Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
Am J Physiol Endocrinol Metab ; 327(1): E42-E54, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38717363

ABSTRACT

Skeletal muscle microvascular blood flow (MBF) plays an important role in glucose disposal in muscle. Impairments in muscle MBF contribute to insulin resistance and prediabetes. Animal studies show that short-term (3 day) high-fat feeding blunts skeletal muscle MBF before impairing insulin-stimulated glucose disposal. It is not known whether this occurs in humans. We investigated the temporal impact of a 7-day high-calorie high-fat (HCHF) diet intervention (+52% kJ; 41% fat) on fasting and postprandial cardiometabolic outcomes in 14 healthy adults (18-37 yr). Metabolic health and vascular responses to a mixed-meal challenge (MMC) were measured at pre (day 0)-, mid (day 4)- and post (day 8)-intervention. There were no significant differences in body weight, body fat %, fasting blood glucose, and fasting plasma insulin concentrations at pre-, mid- and postintervention. Compared with preintervention there was a significant increase in insulin (but not glucose) total area under the curve in response to the MMC at midintervention (P = 0.041) and at postintervention (P = 0.028). Unlike at pre- and midintervention, at postintervention muscle MBF decreased at 60 min (P = 0.024) and 120 min (P = 0.023) after the MMC. However, macrovascular blood flow was significantly increased from 0 to 60 min (P < 0.001) and 120 min (P < 0.001) after the MMC at pre-, mid- and postintervention. Therefore, short-term HCHF feeding in healthy individuals leads to elevated postprandial insulin but not glucose levels and a blunting of meal-induced skeletal muscle MBF responses but not macrovascular blood flow responses.NEW & NOTEWORTHY This is the first study to investigate skeletal muscle microvascular blood flow (MBF) responses in humans after short-term high-calorie high-fat (HCHF) diet. The main findings were that HCHF diet causes elevated postprandial insulin in healthy individuals within 3 days and blunts meal-induced muscle MBF within 7 days, despite no impairments in postprandial glucose or macrovascular blood flow.


Subject(s)
Blood Glucose , Diet, High-Fat , Hyperinsulinism , Insulin , Muscle, Skeletal , Postprandial Period , Humans , Adult , Male , Muscle, Skeletal/blood supply , Muscle, Skeletal/metabolism , Young Adult , Female , Adolescent , Postprandial Period/physiology , Insulin/blood , Blood Glucose/metabolism , Regional Blood Flow , Microcirculation/physiology , Insulin Resistance/physiology , Healthy Volunteers , Microvessels , Fasting
2.
Diabetes Obes Metab ; 26(5): 1582-1592, 2024 May.
Article in English | MEDLINE | ID: mdl-38246697

ABSTRACT

AIM: Chronotype reflects a circadian rhythmicity that regulates endothelial function. While the morning chronotype (MORN) usually has low cardiovascular disease risk, no study has examined insulin action on endothelial function between chronotypes. We hypothesized intermediate chronotypes (INT) would have lower vascular insulin sensitivity than morning chronotype (MORN). MATERIALS AND METHODS: Adults with obesity were classified per Morningness-Eveningness Questionnaire (MEQ) as either MORN (n = 27, 22 female, MEQ = 63.7 ± 4.7, 53.8 ± 6.7 years, 35.3 ± 4.9 kg/m2) or INT (n = 29, 23 female, MEQ = 48.8 ± 6.7, 56.6 ± 9.0 years, 35.7 ± 6.1 kg/m2). A 120 min euglycaemic-hyperinsulinaemic clamp (40 mU/m2/min, 90 mg/dl) was conducted to assess macrovascular insulin sensitivity via brachial artery flow-mediated dilation (%FMD; conduit artery), post-ischaemic flow velocity (resistance arteriole), as well as microvascular insulin sensitivity via contrast-enhanced ultrasound [e.g. microvascular blood volume (perfusion)]. Fasting plasma arginine and citrulline, as well as fasting and clamp-derived plasma endothelin-1 and nitrate/nitrite, were assessed as surrogates of vasoconstriction and nitric oxide-mediated vasodilation. Aerobic fitness (VO2max) and body composition (dual-energy X-ray absorptiometry) were also collected. RESULTS: MORN had a higher VO2max compared with INT (p < .01), although there was no difference in fat mass. While fasting FMD was similar between groups, insulin lowered FMD corrected to shear stress and microvascular blood volume in INT compared with MORN after co-varying for VO2max (both p ≤ .02). INT also had a lower fasting nitrate (p = .03) and arginine (p = .07). Higher MEQ correlated with elevated FMD (r = 0.33, p = .03) and lower post-ischaemic flow velocity (r = -0.33, p = .03) as well as shear rate (r = -0.36, p = .02) at 120 min. CONCLUSION: When measured during the morning, INT had a lower vascular insulin sensitivity than MORN. Additional work is needed to understand endothelial function differences among chronotypes to optimize cardiovascular disease risk reduction.


