Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 754
Filter
1.
J Biol Chem ; : 107551, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39002671

ABSTRACT

Isoforms of microtubule associated protein 2 (MAP2) differ from their homologue Tau in the sequence and interactions of the N-terminal region. Binding of the N-terminal region of MAP2c (N-MAP2c) to the dimerization/docking domains of the regulatory subunit RIIα of cAMP-dependent protein kinase (RIIDD2) and to the Src-homology domain 2 of growth factor receptor-bound protein 2 (Grb2) have been described long time ago. However, the structural features of the complexes remained unknown due to the disordered nature of MAP2. Here we provide structural description of the complexes. We have solved solution structure of N-MAP2c in complex with RIIDD2, confirming formation of an amphiphilic α-helix of MAP2c upon binding, defining orientation of the α-helix in the complex and showing that its binding register differs from previous predictions. Using chemical shift mapping, we characterized the binding interface of SH2-Grb2 and rat MAP2c phosphorylated by the tyrosine kinase Fyn in their complex, and proposed a model explaining differences between SH2-Grb2 complexes with rat MAP2c and phosphopeptides with a Grb2-specific sequence. The results provide the structural basis of a potential role of MAP2 in regulating cAMP-dependent phosphorylation cascade via interactions with RIIDD2 and Ras signaling pathway via interactions with SH2-Grb2.

2.
Sci Rep ; 14(1): 13089, 2024 06 07.
Article in English | MEDLINE | ID: mdl-38849415

ABSTRACT

Speech-in-noise (SIN) perception is a primary complaint of individuals with audiometric hearing loss. SIN performance varies drastically, even among individuals with normal hearing. The present genome-wide association study (GWAS) investigated the genetic basis of SIN deficits in individuals with self-reported normal hearing in quiet situations. GWAS was performed on 279,911 individuals from the UB Biobank cohort, with 58,847 reporting SIN deficits despite reporting normal hearing in quiet. GWAS identified 996 single nucleotide polymorphisms (SNPs), achieving significance (p < 5*10-8) across four genomic loci. 720 SNPs across 21 loci achieved suggestive significance (p < 10-6). GWAS signals were enriched in brain tissues, such as the anterior cingulate cortex, dorsolateral prefrontal cortex, entorhinal cortex, frontal cortex, hippocampus, and inferior temporal cortex. Cochlear cell types revealed no significant association with SIN deficits. SIN deficits were associated with various health traits, including neuropsychiatric, sensory, cognitive, metabolic, cardiovascular, and inflammatory conditions. A replication analysis was conducted on 242 healthy young adults. Self-reported speech perception, hearing thresholds (0.25-16 kHz), and distortion product otoacoustic emissions (1-16 kHz) were utilized for the replication analysis. 73 SNPs were replicated with a self-reported speech perception measure. 211 SNPs were replicated with at least one and 66 with at least two audiological measures. 12 SNPs near or within MAPT, GRM3, and HLA-DQA1 were replicated for all audiological measures. The present study highlighted a polygenic architecture underlying SIN deficits in individuals with self-reported normal hearing.


Subject(s)
Genome-Wide Association Study , Multifactorial Inheritance , Noise , Polymorphism, Single Nucleotide , Speech Perception , Humans , Male , Female , Speech Perception/genetics , Adult , Middle Aged , Self Report , Aged , Hearing/genetics , Young Adult
3.
Nanotoxicology ; : 1-19, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38907733

ABSTRACT

Air pollution is an environmental factor associated with an increased risk of neurodegenerative diseases, such as Alzheimer's and Parkinson's, characterized by decreased cognitive abilities and memory. The limited models of sporadic Alzheimer's disease fail to replicate all pathological hallmarks of the disease, making it challenging to uncover potential environmental causes. Environmentally driven models of Alzheimer's disease are thus timely and necessary. We used live-cell confocal fluorescent imaging combined with high-resolution stimulated emission depletion (STED) microscopy to follow the response of retinoic acid-differentiated human neuroblastoma SH-SY5Y cells to nanomaterial exposure. Here, we report that exposure of the cells to some particulate matter constituents reproduces a neurodegenerative phenotype, including extracellular amyloid beta-containing plaques and decreased neurite length. Consistent with the existing in vivo research, we observed detrimental effects, specifically a substantial reduction in neurite length and formation of amyloid beta plaques, after exposure to iron oxide and diesel exhaust particles. Conversely, after exposure to engineered cerium oxide nanoparticles, the lengths of neurites were maintained, and almost no extracellular amyloid beta plaques were formed. Although the exact mechanism behind this effect remains to be explained, the retinoic acid differentiated SH-SY5Y cell in vitro model could serve as an alternative, environmentally driven model of neurodegenerative diseases, including Alzheimer's disease.

