ABSTRACT
Apis mellifera, crucial pollinators for both native and cultivated plants, also yield various products such as honey, wax, royal jelly, and propolis, extensively utilized in the food, pharmaceuticals, and cosmetics industries. Nosema ceranae, a prevalent microsporidian worldwide, stands as a significant pathogen for A. mellifera, showing resistance to conventional antibiotics. Consequently, the exploration of novel compounds for N. ceranae control becomes imperative. Dithiocarbimate derivatives emerge as promising antifungal candidates under evaluation for combating various pathogens, particularly those affecting plants. This study assessed the toxicity profile of six dithiocarbimate derivatives on A. mellifera worker survival and N. ceranae pathogen. Among these, four compounds exhibited minimal bee mortality and proceeded to further evaluation against N. ceranae. In vitro assays demonstrated their inhibitory effects on spore germination. Remarkably, the most potent compound suppressed N. ceranae spores by 62% at a concentration of 20 µmol L-1in vivo. Thus, these dithiocarbimate derivatives represent promising new antifungal agents for combatting nosemosis in honey bee populations.
ABSTRACT
In recent years, there has been growing concern on the potential weakening of honey bees and their increased susceptibility to pathogens due to chronic exposure to xenobiotics. The present work aimed to study the effects on bees undergoing an infection by Nosema ceranae and being exposed to a frequently used in-hive acaricide, amitraz. To achieve this, newly emerged bees were individually infected with N. ceranae spores and/or received a sublethal concentration of amitraz in their diets under laboratory conditions. Mortality, food intake, total volume excrement, body appearance, and parasite development were registered. Bees exposed to both stressors jointly had higher mortality rates compared to bees exposed separately, with no difference in the parasite development. An increase in sugar syrup consumption was observed for all treated bees while infected bees fed with amitraz also showed a diminishment in pollen intake. These results coupled with an increase in the total number of excretion events, alterations in behavior and body surface on individuals that received amitraz could evidence the detrimental action of this molecule. To corroborate these findings under semi-field conditions, worker bees were artificially infected, marked, and released into colonies. Then, they were exposed to a commercial amitraz-based product by contact. The recovered bees showed no differences in the parasite development due to amitraz exposure. This study provides evidence to which extent a honey bee infected with N. ceranae could potentially be weakened by chronic exposure to amitraz treatment.
Subject(s)
Nosema , Toluidines , Animals , Bees/drug effects , Bees/microbiology , Bees/parasitology , Nosema/drug effects , Nosema/physiology , AcaricidesABSTRACT
Multiple microbial detections in stool samples of indigenous individuals suffering from chronic gastroenteric disorder of a likely infectious origin, characterized by recurring diarrhea of variable intensity, in the rural north-east of Colombia are common findings, making the assignment of etiological relevance to individual pathogens challenging. In a population of 773 indigenous people from either the tribe Wiwa or Kogui, collider bias analysis was conducted comprising 32 assessed microorganisms including 10 bacteria (Aeromonas spp., Campylobacter spp., enteroaggregative Escherichia coli (EAEC), enteropathogenic Escherichia coli (EPEC), enterotoxigenic Escherichia coli (ETEC), Salmonella spp., Shiga toxin-producing Escherichia coli (STEC), Shigella spp./enteroinvasive Escherichia coli (EIEC), Tropheryma whipplei and Yersinia spp.), 11 protozoa (Blastocystis spp., Cryptosporidium spp., Cyclospora spp., Dientamoeba fragilis, Entamoeba coli, Entamoeba bangladeshi/dispar/histolytica/moshkovskii complex, Entamoeba histolytica, Endolimax nana, Giardia duodenalis, Iodamoeba buetschlii and Pentatrichomonas hominis), 8 helminths (Ascaris spp., Enterobius vermicularis, Hymenolepis spp., Necator americanus, Schistosoma spp., Strongyloides spp., Taenia spp. and Trichuris spp.), microsporidia (Encephalocytozoon spp.) and fungal elements (microscopically observed conidia and pseudoconidia). The main results indicated that negative associations potentially pointing towards collider bias were infrequent events (n = 14), while positive associations indicating increased likelihood of co-occurrence of microorganisms quantitatively dominated (n = 88). Microorganisms showing the most frequent negative associations were EPEC (n = 6) and Blastocystis spp. (n = 3), while positive associations were most common for Trichuris spp. (n = 16), Dientamoeba fragilis (n = 15), Shigella spp./EIEC (n = 12), Ascaris spp. (n = 11) and Blastocystis spp. (n = 10). Of note, positive associations quantitively dominated for Blastocystis spp. In conclusion, collider bias assessment did not allow clear-cut assignment of etiological relevance for detected enteric microorganisms within the assessed Colombian indigenous population. Instead, the results suggested complex microbial interactions with potential summative effects. Future studies applying alternative biostatistical approaches should be considered to further delineate respective interactions.
