration ratio (Ce) were calculated. The results showed that, using a Y-type microfluidic chip and setting the flow rate ratio of the second aqueous phase to the W/O emulsion phase at 23, with a total flow rate of 0.184 m/s, the prepared GAS-MVLs showed an obvious multivesicular structure and a relatively narrow distribution of particle sizes. The prepared GAS-MVLs were spherical with a dense structure. The average particle size was 2.09 ± 0.17 µm. The average encapsulation rate was (34.47 ± 0.39)%. The particle size of MVLs prepared by the microfluidic method was much smaller than that prepared by the traditional method, which was usually larger than 10 µm. After 6 h from the beginning of the administration, the apparent transmittance of GAS-MVLs in the in vitro BBB model was 67.71%, which was 1.92 times higher than that of the GAS solution. In vivo pharmacokinetic study showed that the intracerebral area under curve (AUC) of GAS-MVLs was 5.68 times higher than that of the GAS solution, and the e peak concentration (Cmax) was 2.036 times higher than that of the GAS solution. BTE was 1.945, intracerebral Re was 5.688, and Ce was 2.036. Both in vitro and in vivo experiment results showed that GAS-MVLs prepared by microfluidic technology in this study significantly delivered GAS across BBB and enriched GAS in the brain. It provides a possibility for brain-targeting delivery of GAS in the prevention and treatment of central nervous system diseases by oral administration and lays the foundation for further development of oral brain-targeted preparations of GAS.

5.
Biosens Bioelectron ; 267: 116827, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39368293

ABSTRACT

Rapid and accurate detection of tumor markers at extremely low levels is crucial for the early diagnosis of cancers. In this work, we developed a portable label-free sliding electrochemical paper-based analytical device (ePAD) using copper/cuprous sulfide@N-doped C@Au nanoparticles (Cu/Cu2S@NC@Au) hollow nanoboxes as the signal amplifier for the ultrasensitive detection of alpha-fetoprotein (AFP). Cu/Cu2S@NC nanoboxes were synthesized by sacrificial template and interface reaction methods, on which Au nanoparticles were electrodeposited to construct unique heterostructure for effectively capturing anti-AFP and serving as signal amplifier. The designed ePAD incorporates sliding microfluidic paper chips to form a flexible three-electrode system, enabling highly sensitive detection of AFP with a wide linear range of 0.005-50 ng mL-1 and a low detection limit of 0.62 pg mL-1. The practicality of the prepared ePAD was validated through AFP detection in clinical human serum, which was consistent with chemiluminescence immunoassay. In addition, the developed immunosensor demonstrates excellent specificity, repeatability and stability. This novel platform exhibits significant potential for rapid on-site analysis and point-of-care diagnosis.

6.
Eur J Pharm Sci ; : 106929, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39389168

ABSTRACT

To achieve the desired delivery effect, extracellular vesicles (EVs) must bypass rapid clearance from circulation and exhibit affinity for target cells; however, it is difficult to simultaneously incorporate two materials into EVs. Post-insertion is a general modification method that can be performed by simply mixing different solutions. Previously, we have developed a microfluidic post-insertion method that supported fast and upscaled modification of EVs using KK-modified high-functionality and -quality (HFQ) lipids. Here, we used microfluidic post-insertion to achieve simultaneous incorporation of polyethylene glycol (PEG) lipids and KK or RGD-modified HFQ lipids into milk-derived EVs to avoid uptake from the reticuloendothelial system and increase the uptake into target cells. PEG lipid and HFQ lipids were formulated to produce micelles and subsequently mixed with EV solution using a microfluidic device. Compared to bulk mixing, microfluidic post-insertion showed higher cellular association. Altered cellular association capacities and endocytic pathways indicated simultaneous incorporation. The cellular association of modified EVs can be adjusted by altering the ratio of (EK)4-KK in micelles with slight changes in physicochemical properties. Furthermore, microfluidic post-insertion is also suitable for (SG)5-RGD, which is insoluble in phosphate-buffered saline (PBS). Our results may be valuable for the development and manufacture of functional EVs as drug delivery systems for clinical applications.