4.
Int J Med Microbiol ; 316: 151627, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38908301

ABSTRACT

The release of host mitochondrial cardiolipin is believed to be the main factor that contributes to the production of anti-cardiolipin antibodies in syphilis. However, the precise mechanism by which mitochondria release cardiolipin in this context remains elusive. This study aimed to elucidate the mechanisms underlying mitochondrial cardiolipin release in syphilis. We conducted a cardiolipin quantitative assay and immunofluorescence analysis to detect mitochondrial cardiolipin release in human microvascular endothelial cells (HMEC-1), with and without Treponema pallidum (Tp) infection. Furthermore, we explored apoptosis, a key mechanism for mitochondrial cardiolipin release. The potential mediator molecules were then analyzed through RNA-sequence and subsequently validated using in vitro knockout techniques mediated by CRISPR-Cas9 and pathway-specific inhibitors. Our findings confirm that live-Tp is capable of initiating the release of mitochondrial cardiolipin, whereas inactivated-Tp does not exhibit this capability. Additionally, apoptosis detection further supports the notion that the release of mitochondrial cardiolipin occurs independently of apoptosis. The RNA-sequencing results indicated that microtubule-associated protein2 (MAP2), an axonogenesis and dendrite development gene, was up-regulated in HMEC-1 treated with Tp, which was further confirmed in syphilitic lesions by immunofluorescence. Notably, genetic knockout of MAP2 inhibited Tp-induced mitochondrial cardiolipin release in HMEC-1. Mechanically, Tp-infection regulated MAP2 expression via the MEK-ERK-HES1 pathway, and MEK/ERK phosphorylation inhibitors effectively block Tp-induced mitochondrial cardiolipin release. This study demonstrated that the infection of live-Tp enhanced the expression of MAP2 via the MEK-ERK-HES1 pathway, thereby contributing to our understanding of the role of anti-cardiolipin antibodies in the diagnosis of syphilis.

5.
Biochim Biophys Acta Mol Cell Res ; 1871(7): 119770, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38897390

ABSTRACT

Microtubule stabilization is critical for axonal growth and regeneration, and many microtubule-associated proteins are involved in this process. In this study, we found that the knockdown of echinoderm microtubule-associated protein-like 1 (EML1) hindered axonal growth in cultured cortical and dorsal root ganglion neurons. We further revealed that EML1 facilitated the acetylation of microtubules and that the impairment of axonal growth due to EML1 inhibition could be restored by treatment with deacetylase inhibitors, suggesting that EML1 affected tubulin acetylation. Moreover, we verified an interaction between EML1 and the alpha-tubulin acetyltransferase 1, which is responsible for the acetylation of alpha-tubulin. We thus proposed that EML1 might regulate microtubule acetylation and stabilization via alpha-tubulin acetyltransferase 1 and then promote axon growth. Finally, we verified that the knockdown of EML1 in vivo also inhibited sciatic nerve regeneration. Our findings revealed a novel effect of EML1 on microtubule acetylation during axonal regeneration.

