Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.416
Filter
1.
Crit Care ; 28(1): 212, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38956732

ABSTRACT

BACKGROUND: Vitamin K is essential for numerous physiological processes, including coagulation, bone metabolism, tissue calcification, and antioxidant activity. Deficiency, prevalent in critically ill ICU patients, impacts coagulation and increases the risk of bleeding and other complications. This review aims to elucidate the metabolism of vitamin K in the context of critical illness and identify a potential therapeutic approach. METHODS: In December 2023, a scoping review was conducted using the PRISMA Extension for Scoping Reviews. Literature was searched in PubMed, Embase, and Cochrane databases without restrictions. Inclusion criteria were studies on adult ICU patients discussing vitamin K deficiency and/or supplementation. RESULTS: A total of 1712 articles were screened, and 13 met the inclusion criteria. Vitamin K deficiency in ICU patients is linked to malnutrition, impaired absorption, antibiotic use, increased turnover, and genetic factors. Observational studies show higher PIVKA-II levels in ICU patients, indicating reduced vitamin K status. Risk factors include inadequate intake, disrupted absorption, and increased physiological demands. Supplementation studies suggest vitamin K can improve status but not normalize it completely. Vitamin K deficiency may correlate with prolonged ICU stays, mechanical ventilation, and increased mortality. Factors such as genetic polymorphisms and disrupted microbiomes also contribute to deficiency, underscoring the need for individualized nutritional strategies and further research on optimal supplementation dosages and administration routes. CONCLUSIONS: Addressing vitamin K deficiency in ICU patients is crucial for mitigating risks associated with critical illness, yet optimal management strategies require further investigation. IMPACT RESEARCH: To the best of our knowledge, this review is the first to address the prevalence and progression of vitamin K deficiency in critically ill patients. It guides clinicians in diagnosing and managing vitamin K deficiency in intensive care and suggests practical strategies for supplementing vitamin K in critically ill patients. This review provides a comprehensive overview of the existing literature, and serves as a valuable resource for clinicians, researchers, and policymakers in critical care medicine.


Subject(s)
Critical Illness , Vitamin K Deficiency , Vitamin K , Humans , Critical Illness/therapy , Vitamin K/therapeutic use , Vitamin K Deficiency/drug therapy , Intensive Care Units/organization & administration
2.
Free Radic Biol Med ; 222: 403-413, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38960007

ABSTRACT

BACKGROUND: Selenoprotein P (SELENOP) transports selenium to extrahepatic tissues and is a biomarker of selenium status. Low soil selenium leads to low dietary selenium intake. A consequence is an increased risk of cardiovascular disease. OBJECTIVE: To investigate clinical aspects associated with SELENOP deficiency, including biomarkers of inflammation, quality of life, and mortality within 12 years, and the effect of dietary selenium and coenzyme Q10 supplementation on SELENOP. METHODS: SELENOP was determined at inclusion and after four years of supplementation in 403 elderly community-living participants low in selenium receiving selenium yeast (200 µg/day) and coenzyme Q10 (200 mg/day), or placebo. Pre-intervention, the average serum selenium level was 67 µg/L. T-tests, repeated measures of variance, Cox proportional regressions analyses, Kaplan-Meier graphs and ANCOVA analyses were applied. Associations with biomarkers of inflammation, telomere length, quality of life and mortality were investigated. Benchmark modelling was used to determine the serum selenium concentration at which the saturation levels of SELENOP and GPx3 was achieved. Comparison with GPx3 and serum selenium to identify increased mortality risk was performed, and the effect of supplementation on SELENOP levels were evaluated. RESULTS: Inverse associations were observed between the level of SELENOP at inclusion and biomarkers for inflammation. At follow-up, shorter telomere lengths were seen in those with low levels of SELENOP at inclusion, whereas high levels of SELENOP were associated with better quality of life and decreased mortality. SELENOP had increased prognostic power compared to GPx3 and selenium. Saturation of SELENOP was achieved at a serum selenium level of 146 µg/L, and for GPx3 at 99 µg/L. Supplementation induced higher levels of SELENOP. CONCLUSION: Significant associations between SELENOP and inflammation, length of telomeres, quality of life, and mortality were observed. Thus, selenium supplementation improved SELENOP expression, thereby facilitating systemic selenium bioavailability and resulting in the observed positive health effects.