ABSTRACT
We report a case of Enterocytozoon bieneusi infection in a pediatric hematopoietic stem cell transplant recipient in Argentina. Spores were visualized in feces using Calcofluor White and modified trichrome stainings. PCR and sequencing identified E. bieneusi genotype D in fecal samples and liver samples, confirming extraintestinal dissemination of the parasite.
Subject(s)
Enterocytozoon , Hematopoietic Stem Cell Transplantation , Humans , Child , Argentina/epidemiology , Enterocytozoon/genetics , Transplant Recipients , Feces , Hematopoietic Stem Cell Transplantation/adverse effectsABSTRACT
Microsporidia are natural pathogens of arthropods and have been used as biological control against insect pests. In the United States, efforts to control the invasive Red Imported Fire Ant, Solenopsis invicta, and Black Imported Fire Ant, Solenopsis richteri, have included the use of the microsporidium, Kneallhazia solenopsae. However, there is limited information about the genetic differences among the microsporidian variants found in S. invicta and in S. richteri. In this study, we assessed the prevalence and genetic diversity of K. solenopsae in native populations of S. richteri in Argentina (South America). Additionally, we examined the social parasitic ant, Solenopsis daguerrei, which is found in some S. richteri nests, for the presence of this microsporidium. The survey of 219 S. richteri nests revealed K. solenopsae infections in all five sites analyzed, with 28 colonies (12.8%) positive for the microsporidium. Among the 180 S. daguerrei individuals collected, seven ants (3.9%) from three sites tested positive for K. solenopsae. Phylogenetic analyses of the microsporidian variants present in S. richteri and S. daguerrei based on partial small subunit ribosomal gene sequences (SSU rRNA) showed that both ant species shared the same variant, which is different from the ones found in S. invicta. Further studies are needed to determine the pathogenicity of genetically different K. solenopsae variants among Solenopsis species.
ABSTRACT
Encephalitozoon cuniculi is a unicellular, spore-forming, obligate intracellular eukaryote belonging to the phylum Microsporidia. It is known to infect mainly immunocompromised and immunocompetent mammals, including humans. The parasite-host relationship has been evaluated using both in vitro cell culturing and animal models. For example, Balb/c and C57BL/6 mouse strains have been used interchangeably, although the latter has been considered more susceptible due to the higher fungal load observed after infection. In the present study, we identified the characteristics of the immune response of C57BL/6 mice treated or not with the immunosuppressant cyclophosphamide (Cy) and challenged with E. cuniculi by intraperitoneal route. After 14 days of infection, serum was collected to analyze Th1, Th2, and Th17 cytokine levels. In addition, peritoneal washes were performed, and the spleen sample was collected for immune cell phenotyping, whereas liver, spleen, kidney, lung, intestine, and central nervous system (CNS) samples were collected for histopathological analysis. Although infected mice displayed a reduced absolute number of macrophages, they showed an M1 profile, an elevated number of CD4+T, CD8+T, B-1, and B-2 lymphocytes, with a predominance of Th1 inflammatory cytokines (interferon [IFN]-γ, tumor necrosis factor [TNF]-α, and interleukin [IL]-2) and Th17. Furthermore, Cy-Infected mice showed a reduced absolute number of macrophages with an M1 profile but a reduced number of CD4+T, CD8+T, B-1, and B-2 lymphocytes, with a predominance of Th1 inflammatory cytokines (IFN-γ, TNF-α, and IL-2) and Th2 (IL-4). This group displayed a higher fungal burden as well and developed more severe encephalitozoonosis, which was associated with a reduced number of T and B lymphocytes and a mixed profile of Th1 and Th2 cytokines.