7.
J Appl Crystallogr ; 57(Pt 5): 1539-1550, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39387069

ABSTRACT

Compared with batch and vapor diffusion methods, counter diffusion can generate larger and higher-quality protein crystals yielding improved diffraction data and higher-resolution structures. Typically, counter-diffusion experiments are conducted in elongated chambers, such as glass capillaries, and the crystals are either directly measured in the capillary or extracted and mounted at the X-ray beamline. Despite the advantages of counter-diffusion protein crystallization, there are few fixed-target devices that utilize counter diffusion for crystallization. In this article, different designs of user-friendly counter-diffusion chambers are presented which can be used to grow large protein crystals in a 2D polymer microfluidic fixed-target chip. Methods for rapid chip fabrication using commercially available thin-film materials such as Mylar, propyl-ene and Kapton are also detailed. Rules of thumb are provided to tune the nucleation and crystal growth to meet users' needs while minimizing sample consumption. These designs provide a reliable approach to forming large crystals and maintaining their hydration for weeks and even months. This allows ample time to grow, select and preserve the best crystal batches before X-ray beam time. Importantly, the fixed-target microfluidic chip has a low background scatter and can be directly used at beamlines without any crystal handling, enabling crystal quality to be preserved. The approach is demonstrated with serial diffraction of photoactive yellow protein, yielding 1.32 Šresolution at room temperature. Fabrication of this standard microfluidic chip with commercially available thin films greatly simplifies fabrication and provides enhanced stability under vacuum. These advances will further broaden microfluidic fixed-target utilization by crystallographers.

8.
J Pharm Biomed Anal ; 252: 116500, 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39383543

ABSTRACT

Sepsis is a life-threatening immune response to infection in the body, eventually resulting in fatal organ failure. Current methods utilize blood cultures and quick-Sequential-Organ-Failure-Assessment (qSOFA), but there is a need for more accurate and time-sensitive diagnostic methods to improve survival rates. We present a 3D-printed microfluidic chip that bioconjugates antibodies CD69, CD64, and CD25 to channel surfaces to capture sepsis cells in blood samples and validate it with clinical samples (n = 125 septic, n = 10 healthy). Other variables were taken such as healthy volunteer blood samples and patient demographics to validate and confirm our device's diagnostic ability. Statistical differences were found between healthy volunteer and sepsis patient antigen cell counts (CD69 p-value < 0.001, CD64 p-value < 0.004, CD25 p-value < 0.0009), and were confirmed using principal component analysis. Demographics such as length of stay, age, culture results, and need for surgery also factored into sepsis detection on a smaller scale than the antigen cell counts. The receiver operating characteristic (ROC) analysis showed an area under the curve (AUC) of 0.989, 0.988, and 0.992 for CD69, CD64, and CD25, respectively, and a combined biomarker panel of 0.997. Overall, the device performed within a shorter time frame of 4 h compared to standard blood culture tests and was validated for use in detecting sepsis in patients.

9.
J Fluoresc ; 2024 Oct 11.
Article in English | MEDLINE | ID: mdl-39392544

ABSTRACT

The synthesis of rhodamine dyes (R6G and R1010) and their fluorescence characterization within polymer-based microfluidics, offers an exciting and novel approach in materials science and chemical analysis. This work investigates the emission of polycarbonate substrates (PC) by UV-visible. The ablation threshold (16mj.sec-1) of PC at 193nm wavelength after that ablation process continued to produce microfluidic serpentine channels on PC by using G-Code. The fluorescence characteristics of Rhodamine 6G and Rhodamine 101 are investigated. Absorption and emission at peak wavelength were analyzed against R6G and R101 concentrations. Furthermore, the refractive indices of both R6G and R101 vis concentrations are examined. As a result at low concentrations, there was the highest overlapping, and at high concentrations, there was the smallest overlapping. R101 showed better photostability and a more consistent diffusion, whereas R6G had a faster diffusion and stronger fluorescence intensity. These differences were caused by the different molecular structures of the dyes and their interactions with the PC microchannel. Incorporating R6G and R101 dyes into a polycarbonate PC microfluidic chip would enhances both the resolution and sensitivity of fluorescence detection. The limited microfluidic setup facilitates ultra-high-resolution investigation and minimizing sample volumes, making it suitable for applications requiring precise measurements. The innovation relies on the utilization of the unique fluorescence characteristics of R6G (Rhodamine 6G) and R101 (Rhodamine 101) dyes to enhance the performance of polycarbonate microfluidic devices. R6G has high fluorescence quantum yield and stability, rendering it suitable for sensitive detection, while R101 offers superior brightness and improved resistance to photobleaching. Incorporation of these dyes into polymeric microfluidics improves sensitivity and facilitates real-time, dynamic sample analysis. This method offers a portable, economical solution with high-throughput capabilities, greatly enhancing both analytical and process accuracy across a variety of applications.