3.
Ann N Y Acad Sci ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38973341

ABSTRACT

To reduce micronutrient deficiencies, Senegal mandates the fortification of refined oil with vitamin A and wheat flour with iron and folic acid. Expanding Senegal's large-scale food fortification programs to include fortified bouillon could help fill the remaining gaps in dietary micronutrient requirements. Using 7-day household food consumption data collected between 2018 and 2019, we assessed the potential contributions of bouillon fortified with vitamin A (40-250 µg/g bouillon), folic acid (20-120 µg/g), vitamin B12 (0.2-2 µg/g), iron (0.6-5 mg/g), and zinc (0.6-5 mg/g) for meeting micronutrient requirements of women of reproductive age (WRA; 15-49 years old) and children (6-59 months old). Most households (90%) reported consuming bouillon, including poor and rural households. At modeled fortification levels, bouillon fortification reduced the national prevalence of inadequacy by up to ∼20 percentage points (pp) for vitamin A, 34 pp (WRA) and 20 pp (children) for folate, 20 pp for vitamin B12, 38 pp (WRA) and 30 pp (children) for zinc, and ∼8 pp for iron. Predicted reductions in inadequacy were generally larger among poor and rural populations, especially for vitamins A and B12. Our modeling suggests that bouillon fortification has the potential to substantially reduce dietary inadequacy of multiple micronutrients and could also help address inequities in dietary micronutrient inadequacies in Senegal.

4.
Front Nutr ; 11: 1390661, 2024.
Article in English | MEDLINE | ID: mdl-38946784

ABSTRACT

Background: Maternal malnutrition affects the somatic growth of the fetus and subsequent adverse events during infancy and childhood period. Though trials have been conducted on multiple micronutrient (MMN) supplements initiated during the preconception period, there is no collated evidence on this. Materials and methods: We performed a systematic review of published trials with the application of Grading of Recommendations Assessment, Development, and Evaluation (GRADE). The searches were conducted until 30 September 2023. Meta-analysis was performed using Review Manager 5 software. The primary objective was to compare the effect of preconception MMN vs. iron-folic acid (IFA) supplementation on newborn anthropometric parameters at birth. Results: Of the 11,832 total citations retrieved, 12 studies with data from 11,391 participants [Intervention = 5,767; Control = 5,624] were included. For the primary outcome, there was no significant difference in the birth weight [MD, 35.61 (95% CI, -7.83 to 79.06), p = 0.11], birth length [MD, 0.19 (95% CI, -0.03 to 0.42), p = 0.09], and head circumference [MD, -0.25 (95% CI, -0.64 to -0.14), p = 0.22] between the MMN and control groups. For all the secondary outcomes [except for small for gestational age (SGA) and low birth weight (LBW)], the difference between the MMN and control groups was not significant. The GRADE evidence generated for all the outcomes varied from "very low to moderate certainty." Conclusion: A "very low certainty" of evidence suggests that MMN supplementation may not be better than routine IFA supplementation in improving newborn anthropometric parameters (weight, length, and head circumference). The adverse events resulting from the supplementation were not significant. We need better quality uniformly designed RCTs before any firm recommendation can be made.Systematic review registration: identifier (CRD42019144878: https://www.crd.york.ac.uk/prospero/#searchadvanced).

5.
Heliyon ; 10(12): e32803, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38975163

ABSTRACT

This review examines the correlation between plant-based diets and athletic performance, with a specific emphasis on the vital aspect of optimizing micronutrients for athletes. In light of the increasing prevalence of plant-based nutrition among athletes due to its perceived advantages in terms of health, ethics, and the environment, this study investigates the ability of these diets to satisfy the demanding nutritional requirements essential for achieving optimal performance and facilitating recovery. The article emphasizes the significance of essential micronutrients such as iron, vitamin B12, calcium, vitamin D, zinc, and omega-3 fatty acids and also addressing the challenges with their absorption and bioavailability from plant sources. The review consolidates existing scientific knowledge to propose strategies for improving micronutrient consumption, comparing the effects of supplements against whole foods, and highlighting the significance of enhancing bioavailability. The proposal supports the implementation of personalized meal planning, with the assistance of sports nutritionists or dietitians, and is substantiated by case studies showcasing the success of plant-based athletes. Future research directions examine the long-term effects of plant-based diets on micronutrient status and athletic performance, as well as developing nutritional trends and technology. The review concludes that plant-based diets can meet athletes' nutritional demands and improve peak performance while aligning with personal and ethical values with strategic planning and professional guidance. This study intends to help athletes, coaches, and nutritionists understand plant-based nutrition for enhanced athletic performance.