Subject(s)
Cardiovascular Diseases , Insulin Resistance , Adult , Humans , Female , Chronotype , Nitrates , Obesity , Brachial Artery/physiology , Insulin , Endothelium, Vascular , Vasodilation , Arginine
3.
Medicina (Kaunas) ; 59(7)2023 Jun 24.
Article in English | MEDLINE | ID: mdl-37512004

ABSTRACT

Background and Objectives: Ultrasound (US) is a non-invasive tool for the in vivo detection of peripheral nerve alterations. Materials and Methods: In this study, we applied nerve US to assist the discrimination between the spectrum of amyotrophic lateral sclerosis (ALS, n = 11), chronic inflammatory demyelinating polyradiculoneuropathy (CIDP, n = 5), and genetically confirmed Charcot-Marie-Tooth disease (CMT, n = 5). All participants and n = 15 controls without neurological diseases underwent high-resolution US of the bilateral tibial nerve. The nerve cross-sectional area (CSA) and nerve microvascular blood flow were compared between the groups and related to cerebrospinal fluid (CSF) measures, clinical symptoms, and nerve conduction studies. The analyses are part of a larger multimodal study on the comparison between US and 7 Tesla (7T) magnetic resonance neurography (MRN). Results: The patients and controls were matched with respect to their demographical data. CMT had the longest disease duration, followed by CIDP and ALS. CSA was related to age, weight, and disease duration. CSA was larger in CMT and CIDP compared to ALS and controls. The blood flow was greatest in CIDP, and higher than in CMT, ALS, and controls. In ALS, greater CSA was correlated with greater CSF total protein and higher albumin quotient. The US measures did not correlate with clinical scores or nerve conduction studies in any of the subgroups. Conclusion: Our results point towards the feasibility of CSA and blood flow to discriminate between ALS, CIDP, and CMT, even in groups of small sample size. In ALS, larger CSA could indicate an inflammatory disease subtype characterized by reduced blood-nerve barrier integrity. Our upcoming analysis will focus on the additive value of 7T MRN in combination with US to disentangle the spectrum between more inflammatory or more degenerative disease variants among the disease groups.


Subject(s)
Amyotrophic Lateral Sclerosis , Polyneuropathies , Polyradiculoneuropathy, Chronic Inflammatory Demyelinating , Humans , Polyradiculoneuropathy, Chronic Inflammatory Demyelinating/diagnostic imaging , Amyotrophic Lateral Sclerosis/diagnostic imaging , Peripheral Nerves/diagnostic imaging , Polyneuropathies/diagnostic imaging , Ultrasonography/methods
4.
Theranostics ; 13(10): 3387-3401, 2023.
Article in English | MEDLINE | ID: mdl-37351176