10.
Biotechnol Adv ; : 108461, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39374797

ABSTRACT

Aptamers are excellent recognition molecules obtained from systematic evolution of ligands by exponential enrichment (SELEX) that have been extensively researched for constructing aptasensors. However, in the process from SELEX screening to the construction of aptasensors, there are many disadvantages, such as tedious and repetitive operations, interference from external factors, and low efficiency, which seriously limits their application scope and development. Introducing the microfluidic technology can realize the automation and intelligence of SELEX and aptasensing, improve the efficiency of SELEX, and enhance the detection performance and convenience of aptasensing. Hence, in this review, first the characteristics of various chips based on different driving forces are described. And then summarizing the design of microfluidic devices based on different SELEX methods and showing the strategies of microfluidic aptasensors based on different detection modes. Finally, discussing the difficulties and challenges encountered when microfluidic is integrated with the aptamer SELEX and the aptasensors.

11.
Appl Environ Microbiol ; : e0120824, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39377590

ABSTRACT

Human norovirus (HuNoV) is recognized as the leading causative agent of foodborne outbreaks of epidemic gastroenteritis. Consequently, there is a high demand for developing point-of-care testing for HuNoV. We developed an origami microfluidic device that facilitates rapid detection of murine norovirus 1 (MNV-1), a surrogate for HuNoV, encompassing the entire process from sample preparation to result visualization. This process includes RNA absorption via a paper strip, RNA amplification using recombinase polymerase amplification (RPA), and a lateral flow assay for signal readout. The on-chip detection of MNV-1 was completed within 35 min, demonstrating 100% specificity to MNV-1 in our settings. The detection limit of this microfluidic device for MNV-1 was 200 PFU/mL, comparable to the in-tube RPA reaction. It also successfully detected MNV-1 in lettuce and raspberries at concentrations of 170 PFU/g and 230 PFU/g, respectively, without requiring extra concentration steps. This device demonstrates high compatibility with isothermal nucleic acid amplification and holds significant potential for detecting foodborne viruses in agri-food products in remote and resource-limited settings. IMPORTANCE: HuNoV belongs to the family of Caliciviridae and is a leading cause of acute gastroenteritis that can be transmitted through contaminated foods. HuNoV causes around one out of five cases of acute gastroenteritis that lead to diarrhea and vomiting, placing a substantial burden on the healthcare system worldwide. HuNoV outbreaks can occur when food is contaminated at the source (e.g., wild mussels exposed to polluted water), on farms (e.g., during crop cultivation, harvesting, or livestock handling), during packaging, or at catered events. The research outcomes of this study expand the approaches of HuNoV testing, adding value to the framework for routine testing of food products. This microfluidic device can facilitate the monitoring of HuNoV outbreaks, reduce the economic loss of the agri-food industry, and enhance food safety.

12.
Curr Med Chem ; 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39354764

ABSTRACT

Cardiovascular disease is a major global public health challenge. Point-of-- care testing (POCT) technologies are crucial for the prevention, early diagnosis, and treatment of cardiovascular conditions. Numerous POCT technologies for cardiovascular disease are currently available, which include but are not limited to conventional methods, paper-based microfluidic technology, microfluidic chip technology, electrochemical detection technology, ultrasonic detection technology, and smartphone-based detection technology. Each method has a broad range of applications and performs differently across various detection scenarios. This article offers a comprehensive analysis of current POCT technologies for cardiovascular disease, assessing their effectiveness, limitations, and future development directions. The aim is to provide insights and theoretical references for innovative research and clinical applications in POCT methods for cardiovascular disease.