6.
Nutr Rev ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38994896

ABSTRACT

CONTEXT: Despite the progress toward gender equality in events like the Olympic Games and other institutionalized competitions, and the rising number of women engaging in physical exercise programs, scientific studies focused on establishing specific nutritional recommendations for female athletes and other physically active women are scarce. OBJECTIVE: This systematic review aimed to compile the scientific evidence available for addressing the question "What dietary strategies, including dietary and supplementation approaches, can improve sports performance, recovery, and health status in female athletes and other physically active women?" DATA SOURCES: The Pubmed, Web of Science, and Scopus databases were searched. DATA EXTRACTION: The review process involved a comprehensive search strategy using keywords connected by Boolean connectors. Data extracted from the selected studies included information on the number of participants and their characteristics related to sport practice, age, and menstrual function. DATA ANALYSIS: A total of 71 studies were included in this review: 17 focused on the analysis of dietary manipulation, and 54 focused on the effects of dietary supplementation. The total sample size was 1654 participants (32.5% categorized as competitive athletes, 30.7% as highly/moderately trained, and 37.2% as physically active/recreational athletes). The risk of bias was considered moderate, mainly for reasons such as a lack of access to the study protocol, insufficient description of how the hormonal phase during the menstrual cycle was controlled for, inadequate dietary control during the intervention, or a lack of blinding of the researchers. CONCLUSION: Diets with high carbohydrate (CHO) content enhance performance in activities that induce muscle glycogen depletion. In addition, pre-exercise meals with a high glycemic index or rich in CHOs increase CHO metabolism. Ingestion of 5-6 protein meals interspersed throughout the day, with each intake exceeding 25 g of protein favors anabolism of muscle proteins. Dietary supplements taken to enhance performance, such as caffeine, nitric oxide precursors, ß-alanine, and certain sport foods supplements (such as CHOs, proteins, or their combination, and micronutrients in cases of nutritional deficiencies), may positively influence sports performance and/or the health status of female athletes and other physically active women. SYSTEMATIC REVIEW REGISTRATION: PROSPERO registration no. CRD480674.

7.
J Environ Manage ; 366: 121722, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38991346

ABSTRACT

The breeding of livestock raises substantial environmental concerns, especially the efficient management of nutrients and pollution. This research is designed to assess the potency of char and modified char in diluting nutrient concentrations in livestock wastewater. The characteristics of graphene oxide, struvite, and calcium-modified char were inspected, defining their efficacy in both batch and bed-column investigations of nutrient sorption. Various factors, including sorption capacity, time of contact, ion levels, a decrease in ion levels over time, and sorption kinetics, have been considered, along with their appropriateness for respective models. The first evaluation of the options concluded that 600 °C char was better since it exhibited higher removal efficiency. Modified char sorption data at 600 °C was used to adjust the models "PSOM, Langmuir", and "Thomas". The models were applied to both batch and bed-column experiments. The maximum phosphate sorption was 110.8 mg/g, 85.73 mg/g, and 82.46 mg/g for B-GO, B-S, and B-C modified chars respectively, in the batch experiments. The highest phosphate sorption in column experiments, at a flow rate of 400 µl/min, was 51.23 mg per 10 g of sorbent. This corresponds to a sorption rate of 5.123 mg/g. B-GO and B-S modified chars showed higher sorption capacities; this was observed in both the batch and bed-column studies. This displayed the capability of graphene oxide and struvite-modified chars for efficient ion and nutrient uptake, whether in single or multi-ion environments, making them a very good candidate for nutrient filtration in livestock wastewater treatment. Additionally, B-GO char enhanced the sorption of phosphate, resulting in augmented seed germination and seedling growth. These results reveal that B-GO char can be used as a possible substitute for chemical fertilizers.