ABSTRACT
Several PCR methodologies are available for the detection of Enterocytozoon hepatopenaei (EHP) that target the SSU rRNA gene. However, these methodologies are reported as unsuitable for the detection of EHP due to specificity issues. Here, we report the applicability of two commonly used SSU rRNA methodologies for the detection of additional microsporidia from the genus Vittaforma that is present in cultured Penaeus vannamei from Costa Rica. The molecular detection of DNA of the novel microsporidia can only be achieved using SSU rRNA targeting methodologies and does not cross-react with the highly specific spore wall protein gene PCR detection method.
Subject(s)
Enterocytozoon , Microsporidia, Unclassified , Microsporidia , Penaeidae , Animals , Microsporidia, Unclassified/genetics , Penaeidae/genetics , Vittaforma/genetics , Costa Rica , Polymerase Chain Reaction/methods , Enterocytozoon/genetics , Microsporidia/genetics , RNA, RibosomalABSTRACT
Phagocytic responses are critical for effective host defense against opportunistic fungal pathogens, such as Encephalitozoon cuniculi, an obligate intracellular fungus that causes emerging encephalitozoonosis in humans and other animals. Malassezia has immunomodulatory effects and can modulate the production of pro- and anti-inflammatory cytokines via keratinocytes and human monocytes. In this study, we evaluated the modulatory effects of heat-killed Malassezia pachydermatis suspension on macrophages challenged with Encephalitozoon cuniculi. Macrophages were treated with heat-killed M. pachydermatis suspension before being infected with spores of E. cuniculi. The cultures were stained with calcofluor, and the spores, internalized or not, were counted to determine their phagocytic capacity and index (PC and PI, respectively). Microbicidal and phagocytic activities were evaluated by transmission electron microscopy (TEM). The untreated macrophages had higher PC and PI and number of phagocytosed spores than treated macrophages. However, TEM revealed that treated macrophages had higher microbicidal activity because there were few spores in different degrees of degeneration and amorphous materials in the phagocytic vacuoles. Macrophages treated with heat-killed M. pachydermatis suspension had lower PC and PI and incipient presence of E. cuniculi in phagosomes. Treated macrophages had a mixed pattern of cytokine release with Th1, Th2, and Th17 profiles, with emphasis on interleukin (IL)-10, IL-4, IL-17, IL-6, and interferon (IFN)-γ secretion, and particularly high production of anti-inflammatory cytokines. Our results suggest that treatment with heat-killed M. pachydermatis suspension increases the release of cytokines and decreases the phagocytic activity of macrophages challenged with E. cuniculi.
Subject(s)
Encephalitozoon cuniculi , Malassezia , Animals , Humans , Encephalitozoon cuniculi/physiology , Hot Temperature , Macrophages , CytokinesABSTRACT
Microsporidia are obligatory intracellular parasites related to fungi and since their discovery their classification and origin has been controversial due to their unique morphology. Early taxonomic studies of microsporidia were based on ultrastructural spore features, characteristics of their life cycle and transmission modes. However, taxonomy and phylogeny based solely on these characteristics can be misleading. SSU rRNA is a traditional marker used in taxonomical classifications, but the power of SSU rRNA to resolve phylogenetic relationships between microsporidia is considered weak at the species level, as it may not show enough variation to distinguish closely related species. Overall genome relatedness indices (OGRI), such as average nucleotide identity (ANI), allows fast and easy-to-implement comparative measurements between genomes to assess species boundaries in prokaryotes, with a 95% cutoff value for grouping genomes of the same species. Due to the increasing availability of complete genomes, metrics of genome relatedness have been applied for eukaryotic microbes taxonomy such as microsporidia. However, the distribution of ANI values and cutoff values for species delimitation have not yet been fully tested in microsporidia. In this study we examined the distribution of ANI values for 65 publicly available microsporidian genomes and tested whether the 95% cutoff value is a good estimation for circumscribing species based on their genetic relatedness.