ABSTRACT

Rationale: Ischemia-reperfusion injury (I/R) is a common cause of acute kidney injury (AKI). Post-ischemic recovery of renal blood supply plays an important role in attenuating injury. Exogenous application of elabela (ELA) peptides has been demonstrated by us and others to alleviate AKI, partly through its receptor APJ. However, the endogenous role of ELA in renal I/R remains unclear. Methods: Renal tubule specific ELA knockout (ApelaKsp KO) mice challenged with bilateral or unilateral I/R were used to investigate the role of endogenous ELA in renal I/R. RNA-sequencing analysis was performed to unbiasedly investigate altered genes in kidneys of ApelaKsp KO mice. Injured mice were treated with ELA32 peptide, Nω-hydroxy-nor-L-arginine (nor-NOHA), prostaglandin E2 (PGE2), Paricalcitol, ML221 or respective vehicles, individually or in combination. Results: ELA is mostly expressed in renal tubules. Aggravated pathological injury and further reduction of renal microvascular blood flow were observed in ApelaKsp KO mice during AKI and the following transition to chronic kidney disease (AKI-CKD). RNA-seq analysis suggested that two blood flow regulators, arginine metabolizing enzyme arginase 2 (ARG2) and PGE2 metabolizing enzyme carbonyl reductases 1 and 3 (CBR1/3), were altered in injured ApelaKsp KO mice. Notably, combination application of an ARG2 inhibitor nor-NOHA, and Paricalcitol, a clinically used activator for PGE2 synthesis, alleviated injury-induced AKI/AKI-CKD stages and eliminated the worst outcomes observed in ApelaKsp KO mice. Moreover, while the APJ inhibitor ML221 blocked the beneficial effects of ELA32 peptide on AKI, it showed no effect on combination treatment of nor-NOHA and Paricalcitol. Conclusions: An endogenous tubular ELA-APJ axis regulates renal microvascular blood flow that plays a pivotal role in I/R-induced AKI. Furthermore, improving renal blood flow by inhibiting ARG2 and activating PGE2 is an effective treatment for AKI and prevents the subsequent AKI-CKD transition.


Subject(s)
Acute Kidney Injury , Peptide Hormones , Renal Insufficiency, Chronic , Reperfusion Injury , Mice , Animals , Microcirculation , Dinoprostone/pharmacology , Kidney/pathology , Acute Kidney Injury/pathology , Renal Insufficiency, Chronic/etiology , Reperfusion Injury/pathology , Ischemia/pathology , Peptide Hormones/adverse effects , Peptide Hormones/genetics , Reperfusion/adverse effects
5.
Geroscience ; 45(3): 1491-1510, 2023 06.
Article in English | MEDLINE | ID: mdl-36792820

ABSTRACT

Whole-brain irradiation (WBI, also known as whole-brain radiation therapy) is a mainstay treatment modality for patients with multiple brain metastases. It is also used as a prophylactic treatment for microscopic tumors that cannot be detected by magnetic resonance imaging. WBI induces a progressive cognitive decline in ~ 50% of the patients surviving over 6 months, significantly compromising the quality of life. There is increasing preclinical evidence that radiation-induced injury to the cerebral microvasculature and accelerated neurovascular senescence plays a central role in this side effect of WBI. To better understand this side effect, male C57BL/6 mice were first subjected to a clinically relevant protocol of fractionated WBI (5 Gy, two doses per week, for 4 weeks). Nine months post the WBI treatment, we applied two-photon microscopy and Doppler optical coherence tomography to measure capillary red-blood-cell (RBC) flux, capillary morphology, and microvascular oxygen partial pressure (PO2) in the cerebral somatosensory cortex in the awake, head-restrained, WPI-treated mice and their age-matched controls, through a cover-glass-sealed chronic cranial window. Thanks to the extended penetration depth with the fluorophore - Alexa680, measurements of capillary blood flow properties (e.g., RBC flux, speed, and linear density) in the cerebral subcortical white matter were enabled. We found that the WBI-treated mice exhibited a significantly decreased capillary RBC flux in the white matter. WBI also caused a significant reduction in capillary diameter, as well as a large (although insignificant) reduction in segment density at the deeper cortical layers (e.g., 600-700 µm), while the other morphological properties (e.g., segment length and tortuosity) were not obviously affected. In addition, we found that PO2 measured in the arterioles and venules, as well as the calculated oxygen saturation and oxygen extraction fraction, were not obviously affected by WBI. Lastly, WBI was associated with a significant increase in the erythrocyte-associated transients of PO2, while the changes of other cerebral capillary PO2 properties (e.g., capillary mean-PO2, RBC-PO2, and InterRBC-PO2) were not significant. Collectively, our findings support the notion that WBI results in persistent cerebral white matter microvascular impairment, which likely contributes to the WBI-induced brain injury and cognitive decline. Further studies are warranted to assess the WBI-induced changes in brain tissue oxygenation and malfunction of the white matter microvasculature as well.