8.
Sci Rep ; 14(1): 16007, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992147

ABSTRACT

This study addresses the effect of using animal excreta on the nutritional content of forages, focusing on macro- and micro-element concentrations (nitrogen; N, phosphorus; P, sulphur; S, copper; Cu, zinc; Zn, manganese; Mn, selenium; Se) from animal feed to excreta, soil, and plants. Data were collected from pot and field trials using separate applications of sheep or cattle urine and faeces. Key findings indicate that soil organic carbon (SOC) and the type of excreta significantly influences nutrient uptake by forages, with varied responses among the seven elements defined above. Although urine contributes fewer micronutrients compared to faeces (as applied at a natural volume/mass basis, respectively), it notably improves forage yield and micronutrient accumulation, thus potentially delivering positive consequences at the farm level regarding economic performance and soil fertility when swards upon clayey soil types receive said urine in temperate agro-climatic regions (i.e., South West England in the current context). In contrast, faeces application in isolation hinders Se and Mn uptake, once again potentially delivering unintended consequences such as micronutrient deficiencies in areas of high faeces deposition. As it is unlikely that (b)ovine grazing fields will receive either urine or faeces in isolation, we also explored combined applications of both excreta types which demonstrates synergistic effects on N, Cu, and Zn uptake, with either synergistic or dilution effects being observed for P and S, depending largely on SOC levels. Additionally, interactions between excreta types can result in dilution or antagonistic effects on Mn and Se uptake. Notably, high SOC combined with faeces reduces Mn and Se in forages, raising concerns for grazed ruminant systems under certain biotic situations, e.g., due to insufficient soil Se levels typically observed in UK pastures for livestock growth. These findings underscore the importance of considering SOC and excreta nutritional composition when designing forage management to optimize nutrient uptake. It should be noted that these findings have potential ramifications for broader studies of sustainable agriculture through system-scale analyses, as the granularity of results reported herein elucidate gaps in knowledge which could affect, both positively and negatively, the interpretation of model-based environmental impact assessments of cattle and sheep production (e.g., in the case of increased yields [beneficial] or the requirement of additional synthetic supplementation [detrimental]).


Subject(s)
Animal Feed , Feces , Soil , Urine , Animals , Feces/chemistry , Cattle , Soil/chemistry , Sheep , Urine/chemistry , Animal Feed/analysis , Nutrients/analysis , Nutrients/metabolism , Ruminants/physiology , Nitrogen/metabolism , Nitrogen/urine , Nitrogen/analysis , Phosphorus/urine , Phosphorus/analysis , Phosphorus/metabolism
9.
J Nutr ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38992470
10.
Curr Nutr Rep ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38955881

ABSTRACT

PURPOSE OF REVIEW: Micronutrients are vital dietary components for growth and development. Adequate intake of vitamins and minerals through diet is crucial for proper biomolecular and cellular functioning. Many developed countries supplement foods and micronutrient deficiencies are less common. However, many disease states impair micronutrient absorption, metabolism, and excretion. Thus, early recognition of the signs and symptoms of micronutrient deficiencies is critical for providers to improve quality of life and prevent complications in high-risk patients. This article reviews the basic function of micronutrients, recognizes the symptoms of each micronutrient deficiency, provides natural sources of intake, and discusses the diagnosis and supplementation of each micronutrient. High risk patients based on disease state for each micronutrient is discussed. In addition, Bariatric patients are a specific group at high risk of micronutrient deficiency and their management and supplementation for treatment is also covered. RECENT FINDINGS: Micronutrients play a vital role in antioxidant defense, especially in critically ill patients, due to an increase in oxidative stress. Early intervention with high-dose supplementation with vitamin C, vitamin E, zinc and selenium may have beneficial effects. Micronutrients deficiency remains an issue for patients in the developed world. Providers should recognize patients who are at high risk for micronutrients deficiencies and provide proper screening and prompt supplementation after diagnosis to prevent complications of micronutrient deficiencies.