Subject(s)
Microsporidia , Phylogeny , Nucleotides , RNA, Ribosomal/genetics , Fungi/geneticsABSTRACT
The goal of this work is to compile and discuss molecules of marine origin reported in the scientific literature with anti-parasitic activity against Trichomonas, Giardia, and Entamoeba, parasites responsible for diseases that are major global health problems, and Microsporidial parasites as an emerging problem. The presented data correspond to metabolites with anti-parasitic activity in human beings that have been isolated by chromatographic techniques from marine sources and structurally elucidated by spectroscopic and spectrometric procedures. We also highlight some semi-synthetic derivatives that have been successful in enhancing the activity of original compounds. The biological oceanic reservoir offers the possibility to discover new biologically active molecules as lead compounds to develop new drug candidates. The molecular variety is extensive and must be correctly explored and managed. Also, it will be necessary to take some actions to preserve the source species from extinction or overharvest (e.g., by cryopreservation of coral spermatozoa, oocytes, embryos, and larvae) and coordinate appropriate exploitation to increase the chemical knowledge of the natural products generated in the oceans. Additional initiatives such as the total synthesis of complex natural products and their derivatives can help to prevent overharvest of the marine ecosystems and at the same time contribute to the discovery of new molecules.
Subject(s)
Antiprotozoal Agents , Biological Products , Parasites , Animals , Antiprotozoal Agents/chemistry , Biological Products/pharmacology , Ecosystem , Giardia , HumansABSTRACT
Speciation is a complex and continuous process that makes the delineation of species boundaries a challenging task in particular in species with little morphological differentiation, such as parasites. In this case, the use of genomic data is often necessary, such as for the intracellular Microsporidian parasites. Here, we characterize the genome of a gut parasite of the cladoceran Daphnia longispina (isolate FI-F-10), which we propose as a new species within the genus Ordospora: Ordospora pajunii sp. nov (Ordosporidae). FI-F-10 closest relative, Ordospora colligata is only found in D. magna. Both microsporidian species share several morphological features. Although it is not possible to estimate divergence times for Microsporidia due to the lack of fossil records and accelerated evolutionary rates, we base our proposal on the phylogenomic and genomic distances between both microsporidian lineages. The phylogenomic reconstruction shows that FI-F-10 forms an early diverging branch basal to the cluster that contains all known O. colligata strains. Whole-genome comparisons show that FI-F-10 presents a greater divergence at the sequence level than observed among O. colligata strains, and its genomic average nucleotide identity (ANI) values against O. colligata are beyond the intraspecific range previously established for yeast and prokaryotes. Our data confirm that the ANI metrics are useful for fine genetic divergence calibration across Microsporidia taxa. In combination with phylogenetic and ecological data, genome-based metrics provide a powerful approach to delimitate species boundaries.
Subject(s)
Microsporidia , Parasites , Animals , Daphnia/genetics , Daphnia/parasitology , Genomics , Microsporidia/genetics , PhylogenyABSTRACT
The aetiology of diarrhoea in a patient in Cuba with HIV was investigated. Although molecular diagnostics are still not used in many under-resourced settings, here traditional methods were supported by use of PCR. This approach enabled detection of a dual infection (Cystoisospora belli and Enterocytozoon bieneusi), the latter of which was not identified by microscopy with Didier's trichromic staining.