6.
Sheng Wu Gong Cheng Xue Bao ; 40(5): 1571-1583, 2024 May 25.
Article in Chinese | MEDLINE | ID: mdl-38783817

ABSTRACT

The antibodies to the microtubule-associated protein tau play a role in basic and clinical studies of Alzheimer's disease (AD) and other tauopathies. With the recombinant human tau441 as the immunogen, the hybridoma cell strains secreting the anti-human tau N-terminal domain (NTD-tau) monoclonal antibodies were generated by cell fusion and screened by limiting dilution. The purified monoclonal antibodies were obtained by inducing the mouse ascites and affinity chromatography. The sensitivity and specificity of the monoclonal antibodies were examined by indirect ELISA and Western blotting, respectively. A double antibody sandwich ELISA method for detecting human tau protein was established and optimized. The results showed that the positive cloning rate of hybridoma cells was 83.6%. A stable cell line producing ZD8F7 antibodies was established, and the antibody titer in the supernatant of the cell line was 1:16 000. The antibody titer in the ascitic fluid was higher than 1:256 000; and the titer of purified ZD8F7 monoclonal antibodies was higher than 1:128 000. The epitope analysis showed that the ZD8F7 antibody recognized tau21-37 amino acid in the N-terminal domain. The Western blotting results showed that the ZD8F7 antibody recognized the recombinant human tau protein of 50-70 kDa and the human tau protein of 50 kDa in the brain tissue of transgenic AD model mice (APP/PS1/tau). With ZD8F7 as a capture antibody, a quantitative detection method for human tau protein was established, which showed a linear range of 7.8-500.0 pg/mL and could identify human tau protein in the brain tissue of AD transgenic mice and human plasma but not recognize the mouse tau protein. In conclusion, the human NTD-tau-specific monoclonal antibody and the double antibody sandwich ELISA method established in this study are highly sensitive and can serve as a powerful tool for the detection of tau protein in neurodegenerative diseases.


Subject(s)
Alzheimer Disease , Antibodies, Monoclonal , tau Proteins , tau Proteins/immunology , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/biosynthesis , Humans , Mice , Alzheimer Disease/immunology , Alzheimer Disease/diagnosis , Alzheimer Disease/blood , Enzyme-Linked Immunosorbent Assay , Recombinant Proteins/immunology , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Hybridomas/immunology , Mice, Inbred BALB C , Antibody Specificity , Protein Domains , Epitopes/immunology
7.
Front Mol Neurosci ; 17: 1394886, 2024.
Article in English | MEDLINE | ID: mdl-38745725

ABSTRACT

Aims: White matter damage (WMD) is linked to both cerebral palsy and cognitive deficits in infants born prematurely. The focus of this study was to examine how caffeine influences the acetylation of proteins within the neonatal white matter and to evaluate its effectiveness in treating white matter damage caused by hypoxia-ischemia. Main methods: We employed a method combining affinity enrichment with advanced liquid chromatography and mass spectrometry to profile acetylation in proteins from the white matter of neonatal rats grouped into control (Sham), hypoxic-ischemic (HI), and caffeine-treated (Caffeine) groups. Key findings: Our findings included 1,999 sites of lysine acetylation across 1,123 proteins, with quantifiable changes noted in 1,342 sites within 689 proteins. Analysis of these patterns identified recurring sequences adjacent to the acetylation sites, notably YKacN, FkacN, and G * * * GkacS. Investigation into the biological roles of these proteins through Gene Ontology analysis indicated their involvement in a variety of cellular processes, predominantly within mitochondrial locations. Further analysis indicated that the acetylation of tau (Mapt), a protein associated with microtubules, was elevated in the HI condition; however, caffeine treatment appeared to mitigate this over-modification, thus potentially aiding in reducing oxidative stress, inflammation in the nervous system, and improving mitochondrial health. Caffeine inhibited acetylated Mapt through sirtuin 2 (SITR2), promoted Mapt nuclear translocation, and improved mitochondrial dysfunction, which was subsequently weakened by the SIRT2 inhibitor, AK-7. Significance: Caffeine-induced changes in lysine acetylation may play a key role in improving mitochondrial dysfunction and inhibiting oxidative stress and neuroinflammation.

8.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167213, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38714266

ABSTRACT

Cytidine deaminase (CDA) is a pyrimidine salvage pathway enzyme that catalyzes the hydrolytic deamination of free cytidine and deoxycytidine to uridine and deoxyuridine, respectively. Our team discovered that CDA deficiency is associated with several aspects of genetic instability, such as increased sister chromatid exchange and ultrafine anaphase bridge frequencies. Based on these results, we sought (1) to determine how CDA deficiency contributes to genetic instability, (2) to explore the possible relationships between CDA deficiency and carcinogenesis, and (3) to develop a new anticancer treatment targeting CDA-deficient tumors. This review summarizes our major findings indicating that CDA deficiency is associated with a genetic instability that does not confer an increased cancer risk. In light of our results and published data, I propose a novel hypothesis that loss of CDA, by reducing basal PARP-1 activity and increasing Tau levels, may reflect an attempt to prevent, slow or reverse the process of carcinogenesis.