11.
Front Nutr ; 11: 1334974, 2024.
Article in English | MEDLINE | ID: mdl-38957867

ABSTRACT

Background: Though considerable studies suggesting connections between micronutrients and pregnancy complications, current evidence remains inconsistent and lacks causative confirmation. Our study aimed to explore the causal links between them with a two-sample Mendelian randomization (MR) analysis. Methods: Genome-wide association studies (GWAS) data for circulating micronutrients were sourced from GWAS Catalog consortium and PubMed, while data for pregnancy outcomes, including gestational diabetes mellitus (GDM), gestational hypertension (GH), spontaneous abortion (SA), preterm birth (PTB), and stillbirth (SB), were retrieved from the UK Biobank and FinnGen consortia. Causal effects were appraised using inverse variance weighted (IVW), weighted median (WM), and MR-Egger, followed by sensitivity analyses and meta-analysis for validation. Results: Genetically predicted higher vitamin E (OR = 0.993, 95% CI 0.987-0.998; p = 0.005) levels were inversely associated with SA risk. Consistent results were obtained in meta-analysis (OR = 0.99, 95% CI 0.99-1.00; p = 0.005). Besides, a potential positive causality between genetic predisposition to vitamin B12 and SB was identified in both IVW (OR = 0.974, 95% CI 0.953-0.996; p = 0.018) and WM analysis (OR = 0.965, 95% CI 0.939-0.993; p = 0.013). However, no causal relationships were observed between other analyzed circulating micronutrients and pregnancy complications. Conclusion: This study offers compelling evidence of causal associations between circulating levels of vitamins E, B12 and the risk of SA and SB, respectively. These findings are pivotal for pregnancy complications screening and prevention, potentially guiding clinical practice and public health policies toward targeted nutritional interventions.

12.
J Nutr ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38971530

ABSTRACT

Dietary supplement use in the United States is widespread and increasing, especially among certain population groups, such as older Americans. The science surrounding dietary supplements has evolved substantially over the last few decades since their formal regulation in 1994. Much has been learned about the mechanisms of action of many dietary supplement ingredients, but the evidence on their health effects is still building. As is true of much nutrition research, there are many studies that point to health effects, but not all are at the level of scientific evidence (e.g., randomized controlled interventions), rigor, or quality needed for definitive statements of efficacy regarding clinical endpoints. New technologies and approaches are being applied to the science of dietary supplements, including nutrigenomics and microbiome analysis, data science, artificial intelligence, and machine learning - all of which can elevate the science behind dietary supplements. Products can contain an array of bioactive compounds derived from foods as well as from medicinal plants, which creates enormous challenges in data collection and management. Clinical applications, particularly those aimed at providing personalized nutrition options for patients, have become more sophisticated as dietary supplements are incorporated increasingly into clinical practice and self-care. The goals of this paper are to provide historical context for the regulation and science of dietary supplements, identify research resources, and suggest some future directions for science in this field.

13.
Int J Geriatr Psychiatry ; 39(6): e6104, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38877354

ABSTRACT

The central nervous system (CNS) is widely recognized as the only organ system without lymphatic capillaries to promote the removal of interstitial metabolic by-products. Thus, the newly identified glymphatic system which provides a pseudolymphatic activity in the nervous system has been focus of latest research in neurosciences. Also, findings reported that, sleep stimulates the elimination actions of glymphatic system and is linked to normal brain homeostatis. The CNS is cleared of potentially hazardous compounds via the glymphatic system, particularly during sleep. Any age-related alterations in brain functioning and pathophysiology of various neurodegenerative illnesses indicates the disturbance of the brain's glymphatic system. In this context, ß-amyloid as well as tau leaves the CNS through the glymphatic system, it's functioning and CSF discharge markedly altered in elderly brains as per many findings. Thus, glymphatic failure may have a potential mechanism which may be therapeutically targetable in several neurodegenerative and age-associated cognitive diseases. Therefore, there is an urge to focus for more research into the connection among glymphatic system and several potential brain related diseases. Here, in our current review paper, we reviewed current research on the glymphatic system's involvement in a number of prevalent neurodegenerative and neuropsychiatric diseases and, we also discussed several therapeutic approaches, diet and life style modifications which might be used to acquire a more thorough performance and purpose of the glymphatic system to decipher novel prospects for clinical applicability for the management of these diseases.