Subject(s)
Coccidiosis/diagnosis , Diarrhea/diagnosis , Enterocytozoon/isolation & purification , Microsporidiosis/diagnosis , Sarcocystidae/isolation & purification , Adult , Anti-Infective Agents/therapeutic use , Coccidiosis/drug therapy , Cuba , Diarrhea/microbiology , Diarrhea/parasitology , Enterocytozoon/genetics , HIV Infections/complications , HIV Infections/drug therapy , Humans , Immunocompromised Host , Male , Microsporidiosis/drug therapy , Molecular Diagnostic Techniques , Polymerase Chain Reaction , Sarcocystidae/genetics , Sarcoma, Kaposi/complications , Sarcoma, Kaposi/drug therapy , Trimethoprim, Sulfamethoxazole Drug Combination/therapeutic useABSTRACT
Phagocytic responses are critical for effective host defense against opportunistic fungal pathogens, such as Encephalitozoon cuniculi, an obligate intracellular fungus that causes emerging ncephalitozoonosis in humans and other animals. Malassezia has immunomodulatory effects and can modulate the production of pro- and anti-inflammatory cytokines via keratinocytes and human monocytes. In this study, we evaluated the modulatory effects of heat-killed Malassezia pachydermatis suspension on macrophages challenged with Encephalitozoon cuniculi. Macrophages were treated with heat-killed M. pachydermatis suspension before being infected with spores of E. cuniculi. The cultures were stained with calcofluor, and the spores, internal- ized or not, were counted to determine their phagocytic capacity and index (PC and PI, respectively). Micro-bicidal and phagocytic activities were evaluated by transmission electron microscopy (TEM). The untreated macrophages had higher PC and PI and number of phagocytosed spores than treated macrophages. However, TEM revealed that treated macrophages had higher microbicidal activity because there were few spores in different degrees of degeneration and amorphous materials in the phagocytic vacuoles. Macrophages treated with heat-killed M. pachydermatis suspension had lower PC and PI and incipient presence of E. cuniculi in phagosomes. Treated macrophages had a mixed pattern of cytokine release with Th1, Th2, and Th17 profiles, with emphasis on interleukin (IL)-10, IL-4, IL-17, IL-6, and interferon (IFN)-g secretion, and particularly high production of anti-inflammatory cytokines. Our results suggest that treatment with heat-killed M. pachyder-matis suspension increases the release of cytokines and decreases the phagocytic activity of macrophages challenged with E. cuniculi.
ABSTRACT
Pintomyia evansi is recognized by its vectorial competence in the transmission of parasites that cause fatal visceral leishmaniasis in rural and urban environments of the Caribbean coast of Colombia. The effect on and the variation of the gut microbiota in female P. evansi infected with Leishmania infantum were evaluated under experimental conditions using 16S rRNA Illumina MiSeq sequencing. In the coinfection assay with L. infantum, 96.8% of the midgut microbial population was composed mainly of Proteobacteria (71.0%), followed by Cyanobacteria (20.4%), Actinobacteria (2.7%), and Firmicutes (2.7%). In insect controls (uninfected with L. infantum) that were treated or not with antibiotics, Ralstonia was reported to have high relative abundance (55.1-64.8%), in contrast to guts with a high load of infection from L. infantum (23.4-35.9%). ASVs that moderately increased in guts infected with Leishmania were Bacillus and Aeromonas. Kruskal-Wallis nonparametric variance statistical inference showed statistically significant intergroup differences in the guts of P. evansi infected and uninfected with L. infantum (p < 0.05), suggesting that some individuals of the microbiota could induce or restrict Leishmania infection. This assay also showed a negative effect of the antibiotic treatment and L. infantum infection on the gut microbiota diversity. Endosymbionts, such as Microsporidia infections (<2%), were more often associated with guts without Leishmania infection, whereas Arsenophonus was only found in guts with a high load of Leishmania infection and treated with antibiotics. Finally, this is the first report that showed the potential role of intestinal microbiota in natural populations of P. evansi in susceptibility to L. infantum infection.
ABSTRACT
Microsporidia are recognized as opportunistic pathogens in individuals with immunodeficiencies, especially related to T cells. Although the activity of CD8+ T lymphocytes is essential to eliminate these pathogens, earlier studies have shown significant participation of macrophages at the beginning of the infection. Macrophages and other innate immunity cells play a critical role in activating the acquired immunity. After programmed cell death, the cell fragments or apoptotic bodies are cleared by phagocytic cells, a phenomenon known as efferocytosis. This process has been recognized as a way of evading immunity by intracellular pathogens. The present study evaluated the impact of efferocytosis of apoptotic cells either infected or not on macrophages and subsequently challenged with Encephalitozoon cuniculi microsporidia. Macrophages were obtained from the bone marrow monocytes from C57BL mice, pre-incubated with apoptotic Jurkat cells (ACs), and were further challenged with E. cuniculi spores. The same procedures were performed using the previously infected Jurkat cells (IACs) and challenged with E. cuniculi spores before macrophage pre-incubation. The average number of spores internalized by macrophages in phagocytosis was counted. Macrophage expression of CD40, CD206, CD80, CD86, and MHCII, as well as the cytokines released in the culture supernatants, was measured by flow cytometry. The ultrastructural study was performed to analyze the multiplication types of pathogens. Macrophages pre-incubated with ACs and challenged with E. cuniculi showed a higher percentage of phagocytosis and an average number of internalized spores. Moreover, the presence of stages of multiplication of the pathogen inside the macrophages, particularly after efferocytosis of infected apoptotic bodies, was observed. In addition, pre-incubation with ACs or IACs and/or challenge with the pathogen decreased the viability of macrophages, reflected as high percentages of apoptosis. The marked expression of CD206 and the release of large amounts of IL-10 and IL-6 indicated the polarization of macrophages to an M2 profile, compatible with efferocytosis and favorable for pathogen development. We concluded that the pathogen favored efferocytosis and polarized the macrophages to an M2 profile, allowing the survival and multiplication of E. cuniculi inside the macrophages and explaining the possibility of macrophages acting as Trojan horses in microsporidiosis.