13.
Recent Adv Drug Deliv Formul ; 18(4): 294-303, 2024.
Article in English | MEDLINE | ID: mdl-39356100

ABSTRACT

INTRODUCTION: Designing the microfluidic channel for neonatal drug delivery requires proper considerations to enhance the efficiency and safety of drug substances when used in neonates. Thus, this research aims to evaluate high-performance materials and optimize the channel design by modeling and simulation using COMSOL multiphysics in order to deliver an optimum flow rate between 0. 3 and 1 mL/hr. METHOD: Some of the materials used in the study included PDMS, glass, COC, PMMA, PC, TPE, and hydrogels, and the evaluation criterion involved biocompatibility, mechanical properties, chemical resistance, and ease of fabrication. The simulation was carried out in the COMSOL multiphysics platform and demonstrated the fog fluid behavior in different channel geometries, including laminar flow and turbulence. The study then used systematic changes in design parameters with the aim of establishing the best implementation models that can improve the efficiency and reliability of the drug delivery system. The comparison was based mostly on each material and its appropriateness in microfluidic usage, primarily in neonatal drug delivery. The biocompatibility of the developed materials was verified using the literature analysis and adherence to the ISO 10993 standard, thus providing safety for the use of neonatal devices. Tensile strength was included to check the strength of each material to withstand its operation conditions. Chemical resistance was also tested in order to determine the compatibility of the materials with various drugs, and the possibility of fabrication was also taken into consideration to identify appropriate materials that could be used in the rapid manufacturing of the product. RESULTS: The results we obtained show that PDMS, due to its flexibility and simplicity in simulation coupled with more efficient channel designs which have been extracted from COMSOL, present a feasible solution to neonatal drug delivery. CONCLUSION: The present comparative study serves as a guide on the choice of materials and design of microfluidic devices to help achieve safer and enhanced drug delivery systems suitable for the delicate reception of fragile neonates.


Subject(s)
Drug Delivery Systems , Equipment Design , Humans , Infant, Newborn , Drug Delivery Systems/instrumentation , Drug Delivery Systems/methods , Equipment Design/standards , Microfluidics/methods , Microfluidics/instrumentation , Lab-On-A-Chip Devices , Biocompatible Materials/administration & dosage , Tensile Strength , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods
14.
ACS Sens ; 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39373689

ABSTRACT

Circulating cancer stem cells (CCSCs) are subpopulations of cancer cells with high tumorigenicity, chemoresistance, and metastatic potential, which are also major drivers of disease progression. Herein, to achieve the prediction of tumor diagnosis and progression in colorectal cancer (CRC), a new, automated, and portable lateral displacement patterned pump-free (LP) microfluidic chip (LP-chip) with the CoPt3 nanozyme was established for CCSC capture and detection in peripheral blood and feces samples ex vivo. In this design, CoPt3@HA probes with functions of magnetic separation and colorimetric signal transduction by peroxidase-mimicking activity were applied for the capture of CCSCs and signal output in clinical samples. The generated colors of polydopamine (PDA) were quantifiable through the smartphone APP and visualizable by the naked eye in the test line (T line) and control line (C line) of the LP-chip. In the optimal experimental conditions, the CCSC concentration was sensitive to change in the range 0-105 cells mL-1, with a detection limit of 3 cells mL-1 (S/N = 3). Preliminary studies of clinical samples suggest that the platform has the potential for prediction of colorectal cancer progression and poor prognosis. Overall, the LP-chip provides potential strategies for timely diagnosis, therapeutic monitoring, and recurrence prediction to improve home-based patient care.

15.
Front Bioeng Biotechnol ; 12: 1468738, 2024.
Article in English | MEDLINE | ID: mdl-39359262

ABSTRACT

Droplet-based microfluidics techniques coupled to microscopy allow for the characterization of cells at the single-cell scale. However, such techniques generate substantial amounts of data and microscopy images that must be analyzed. Droplets on these images usually need to be classified depending on the number of cells they contain. This verification, when visually carried out by the experimenter image-per-image, is time-consuming and impractical for analysis of many assays or when an assay yields many putative droplets of interest. Machine learning models have already been developed to classify cell-containing droplets within microscopy images, but not in the context of assays in which non-cellular structures are present inside the droplet in addition to cells. Here we develop a deep learning model using the neural network ResNet-50 that can be applied to functional droplet-based microfluidic assays to classify droplets according to the number of cells they contain with >90% accuracy in a very short time. This model performs high accuracy classification of droplets containing both cells with non-cellular structures and cells alone and can accommodate several different cell types, for generalization to a broader array of droplet-based microfluidics applications.