Subject(s)
Carcinogenesis , Cytidine Deaminase , Poly (ADP-Ribose) Polymerase-1 , Humans , Cytidine Deaminase/metabolism , Cytidine Deaminase/genetics , Carcinogenesis/metabolism , Carcinogenesis/genetics , Carcinogenesis/pathology , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly (ADP-Ribose) Polymerase-1/genetics , Animals , Neoplasms/metabolism , Neoplasms/genetics , Neoplasms/pathology , tau Proteins/metabolism , tau Proteins/genetics , Genomic Instability
9.
Antioxidants (Basel) ; 13(5)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38790613

ABSTRACT

Microtubule-associated protein Tau (MAPT) is strongly associated with the development of neurodegenerative diseases. In addition to driving the formation of neurofibrillary tangles (NFT), mutations in the MAPT gene can also cause oxidative stress through hyperpolarisation of the mitochondria. This study explores the impact that MAPT mutation is having on phospholipid metabolism in iPSC-derived dopamine neurons, and to determine if these effects are exacerbated by mitochondrial and endoplasmic reticulum stress. Neurons that possessed a mutated copy of MAPT were shown to have significantly higher levels of oxo-phospholipids (Oxo-PL) than wild-type neurons. Oxidation of the hydrophobic fatty acid side chains changes the chemistry of the phospholipid leading to disruption of membrane function and potential cell lysis. In wild-type neurons, both mitochondrial and endoplasmic reticulum stress increased Oxo-PL abundance; however, in MAPT mutant neurons mitochondrial stress appeared to have a minimal effect. Endoplasmic reticulum stress, surprisingly, reduced the abundance of Oxo-PL in MAPT mutant dopamine neurons, and we postulate that this reduction could be modulated through hyperactivation of the unfolded protein response and X-box binding protein 1. Overall, the results of this study contribute to furthering our understanding of the regulation and impact of oxidative stress in Parkinson's disease pathology.

10.
Adv Exp Med Biol ; 1452: 21-35, 2024.
Article in English | MEDLINE | ID: mdl-38805123

ABSTRACT

Tubulin plays a fundamental role in cellular function and as the subject for microtubule-active agents in the treatment of ovarian cancer. Microtubule-binding proteins (e.g., tau, MAP1/2/4, EB1, CLIP, TOG, survivin, stathmin) and posttranslational modifications (e.g., tyrosination, deglutamylation, acetylation, glycation, phosphorylation, polyamination) further diversify tubulin functionality and may permit additional opportunities to understand microtubule behavior in disease and to develop microtubule-modifying approaches to combat ovarian cancer. Tubulin-based structures that project from suspended ovarian cancer cells known as microtentacles may contribute to metastatic potential of ovarian cancer cells and could represent an exciting novel therapeutic target.


Subject(s)
Microtubules , Neoplasm Metastasis , Ovarian Neoplasms , Protein Processing, Post-Translational , Tubulin , Humans , Tubulin/metabolism , Tubulin/chemistry , Female , Microtubules/metabolism , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/drug therapy , Animals , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Neoplasms/metabolism , Neoplasms/pathology , Neoplasms/drug therapy
11.
Elife ; 122024 May 17.
Article in English | MEDLINE | ID: mdl-38757694

ABSTRACT

The fragile X syndrome (FXS) represents the most prevalent form of inherited intellectual disability and is the first monogenic cause of autism spectrum disorder. FXS results from the absence of the RNA-binding protein FMRP (fragile X messenger ribonucleoprotein). Neuronal migration is an essential step of brain development allowing displacement of neurons from their germinal niches to their final integration site. The precise role of FMRP in neuronal migration remains largely unexplored. Using live imaging of postnatal rostral migratory stream (RMS) neurons in Fmr1-null mice, we observed that the absence of FMRP leads to delayed neuronal migration and altered trajectory, associated with defects of centrosomal movement. RNA-interference-induced knockdown of Fmr1 shows that these migratory defects are cell-autonomous. Notably, the primary Fmrp mRNA target implicated in these migratory defects is microtubule-associated protein 1B (MAP1B). Knocking down MAP1B expression effectively rescued most of the observed migratory defects. Finally, we elucidate the molecular mechanisms at play by demonstrating that the absence of FMRP induces defects in the cage of microtubules surrounding the nucleus of migrating neurons, which is rescued by MAP1B knockdown. Our findings reveal a novel neurodevelopmental role for FMRP in collaboration with MAP1B, jointly orchestrating neuronal migration by influencing the microtubular cytoskeleton.