ABSTRACT
Microsporidia are important entomopathogens known for infecting insects such as the silkworm (Bombyx mori) thus impairing global silk production. This study aimed to identify and characterize the microsporidia isolated from a diseased larva of silkworm, collected from a sericulture farm in southern Brazil. Identification was performed by phylogenetic analysis of the nucleotide sequences of the SSU rRNA genes. Characterization was performed by analyzing spore sizes, tissue tropism, internal and external symptoms, and pathogenicity against B. mori. Microsporidia belonging to three different genera were identified, namely, Endoreticulatus, Nosema and Tubulinosema. After inoculation of the mixed spores of the microsporidian isolates into B. mori larvae, a high prevalence of Tubulinosema spp. was observed. This isolate showed high prevalence on the silk glands and a late mortality, initially of around 10% until the 20th day post-inoculation but reaching 91.5% upon pupation. Therefore, we demonstrated that Tubulinosema spp. causes chronic infection with slow pathogenicity. We identified for the first time three different microsporidians concurrently infecting B. mori in Brazil. Tubulinosema is of particular interest because of its potential threat to silk production; it affects the formation of silk glands in B. mori while not presenting distinguishable external symptoms or causing the immediate death of these insects. Further studies focusing on this species, mainly regarding its life cycle within the host and the sublethal effects of surviving individuals, demonstrate the importance of describing it as a new species and improving the characterization of the disease in order to prevent its spread.
Subject(s)
Bombyx/microbiology , Microsporidia/isolation & purification , Animals , Bombyx/growth & development , Brazil , Larva/growth & development , Larva/microbiology , Microsporidia/classification , Nosema/classification , Nosema/isolation & purification , RNA, Fungal/analysis , RNA, Ribosomal/analysisABSTRACT
Nosema ceranae is a ubiquitous microsporidian pathogen infecting the midgut of honey bees. The infection causes bee nosemosis, a disease associated with malnutrition, dysentery, and lethargic behavior, and results in considerable economic losses in apiculture. The use of a rapid, sensitive, and inexpensive DNA-based molecular detection method assists in the surveillance and eventual control of this pathogen. To this end, a loop-mediated isothermal amplification (LAMP) assay targeting the single-copy gene encoding the polar tube protein 3 (PTP3) has been developed. Genomic DNA of N. ceranae-infected forager bees sampled from distant geographic regions could be reliably amplified using the established LAMP assay. The N. ceranae-LAMP showed higher sensitivity than a classical reference PCR (98.6 vs 95.7%), when both approaches were applied to the detection of N. ceranae. LAMP detected a ten-fold lower infection rate than the reference PCR (1 pg vs 10 pg genomic DNA, respectively). In addition, we show highly specific and sensitive detection of N. ceranae from spore preparations in a direct LAMP format. No cross-reactions with genomic DNA and/or spores from N. apis, often co-infecting A. mellifera, or from N. bombi, infecting bumble bees, were observed. This low-cost and time-saving molecular detection method can be easily applied in simple laboratory settings, facilitating a rapid detection of N. ceranae in honey bees in epidemiological studies, surveillance and control, as well as evaluation of therapeutic measures against nosemosis.