Subject(s)
Brain Neoplasms , Cognitive Dysfunction , White Matter , Mice , Male , Animals , Microcirculation , White Matter/diagnostic imaging , Microscopy , Cerebrovascular Circulation/physiology , Tomography, Optical Coherence , Quality of Life , Cranial Irradiation , Mice, Inbred C57BL , Brain/blood supply , Disease Models, Animal , Oxygen
6.
J Clin Endocrinol Metab ; 108(4): 971-978, 2023 03 10.
Article in English | MEDLINE | ID: mdl-36260533

ABSTRACT

INTRODUCTION: Ageing skeletal muscles become both insulin resistant and atrophic. The hormone glucagon-like peptide 1 (GLP-1) facilitates postprandial glucose uptake as well as augmenting muscle perfusion, independent of insulin action. We thus hypothesized exogenous GLP-1 infusions would enhance muscle perfusion and positively affect glucose metabolism during fed-state clamps in older people. METHODS: Eight men (71 ± 1 years) were studied in a randomized crossover trial. Basal blood samples were taken before postprandial (fed-state) insulin and glucose clamps, accompanied by amino acid infusions, for 3 hours. Reflecting this, following insertions of peripheral and femoral vessels cannulae and baseline measurements, peripheral IV infusions of octreotide, insulin (Actrapid), 20% glucose, and mixed amino acids; Vamin 14-EF with or without a femoral arterial GLP-1 infusion were started. GLP-1, insulin, and C-peptide were measured by ELISA. Muscle microvascular blood flow was assessed via contrast enhanced ultrasound. Whole-body glucose handling was assayed by assessing glucose infusion rate parameters. RESULTS: Skeletal muscle microvascular blood flow significantly increased in response to GLP-1 vs feeding alone (5.0 ± 2.1 vs 1.9 ± 0.7 fold-change from basal, respectively; P = 0.008), while also increasing whole-body glucose uptake (area under the curve 16.9 ± 1.7 vs 11.4 ± 1.8 mg/kg-1/180 minutes-1, P = 0.02 ± GLP, respectively). CONCLUSIONS: The beneficial effects of GLP-1 on whole-body glycemic control are evident with insulin clamped at fed-state levels. GLP-1 further enhances the effects of insulin on whole-body glucose uptake in older men, underlining its role as a therapeutic target. The effects of GLP-1 in enhancing microvascular flow likely also affects other glucose-regulatory organs, reflected by greater whole-body glucose uptake.


Subject(s)
Glucagon-Like Peptide 1 , Insulin , Male , Humans , Aged , Glucagon-Like Peptide 1/metabolism , Insulin/metabolism , Glucose/metabolism , Muscle, Skeletal/metabolism , Octreotide/pharmacology , Perfusion , Blood Glucose/metabolism
7.
J Mol Biol ; 435(1): 167824, 2023 01 15.
Article in English | MEDLINE | ID: mdl-36108775

ABSTRACT

Platelet margination and adhesion are two critical and closely related steps in thrombus formation. Using dissipative particle dynamics (DPD) method that seamlessly models blood cells, blood plasma, and vessel walls with functionalized surfaces, we quantify the shear-induced margination and adhesion of platelets in microvascular blood flow. The results show that the occurrence of shear-induced RBC-platelet collisions has a remarkable influence on the degree of platelet margination. We characterize the lateral motion of individual platelets by a mean square displacement analysis of platelet trajectories, and find that the wall-induced lift force and the shear-induced displacement in wall-bounded flow cause the variation in near-wall platelet distribution. We then investigate the platelet adhesive dynamics under different flow conditions, by conducting DPD simulations of blood flow in a microtube with fibrinogen-coated wall surfaces. We find that the platelet adhesion is enhanced with the increase of fibrinogen concentration level but decreased with the increase of shear rate. These results are consistent with available experimental results. In addition, we demonstrate that the adherent platelets have a negative impact on the margination dynamics of the circulating platelets, which is mainly due to the climbing effect induced by the adherent ones. Taken together, these findings provide useful insights into the platelet margination and adhesion dynamics, which may facilitate the understanding of the predominant processes governing the initial stage of thrombus formation.