Subject(s)
Cell Movement , Fragile X Mental Retardation Protein , Mice, Knockout , Microtubule-Associated Proteins , Neurons , Fragile X Mental Retardation Protein/metabolism , Fragile X Mental Retardation Protein/genetics , Animals , Neurons/metabolism , Neurons/physiology , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Mice , Fragile X Syndrome/metabolism , Fragile X Syndrome/genetics , Gene Knockdown Techniques
12.
J Biol Chem ; 300(6): 107323, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677516

ABSTRACT

Organelles and vesicular cargoes are transported by teams of kinesin and dynein motors along microtubules. We isolated endocytic organelles from cells at different stages of maturation and reconstituted their motility along microtubules in vitro. We asked how the sets of motors transporting a cargo determine its motility and response to the microtubule-associated protein tau. Here, we find that phagosomes move in both directions along microtubules, but the directional bias changes during maturation. Early phagosomes exhibit retrograde-biased transport while late phagosomes are directionally unbiased. Correspondingly, early and late phagosomes are bound by different numbers and combinations of kinesins-1, -2, -3, and dynein. Tau stabilizes microtubules and directs transport within neurons. While single-molecule studies show that tau differentially regulates the motility of kinesins and dynein in vitro, less is known about its role in modulating the trafficking of endogenous cargoes transported by their native teams of motors. Previous studies showed that tau preferentially inhibits kinesin motors, which biases late phagosome transport towards the microtubule minus-end. Here, we show that tau strongly inhibits long-range, dynein-mediated motility of early phagosomes. Tau reduces forces generated by teams of dynein motors on early phagosomes and accelerates dynein unbinding under load. Thus, cargoes differentially respond to tau, where dynein complexes on early phagosomes are more sensitive to tau inhibition than those on late phagosomes. Mathematical modeling further explains how small changes in the number of kinesins and dynein on cargoes impact the net directionality but also that cargoes with different sets of motors respond differently to tau.


Subject(s)
Dyneins , Kinesins , Microtubules , tau Proteins , Kinesins/metabolism , Kinesins/genetics , tau Proteins/metabolism , tau Proteins/genetics , Dyneins/metabolism , Dyneins/genetics , Animals , Microtubules/metabolism , Phagosomes/metabolism , Biological Transport , Mice , Humans , Endocytosis/physiology
13.
Expert Opin Investig Drugs ; 33(6): 561-573, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38687620

ABSTRACT

INTRODUCTION: Frontotemporal dementia (FTD) includes a group of neurodegenerative diseases characterized clinically by behavioral disturbances and by neurodegeneration of brain anterior temporal and frontal lobes, leading to atrophy. Apart from symptomatic treatments, there is, at present, no disease-modifying cure for FTD. AREAS COVERED: Three main mutations are known as causes of familial FTD, and large consortia have studied carriers of mutations, also in preclinical Phases. As genetic cases are the only ones in which the pathology can be predicted in life, compounds developed so far are directed toward specific proteins or mutations. Herein, recently approved clinical trials will be summarized, including molecules, mechanisms of action and pharmacological testing. EXPERT OPINION: These studies are paving the way for the future. They will clarify whether single mutations should be addressed rather than common proteins depositing in the brain to move from genetic to sporadic FTD.


Subject(s)
Frontotemporal Dementia , Mutation , Animals , Humans , Drug Development , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Frontotemporal Dementia/physiopathology , Frontotemporal Dementia/therapy
14.
Zhongguo Zhen Jiu ; 44(3): 255-260, 2024 Mar 12.
Article in English, Chinese | MEDLINE | ID: mdl-38467498