Subject(s)
Bees/parasitology , Fungal Proteins/genetics , Molecular Diagnostic Techniques/methods , Nosema/genetics , Nucleic Acid Amplification Techniques/methods , Animals , Beekeeping/economics , DNA, Fungal/genetics , Microsporidiosis/diagnosis , Nosema/isolation & purification , Polymerase Chain Reaction , Spores, Fungal/geneticsABSTRACT
Pneumocystis jirovecii and microsporidia species are recognized as opportunistic infectious pathogens in AIDS patients. Coinfection of both in one patient has been rarely reported. The aim of the present study was to investigate the coinfection of P. jirovecii and microsporidia in different tissues from AIDS deceased patients. Post mortem histological finding of P. jirovecii and microsporidia was demonstrated by means of the Grocott's methenamine silver and Brown Brenn staining, respectively. Molecular technique was used for identification and characterization of both fungi. Out of the 514 autopsied cases P. jirovecii and microsporidia species were identified in 53 (10.3%) and 62 (12.1%) cases respectively. A total of five cases (0.97%) coinfected with Pneumocystis and microsporidia were recovered from all analyzed autopsies. Coinfection of Pneumocystis and microsporidia is very challenging and raises interesting issues about host-parasite relationship. The early diagnosis of both pathogens must be crucial to establish correct and early treatments, improve the patient's evolution, reducing the risk of death.
Subject(s)
AIDS-Related Opportunistic Infections/microbiology , Coinfection/microbiology , Microsporidia/isolation & purification , Pneumocystis carinii/isolation & purification , AIDS-Related Opportunistic Infections/epidemiology , Adult , Autopsy , Coinfection/epidemiology , Female , Humans , Male , Microsporidia/genetics , Middle Aged , Pneumocystis carinii/genetics , Young AdultABSTRACT
Intracellular parasites from the genera Toxoplasma, Plasmodium, Trypanosoma, Leishmania and from the phylum Microsporidia are, respectively, the causative agents of toxoplasmosis, malaria, Chagas disease, leishmaniasis and microsporidiosis, illnesses that kill millions of people around the globe. Crossing the host cell plasma membrane (PM) is an obstacle these parasites must overcome to establish themselves intracellularly and so cause diseases. The mechanisms of cell invasion are quite diverse and include (1) formation of moving junctions that drive parasites into host cells, as for the protozoans Toxoplasma gondii and Plasmodium spp., (2) subversion of endocytic pathways used by the host cell to repair PM, as for Trypanosoma cruzi and Leishmania, (3) induction of phagocytosis as for Leishmania or (4) endocytosis of parasites induced by specialized structures, such as the polar tubes present in microsporidian species. Understanding the early steps of cell entry is essential for the development of vaccines and drugs for the prevention or treatment of these diseases, and thus enormous research efforts have been made to unveil their underlying biological mechanisms. This Review will focus on these mechanisms and the factors involved, with an emphasis on the recent insights into the cell biology of invasion by these pathogens.
Subject(s)
Chagas Disease , Leishmaniasis , Parasites , Plasmodium , Toxoplasma , Trypanosoma cruzi , AnimalsABSTRACT
A new species and a new genus of a microsporidium Alternosema bostrichidis isolated from an adult Prostephanus truncatus in Mexico and from three species of the genus Dinoderus in Nigeria are described. The microsporidium is monomorphic, monoxenic, and develops in direct contact with host cell cytoplasm. The infection first appears with thoracic muscles, followed by a generalized invasion of the host. All developmental stages are diplokaryotic. Sporogony is disporoblastic. Mature spores are ovoid. Unfixed spores measure 3.7-4.2 × 2.0-2.6 µm, fixed and stained spores 3.5-5.0 × 2.4-2.8 µm. The polaroplast consists of dense lamellae and rare lamellae. The polar tube is slightly anisofilar, consisting of 11-17 coils, with 9-14 proximal (130 nm in diameter) and 2-3 distal coils (120 nm in diameter) arranged in one layer. Molecular phylogenetic analysis based upon a short portion of small-subunit ribosomal RNA gene (Genbank accession # KP455651) placed the new microsporidium within Liebermannia-Orthosomella lineage, which contains multiple undescribed parasites. In particular, A. bostrichidis showed maximal sequence similarity of 95% to Microsporidium sp. BBRE2 (# FJ755987) from Baikalian Diplacanthus brevispinus (Amphipoda: Acanthogammaridae) and Microsporidium sp. Comp CD Van 2 (# KC111784) from compost and soil in Canada. Frequent, devastating epizootics of laboratory cultures of A. bostrichidis support its potential as a biological control agent of grain borers.