Subject(s)
Glymphatic System , Neurodegenerative Diseases , Humans , Glymphatic System/physiopathology , Glymphatic System/physiology , Neurodegenerative Diseases/physiopathology , Neurodegenerative Diseases/metabolism , Brain/physiopathology , Brain/metabolism , Amyloid beta-Peptides/metabolism
14.
Plants (Basel) ; 13(11)2024 May 28.
Article in English | MEDLINE | ID: mdl-38891299

ABSTRACT

Transitioning from full to deficit irrigation (DI) has become a key strategy in arid regions to combat water scarcity and enhance irrigation water use efficiency (IWUE). However, implementing DI requires additional approaches to counter its negative effects on wheat production. One effective approach is the foliar application of salicylic acid (SA), micronutrients (Mic; zinc and manganese), and macronutrients (Mac; nitrogen, phosphorus, and potassium). However, there is a lack of knowledge on the optimal combinations and timing of foliar application for these components to maximize their benefits under arid conditions, which is the primary focus of this study. A two-year field study was conducted to assess the impact of the foliar application of SA alone and in combination with Mic (SA + Mic) or Mic and Mac (SA + Mic + Mac) at various critical growth stages on wheat growth, physiology, productivity, and IWUE under DI conditions. Our result demonstrated that the foliar application of different components, the timing of application, and their interaction had significant effects on all investigated wheat parameters with few exceptions. Applying different components through foliar application at multiple growth stages, such as tillering and heading or tillering, heading, and grain filling, led to significant enhancements in various wheat parameters. The improvements ranged from 7.7% to 23.2% for growth parameters, 8.7% to 24.0% for physiological traits, 1.4% to 21.0% for yield and yield components, and 14.8% to 19.0% for IWUE compared to applying the components only at the tillering stage. Plants treated with different components (SA, Mic, Mac) exhibited enhanced growth, production, and IWUE in wheat compared to untreated plants. The most effective treatment was SA + Mic, followed by SA alone and SA + Mic + Mac. The foliar application of SA, SA + Mic, and SA + Mic + Mac improved growth parameters by 1.2-50.8%, 2.7-54.6%, and 2.5-43.9%, respectively. Yield parameters were also enhanced by 1.3-33.0%, 2.4-37.2%, and 3.0-26.6% while IWUE increased by 28.6%, 33.0%, and 18.5% compared to untreated plants. A heatmap analysis revealed that the foliar application of SA + Mic at multiple growth stages resulted in the highest values for all parameters, followed by SA alone and SA + Mic + Mac applications at multiple growth stages. The lowest values were observed in untreated plants and with the foliar application of different components only at the tillering stage. Thus, this study suggested that the foliar application of SA + Mic at various growth stages can help sustain wheat production in arid regions with limited water resources.

15.
Nutrients ; 16(11)2024 May 26.
Article in English | MEDLINE | ID: mdl-38892564

ABSTRACT

Patients hospitalized with COVID-19 have low levels of vitamins and trace elements. This could lead to a post-acute COVID-19 condition (PCC) that can worsen a patient's quality of life. We aimed to study the baseline micronutrient status of patients and assess whether a multiple micronutrient supplement (MMS) taken for 2 weeks at the first sign of COVID-19 symptoms would be able to reduce the incidence of PCC. This double-blind, placebo-controlled, randomized clinical trial was conducted in adult outpatients with acute COVID-19, recruited between 2021 and 2023 in Spain. Of the 285 patients assessed for eligibility, 267 were randomized and 246 were included in the intent-to-treat population. The mean age was 46.8 years, and 68% were female. Overall, 54.6% had micronutrient deficiencies in the acute phase of COVID-19 at baseline, and 26.2% had PCC after 180 days of follow-up (D180). The most frequently recorded PCC symptoms were neurological (14.1%), with 24% patients scoring worse in the cognitive tests compared to their baseline status. The rate of PCC at D180 was similar between the placebo (25.0%) and intervention (27.7%) groups, without significant differences (p = 0.785). Age over 50 years was the most relevant risk factor for developing PCC, followed by female sex. The most important protective factor against PCC was SARS-CoV-2 vaccination. In this population of predominantly middle-aged, white women with acute COVID-19 not requiring hospital admission, MMS intake for 14 days at symptom onset did not prevent PCC nor improve their micronutrient status at D180.