ABSTRACT

OBJECTIVES: To compare the effects of pressing moxibustion at Baihui (GV 20) and Guanyuan (CV 4) combined with donepezil hydrochloride tablets and donepezil hydrochloride tablets alone on cognitive impairment in patients with mild to moderate Alzheimer's disease(AD), and to explore the mechanism of pressing moxibustion in the treatment of mild to moderate AD from the serum levels of ß-amyloid 1-42 (Aß1-42), microtubule-associated protein tau and phosphorylated tau (P-tau). METHODS: A total of 76 patients with mild to moderate AD were randomly divided into an observation group (38 cases, 4 cases dropped out) and a control group (38 cases, 2 cases dropped out). Patients in the control group were given oral donepezil hydrochloride tablets (5 mg each time, once a day). On the basis of the control group, patients in the observation group were treated with pressing moxibustion at Baihui (GV 20) and Guanyuan (CV 4), 5 cones per acupoint, once every other day, three times a week. Both groups were treated for 8 weeks. The scores of mini-mental state examination (MMSE) and Montreal cognitive assessment (MoCA) were compared between the two groups before treatment, after treatment and after 4 and 12 weeks of treatment completion. The serum levels of Aß1-42, tau and P-tau were detected before and after treatment in the two groups, and the safety was evaluated. RESULTS: At each time point after treatment, the MMSE and MoCA scores of the two groups were higher than those before treatment (P<0.05), and the scores in the observation group were higher than those in the control group (P<0.05). After treatment, the serum levels of Aß1-42, tau and P-tau in the two groups were lower than those before treatment (P<0.05), and above indexes in the observation group were lower than those in the control group (P<0.05). There was no significant difference in the safety level between the two groups (P>0.05). CONCLUSIONS: The short-term and long-term effect of pressing moxibustion at Baihui (GV 20) and Guanyuan (CV 4) combined with donepezil hydrochloride tablets in improving cognitive impairment in mild to moderate AD is better than that of donepezil hydrochloride tablets alone, and can reduce serum levels of Aß1-42, tau and P-tau, which may be one of the mechanisms of pressing moxibustion to improve cognitive impairment.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Cognitive Dysfunction , Moxibustion , Peptide Fragments , Humans , Alzheimer Disease/therapy , Donepezil , Cognitive Dysfunction/therapy , Acupuncture Points
15.
Biol Open ; 13(2)2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38299702

ABSTRACT

Mouse monoclonal 12E8 antibody, which recognises conserved serine phosphorylated KXGS motifs in the microtubule binding domains of tau/tau-like microtubule associated proteins (MAPs), shows elevated binding in brain during normal embryonic development (mammals and birds) and at the early stages of human Alzheimer's disease (AD). It also labels ADF/cofilin-actin rods that form in neurites during exposure to stressors. We aimed to identify direct and indirect 12E8 binding proteins in postnatal mouse brain and embryonic chick brain by immunoprecipitation (IP), mass spectrometry and immunofluorescence. Tau and/or MAP2 were major direct 12E8-binding proteins detected in all IPs, and actin and/or tubulin were co-immunoprecipitated in most samples. Additional proteins were different in mouse versus chick brain IP. In mouse brain IPs, FSD1l and intermediate filament proteins - vimentin, α-internexin, neurofilament polypeptides - were prominent. Immunofluorescence and immunoblot using recombinant intermediate filament subunits, suggests an indirect interaction of these proteins with the 12E8 antibody. In chick brain IPs, subunits of eukaryotic translation initiation factor 3 (EIF3) were found, but no direct interaction between 12E8 and recombinant Eif3e protein was detected. Fluorescence microscopy in primary cultured chick neurons showed evidence of co-localisation of Eif3e and tubulin labelling, consistent with previous data demonstrating cytoskeletal organisation of the translation apparatus. Neither total tau or MAP2 immunolabelling accumulated at ADF/cofilin-actin rods generated in primary cultured chick neurons, and we were unable to narrow down the major antigen recognised by 12E8 antibody on ADF/cofilin-actin rods.


Subject(s)
Actins , Microtubule-Associated Proteins , Mice , Animals , Humans , Microtubule-Associated Proteins/metabolism , Actins/metabolism , Actin Depolymerizing Factors/metabolism , Tubulin/metabolism , Brain/metabolism , Carrier Proteins/metabolism , Mammals/metabolism
16.
MedComm (2020) ; 5(2): e482, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38344399

ABSTRACT

Metastasis is the leading cause of death in hepatocellular carcinoma (HCC) patients, and autophagy plays a crucial role in this process by orchestrating epithelial-mesenchymal transition (EMT). Stromal interaction molecule 1 (STIM1), a central regulator of store-operated calcium entry (SOCE) in nonexcitable cells, is involved in the development and spread of HCC. However, the impact of STIM1 on autophagy regulation during HCC metastasis remains unclear. Here, we demonstrate that STIM1 is temporally regulated during autophagy-induced EMT in HCC cells, and knocking out (KO) STIM1 significantly reduces both autophagy and EMT. Interestingly, STIM1 enhances autophagy through both SOCE-dependent and independent pathways. Mechanistically, STIM1 directly interacts with microtubule-associated protein 1A/1B-light chain 3B (LC3B) to form a complex via the sterile-α motif (SAM) domain, which promotes autophagosome formation. Furthermore, deletion of the SAM domain of STIM1 abolishes its binding with LC3B, leading to a decrease in autophagy and EMT in HCC cells. These findings unveil a novel mechanism by which the STIM1/LC3B complex mediates autophagy and EMT in HCC cells, highlighting a potential target for preventing HCC metastasis.