16.
Oncol Rep ; 52(5)2024 Nov.
Article in English | MEDLINE | ID: mdl-39364763

ABSTRACT

CellSearch, the only approved epithelial cell adhesion molecule (EpCAM)­dependent capture system approved for clinical use, overlooks circulating tumor cells (CTCs) undergoing epithelial­mesenchymal transition (EMT­CTCs), which is considered a crucial subtype responsible for metastasis. To address this limitation, a novel polymeric microfluidic device 'CTC­chip' designed for the easy introduction of any antibody was developed, enabling EpCAM­independent capture. In this study, antibodies against EpCAM and cell surface vimentin (CSV), identified as cancer­specific EMT markers, were conjugated onto the chip (EpCAM­chip and CSV­chip, respectively), and the capture efficiency was examined using lung cancer (PC9, H441 and A549) and colon cancer (DLD1) cell lines, classified into three types based on EMT markers: Epithelial (PC9), intermediate (H441 and DLD1) and mesenchymal (A549). PC9, H441 and DLD1 cells were effectively captured using the EpCAM­chip (average capture efficiencies: 99.4, 88.8 and 90.8%, respectively) when spiked into blood. However, A549 cells were scarcely captured (13.4%), indicating that EpCAM­dependent capture is not suitable for mesenchymal­type cells. The expression of CSV tended to be higher in cells exhibiting mesenchymal properties and A549 cells were effectively captured with the CSV­chip (72.4 and 88.4% at concentrations of 10 and 100 µg/ml, respectively) when spiked into PBS. When spiked into blood, the average capture efficiencies were 27.7 and 46.8% at concentrations of 10 and 100 µg/ml, respectively. These results suggest that the CSV­chip is useful for detecting mesenchymal­type cells and has potential applications in capturing EMT­CTCs.


Subject(s)
Epithelial Cell Adhesion Molecule , Epithelial-Mesenchymal Transition , Lab-On-A-Chip Devices , Lung Neoplasms , Neoplastic Cells, Circulating , Vimentin , Humans , Neoplastic Cells, Circulating/pathology , Neoplastic Cells, Circulating/metabolism , Vimentin/metabolism , Epithelial Cell Adhesion Molecule/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/blood , Lung Neoplasms/metabolism , Cell Line, Tumor , A549 Cells , Cell Separation/methods , Biomarkers, Tumor/metabolism , Colonic Neoplasms/pathology , Colonic Neoplasms/metabolism , Colonic Neoplasms/blood
17.
Macromol Biosci ; : e2400279, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-39388643

ABSTRACT

The combination of gelatin and hydroxyapatite (HA) has emerged as a promising strategy in dental tissue engineering due to its favorable biocompatibility, mechanical properties, and ability to support cellular activities essential for tissue regeneration, rendering them ideal components for hard tissue applications. Besides, precise control over interconnecting porosity is of paramount importance for tissue engineering materials. Conventional methods for creating porous scaffolds frequently encounter difficulties in regulating pore size distribution. This study demonstrates the fabrication of gelatin-nano HA scaffolds with uniform porosity using a T-type junction microfluidic device in a single-step process. Significant improvements in control over the pore size distribution are achieved by regulating the flow parameters, resulting in effective and time-efficient manufacturing comparable in quality to the innovative 3D bioprinting techniques. The overall porosity of the scaffolds exceeded 60%, with a remarkably narrow size distribution. The incorporation of nano-HAinto 3D porous gelatin scaffolds successfully induced osteogenic differentiation in stem cells at both the protein and gene levels, as evidenced by the significant increase in osteocalcin (OCN), an important marker of osteogenic differentiation. The OCN levels are 26 and 43 times higher for gelatin and gelatin-HA scaffolds, respectively, compared to the control group.

18.
Sensors (Basel) ; 24(17)2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39275518

ABSTRACT

Highly efficient surface acoustic wave (SAW) transducers offer significant advantages for microfluidic atomization. Aiming at highly efficient atomization, we innovatively accomplish dual-surface simultaneous atomization by strategically positioning the liquid supply outside the IDT aperture edge. Initially, we optimize Lamb wave transducers and specifically investigate their performance based on the ratio of substrate thickness to acoustic wavelength. When this ratio h/λ is approximately 1.25, the electromechanical coupling coefficient of A0-mode Lamb waves can reach around 5.5% for 128° Y-X LiNbO3. We then study the mechanism of droplet atomization with the liquid supply positioned outside the IDT aperture edge. Experimental results demonstrate that optimized Lamb wave transducers exhibit clear dual-surface simultaneous atomization. These transducers provide equivalent amplitude acoustic wave vibrations on both surfaces, causing the liquid thin film to accumulate at the edges of the dual-surface and form a continuous mist.