Subject(s)
COVID-19 , Dietary Supplements , Micronutrients , SARS-CoV-2 , Humans , Female , COVID-19/prevention & control , COVID-19/epidemiology , COVID-19/complications , Male , Double-Blind Method , Middle Aged , Micronutrients/administration & dosage , Adult , Spain/epidemiology , Post-Acute COVID-19 Syndrome , Aged , Betacoronavirus
16.
Nutrients ; 16(11)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38892719

ABSTRACT

BACKGROUND: The rates of obesity, undernutrition, and other non-communicable diseases are on the rise among Lebanese adults. Therefore, it is crucial to evaluate the food consumption habits of this population to understand diet quality, analyze consumption trends, and compare them to healthy diets known to reduce risks of non-communicable diseases. AIM: To evaluate the food consumption patterns, energy intake, as well as macro- and micro-nutrient intake among a nationally representative sample of Lebanese adults aged 18-64 years old. METHODS: A cross-sectional study was carried out from May to September 2022 involving 444 participants from all eight Lebanese governorates. Sociodemographic and medical information was gathered through a questionnaire, food consumption was evaluated using a validated FFQ and 24 h recall, and anthropometric measurements were recorded. RESULTS: There was a notable lack of adherence to three healthy diets (Mediterranean, EAT-Lancet, USDA) among Lebanese adults. Their dietary pattern is characterized by high energy, added sugars, sodium, and saturated fat intake while being low in healthy fats, vitamin A, D, and E. Adult women are falling short of meeting their daily calcium, vitamin D, iron, and vitamin B12 requirements, putting them at increased risk of anemia, osteoporosis, and other health issues. Grains and cereals were the most consumed food groups, and most participants were found to be overweight or obese. CONCLUSIONS: In conclusion, the results highlight the need for public health policies and interventions aimed at encouraging Lebanese adults to make healthier food choices and transition towards diets like the Mediterranean, EAT-Lancet, or USDA diet. These diets have been shown to promote overall health and wellbeing.


Subject(s)
Feeding Behavior , Humans , Lebanon/epidemiology , Adult , Female , Male , Middle Aged , Young Adult , Cross-Sectional Studies , Adolescent , Energy Intake , Diet/statistics & numerical data , Diet, Healthy/statistics & numerical data , Diet Surveys , Eating , Nutrition Surveys
17.
J AIDS HIV Treat ; 6(1): 11-27, 2024.
Article in English | MEDLINE | ID: mdl-38845818

ABSTRACT

This review underscores the important role of nutrition in enhancing the management of Human Immunodeficiency Virus type 1 (HIV-1). Highlighting the efficacy of dietary interventions, including, the importance of omega-3 fatty acids, vitamins D and B-12, and the Mediterranean diet, we delineate how these beneficial nutritional strategies can improve the effectiveness of combined antiretroviral therapy (cART), mitigate its side effects, and ameliorate metabolic disorders in people living with HIV-1 (PLWH). Our review advocates for the integration and implementation of personalized nutritional assessments into the care plan for PLWH, proposing actionable strategies for healthcare providers in HIV-1 field. Summarizing the current standing of the relevance of the nutritional and well-planned diet recommended for the PLWH and emphasizing on the future research directions, this review establishes a foundation for nutrition as a cornerstone in comprehensive HIV-1 management. Our review aims to improve patients' health outcomes and overall quality of life for PLWH.