17.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167036, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38286213

ABSTRACT

At least 53 mutations in the microtubule associated protein tau gene (MAPT) have been identified that cause frontotemporal dementia. 47 of these mutations are localized between exons 7 and 13. They could thus affect the formation of circular RNAs (circRNAs) from the MAPT gene that occurs through backsplicing from exon 12 to either exon 10 or exon 7. We analyzed representative mutants and found that five FTDP-17 mutations increase the formation of 12➔7 circRNA and three different mutations increase the amount of 12➔10 circRNA. CircRNAs are translated after undergoing adenosine to inosine RNA editing, catalyzed by ADAR enzymes. We found that the interferon induced ADAR1-p150 isoform has the strongest effect on circTau RNA translation. ADAR1-p150 activity had a stronger effect on circTau RNA expression and strongly decreased 12➔7 circRNA, but unexpectedly increased 12➔10 circRNA. In both cases, ADAR-activity strongly promoted translation of circTau RNAs. Unexpectedly, we found that the 12➔7 circTau protein interacts with eukaryotic initiation factor 4B (eIF4B), which is reduced by four FTDP-17 mutations located in the second microtubule domain. These are the first studies of the effect of human mutations on circular RNA formation and translation. They show that point mutations influence circRNA expression levels, likely through changes in pre-mRNA structures. The effect of the mutations is surpassed by editing of the circular RNAs, leading to their translation. Thus, circular RNAs and their editing status should be considered when analyzing FTDP-17 mutations.


Subject(s)
Frontotemporal Dementia , Humans , Frontotemporal Dementia/genetics , Mutation , RNA/genetics , RNA, Circular/genetics , tau Proteins/genetics
18.
Neurobiol Aging ; 134: 135-145, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38091751

ABSTRACT

We assessed white matter (WM) integrity in MAPT mutation carriers (16 asymptomatic, 5 symptomatic) compared to 31 non-carrier family controls using diffusion tensor imaging (DTI) (fractional anisotropy; FA, mean diffusivity; MD) and neurite orientation dispersion and density imaging (NODDI) (neurite density index; NDI, orientation and dispersion index; ODI). Linear mixed-effects models accounting for age and family relatedness revealed alterations across DTI and NODDI metrics in all mutation carriers and in symptomatic carriers, with the most significant differences involving fronto-temporal WM tracts. Asymptomatic carriers showed higher entorhinal MD and lower cingulum FA and patterns of higher ODI mostly involving temporal areas and long association and projections fibers. Regression models between estimated time to or time from disease and DTI and NODDI metrics in key regions (amygdala, cingulum, entorhinal, inferior temporal, uncinate fasciculus) in all carriers showed increasing abnormalities with estimated time to or time from disease onset, with FA and NDI showing the strongest relationships. Neurite-based metrics, particularly ODI, appear to be particularly sensitive to early WM involvement in asymptomatic carriers.


Subject(s)
Heterozygote , Neurites , White Matter , tau Proteins , Brain/diagnostic imaging , Diffusion Magnetic Resonance Imaging/methods , Diffusion Tensor Imaging/methods , Mutation , White Matter/diagnostic imaging , Humans , tau Proteins/genetics
19.
Annu Rev Pathol ; 19: 345-370, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-37832941

ABSTRACT

Tauopathies are a diverse group of progressive and fatal neurodegenerative diseases characterized by aberrant tau inclusions in the central nervous system. Tau protein forms pathologic fibrillar aggregates that are typically closely associated with neuronal cell death, leading to varied clinical phenotypes including dementia, movement disorders, and motor neuron disease. In this review, we describe the clinicopathologic features of tauopathies and highlight recent advances in understanding the mechanisms that lead to spread of pathologic aggregates through interconnected neuronal pathways. The cell-to-cell propagation of tauopathy is then linked to posttranslational modifications, tau fibril structural variants, and the breakdown of cellular protein quality control.


Subject(s)
Neurodegenerative Diseases , Tauopathies , Humans , Neurodegenerative Diseases/pathology , Brain/pathology , Tauopathies/genetics , Neurons/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...