19.
ACS Appl Mater Interfaces ; 16(39): 53042-53059, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39298643

ABSTRACT

Pathological scarring has been a challenge in skin injury repair since ancient times, and prophylactic treatment in the early stages of wound healing usually results in delayed wound healing. In this study, poly(ethylene oxide) (PEO) and chitosan (CTS) were used as carrier materials to construct multifunctional pirfenidone (PFD)/CTS/PEO (PCP) nanofiber membranes (NFMs) loaded with PFD by microfluidic blow-spinning (MBS). MBS is a good method for quickly, safely, and greenly constructing large-area manufacturing of inexpensive NFMs. PCP NFMs were uniform in external morphology, with diameters ranging from 200 to 500 nm. The encapsulation efficiency of the drug-loaded PCP NFMs was above 80%, which had a good slow release, visualization, water absorption, and biocompatibility. The inhibitory effect of PCP NFMs on normal human dermal fibroblasts was dose-dependent and inhibited the expression of the transforming growth factor-ß1/SMAD family member 3 (TGF-ß1/SMAD3) signaling pathway. PCP NFMs showed significant antibacterial effects against both Staphylococcus aureus and Escherichia coli. In the rabbit ear scar experiment, the wound healed about 70% on day 5 and almost completely on day 10 after PCP-3 NFMs treatment, with the thinnest scar tissue, skin color, tenderness close to normal tissue, and a Vancouver scar scale score of less than 5. PCP-3 NFMs had good effects on anti-inflammatory, wound healing, and collagen-I deposition reducing effects. In conclusion, PCP-3 NFMs can both promote wound healing and intervene to inhibit pathological scarring in advance, making them a potential multifunctional wound dressing for early prevention and treatment of pathological scarring.


Subject(s)
Anti-Bacterial Agents , Chitosan , Cicatrix , Nanofibers , Staphylococcus aureus , Wound Healing , Nanofibers/chemistry , Animals , Rabbits , Humans , Cicatrix/prevention & control , Cicatrix/pathology , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Chitosan/chemistry , Chitosan/pharmacology , Wound Healing/drug effects , Pyridones/chemistry , Pyridones/pharmacology , Escherichia coli/drug effects , Fibroblasts/drug effects , Fibroblasts/metabolism , Polyethylene Glycols/chemistry , Transforming Growth Factor beta1/metabolism , Membranes, Artificial , Microfluidics/methods
20.
Cell Rep Methods ; 4(9): 100846, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39241776

ABSTRACT

Monocytes are critical to innate immunity, participating in chemotaxis during tissue injury, infection, and inflammatory conditions. However, the migration dynamics of human monocytes under different guidance cues are not well characterized. Here, we developed a microfluidic device to profile the migration characteristics of human monocytes under chemotactic and barotactic guidance cues while also assessing the effects of age and cytokine stimulation. Human monocytes preferentially migrated toward the CCL2 gradient through confined microchannels, regardless of donor age and migration pathway. Stimulation with interferon (IFN)-γ, but not granulocyte-macrophage colony-stimulating factor (GM-CSF), disrupted monocyte navigation through complex paths and decreased monocyte CCL2 chemotaxis, velocity, and CCR2 expression. Additionally, monocytes exhibited a bias toward low-hydraulic-resistance pathways in asymmetric environments, which remained consistent across donor ages, cytokine stimulation, and chemoattractants. This microfluidic system provides insights into the unique migratory behaviors of human monocytes and is a valuable tool for studying peripheral immune cell migration in health and disease.


Subject(s)
Cell Movement , Chemotaxis , Monocytes , Humans , Monocytes/immunology , Monocytes/metabolism , Monocytes/drug effects , Cell Movement/drug effects , Chemotaxis/drug effects , Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology , Chemokine CCL2/metabolism , Interferon-gamma/pharmacology , Interferon-gamma/metabolism , Receptors, CCR2/metabolism , Adult
SELECTION OF CITATIONS
SEARCH DETAIL