18.
Front Nutr ; 11: 1295609, 2024.
Article in English | MEDLINE | ID: mdl-38840701

ABSTRACT

Introduction: The biofortification of staple foods such as cassava is one of the technological breakthroughs in the nutritional improvement of foods. Fufu is one of the fermented cassava products produced and consumed in major West African countries, including Sierra Leone, and the majority of the processes involved in its production have direct and indirect effects on its properties. This study looked at how the concentration and retention of micronutrients in yellow-fleshed cassava fufu varied depending on genotype and processing method. Methods: Six yellow-fleshed cassava root genotypes (TMS-070557, TMS-011371, TMS-011412, TMS-011663, TMS-083724, TMS-083774) and one white (TME 419 as a control) were processed into fufu using both conventional (oven and sun-dried) and traditional (bowl and river) methods. The Statistical Analysis System (SAS) version 9.4 was used to analyze data using means, percentages, analysis of variance and means separated by least significant differences (LSD). Results and Discussion: In the modified traditional river method, raw and cooked fufu samples had significantly higher ß-carotene concentrations and true retention (TR) percentages (11.06 g/g (46.77%) and 4.54 g/g (16.94%), respectively) than other genotypes (p < 0.0001). Modified traditional fufu processing methods increased total ß-carotene concentrations, while raw roots showed a significant decrease in total carotenoid and ß-carotene concentrations, regardless of genotype or processing method. Sun-drying was the most effective method, with significantly higher concentrations and TR percentages of iron (10.01 mg/kg, 18.02%) and zinc (11.49 mg/kg, 40.64%) in raw and cooked fufu samples. Genotype TMS-083724 outperformed both conventional fufu processing methods, displaying a significant total carotenoid concentration and true retention percentage. Finally, this study found that the concentrations and percentages of TR of micronutrients varied depending on the processing method and genotype. It is recommended that a modified traditional river fufu processing method be further developed and improved in order to maximize provitamin A carotenoids, concentrations, and percentage TR.

19.
Food Chem X ; 22: 101483, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38840723

ABSTRACT

The primary goal of this study was to assess the effect of selective fermentation on the nutritional and techno-functional characteristics of fermented millet-skim milk-based product. The product was made with HHB-311 biofortified pearl millet (PM) flour, skim milk powder, and isolated cultures (either alone or in combination) of Limosilactobacillus fermentum MS005 (LF) and Lactobacillus rhamnosus GG 347 (LGG). To optimize fermentation time, time intervals 8, 16, and 24 h were explored, while the temperature was kept 37 °C. Results of protein digestibility showed that LF (16 h) and LGG (24 h) fermented samples had significantly higher (P < 0.05) protein digestibility of 90.75 ± 1.6% and 93.76 ± 3.4%, respectively, than that of control (62.60 ± 2.6%). Further, 16 h fermentation with LF showed enhanced iron (39%) and zinc (14%) bioavailability. The results suggested that LF with 16 h fermentation is most suitable for making millet-based fermented products with superior techno-functional attributes and micronutrient bioavailability.

20.
Wei Sheng Yan Jiu ; 53(3): 472-486, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38839590

ABSTRACT

OBJECTIVE: To comprehensively analyze the trace nutrient contents in take-away meals, the simultaneous detection method of common vitamins in take-away meals were explored based on the samples' matrix, and the content of trace nutrients in take-away meals was analyzed combined with inductively coupled plasma-mass spectrometry(ICP-MS) detection of common elements. METHODS: Fifty-seven take-away meals were collected randomly and analyzed. Vitamins were determined by high performance liquid chromatography-ultraviolet detector tandem fluorescence detector after pretreatment of samples including enzymatic digestion, hydrolysis and extraction. The separation was performed on a C_(18) column(250 mm×4.6 mm, 5 µm) with ion-pair acid reagents as the mobile phase for water-soluble vitamins and methanol for fat-soluble vitamins. Vitamin B_1, vitamin B_2, nicotinic acid, nicotinamide and vitamin A were detected by ultraviolet detector(UVD), while vitamin B_6 and E by fluorescence detector(FLD). Elemental analysis of calcium, magnesium, sodium, potassium, zinc, selenium and copper in the take-away meals was carried out according to GB 5009.268-2016 by ICP-MS to comprehensively evaluate the contents of micronutrients. RESULTS: Through optimization of chromatography and sample pretreatment conditions, the sensitivity of the established detection method can meet the needs of micronutrient evaluation with the detection limits and quantification limits of vitamins in the range of 0.002-0.098 mg/100 g and 0.007-0.327 mg/100 g, respectively. Good precision was obtained(<10%). The spiked recovery rates were 80.5%-103.8%(n=6). The result showed that the contents of micronutrients in take-away meals were generally low. The detection rates of vitamins ranged from 21.1% to 98.2%. CONCLUSION: The proposed method is simple and sensitive, and the contents of vitamins and elements determined were low in the collected take-away meals.


Subject(s)
Micronutrients , Micronutrients/analysis , Chromatography, High Pressure Liquid/methods , Vitamins/analysis , Mass Spectrometry/methods , Food Analysis/methods , Trace Elements/analysis , Meals
SELECTION OF CITATIONS
SEARCH DETAIL
...