Subject(s)
Blood Platelets , Microvessels , Platelet Adhesiveness , Thrombosis , Humans , Fibrinogen/metabolism , Microcirculation , Thrombosis/physiopathology , Microvessels/physiopathology
8.
Article in English | LILACS | ID: biblio-1428763

ABSTRACT

The objective of this review is to identify the acute effects of blood flow restriction (BFR) with vs without exercise on endothelial function in healthy individuals and the changes in endothelial function in young and older adults following different levels of exclusive BFR vs free flow. Systematic searches were performed in the following databases: PubMed, Web of Science, Scopus, and Cochrane Library, from inception to July 17, 2021. The studies included healthy individuals who underwent assessments of endothelial function before and after experimental protocols through endothelium-dependent flow-mediated dilatation. In total, 4890 studies were screened, and 6 studies of moderate-to-high methodological quality (Physiotherapy Evidence Database scores 6 ­ 10) including 82 subjects (aged 24 ­ 68 years) were eligible. Overall, flow-mediated dilatation increased in the non-cuffed arm immediately and 15 minutes after exercise, with no change in the cuffed arm (BFR of 60 ­ 80 mmHg). In protocols without exercise, cuff pressures of 25 ­ 30 mmHg applied for 30 minutes did not promote changes in the endothelial function, while those > 50 mmHg induced a dose-dependent attenuation of flow-mediated dilatation only in young individuals. A moderate level of BFR appears to have no effect on endothelial function after acute exercise. In non-exercise conditions, reductions in flow-mediated dilatation seem to result from increased retrograde shear provoked by cuff pressures ≥ 50 mmHg in young but not in older adults. An exercise-related increase in antegrade shear rate leads to a greater nitric oxide-mediated vasodilator response. However, BFR appears to attenuate this effect in young but not in older individuals. (AU)


O objetivo desta revisão foi identificar os efeitos agudos da restrição do fluxo sanguíneo (RFS) com vs. sem exercício na função endotelial de indivíduos saudáveis, bem como as alterações na função endotelial em jovens e idosos após diferentes níveis de RFS vs. fluxo livre. Pesquisas sistemáticas foram realizadas nas bases United States National Library of Medicine (PubMed), Web of Science, Scopus e Cochrane Library até 17 de julho de 2021. Os estudos incluíram indivíduos saudáveis que avaliaram a função endotelial antes e após protocolos experimentais, por meio da dilatação mediada por fluxo. Foi selecionado o total de 4.890 estudos, e foram elegíveis seis de moderada a alta qualidade metodológica (Physioterapy Evidence Database 6 ­ 10 pontos), incluindo 82 indivíduos (24 ­ 68 anos). No geral, a dilatação mediada por fluxo aumentou no braço sem manguito, imediatamente e 15 minutos após o exercício, sem alteração no braço com manguito (RFS de 60 ­ 80 mmHg). Em protocolos sem exercício, pressões do manguito de 25 ­ 30 mmHg aplicadas por 30 minutos não promoveram alterações na função endotelial, enquanto aquelas > 50 mmHg induziram uma atenuação dose-dependente da dilatação mediada por fluxo em indivíduos jovens. Um nível moderado de RFS parece não ter efeito na função endotelial após uma sessão de exercício. Em condições sem exercício, as reduções na dilatação mediada por fluxo parecem resultar do aumento do cisalhamento retrógrado provocado por pressões do manguito ≥ 50 mmHg em jovens, mas não em idosos. O aumento da taxa de cisalhamento anterógrado relacionada ao exercício leva a maior resposta vasodilatadora mediada pelo óxido nítrico. No entanto, a RFS parece atenuar esse efeito em jovens, mas não em . (AU)


Subject(s)
Humans , Adult , Middle Aged , Aged , Aged, 80 and over , Young Adult , Blood Circulation/physiology , Endothelium, Vascular/physiology , Exercise/physiology , Age Factors
9.
Front Sports Act Living ; 4: 982548, 2022.
Article in English | MEDLINE | ID: mdl-36465580

ABSTRACT

Purpose: The main purpose of the current study was to investigate the dynamic adjustment of pulmonary oxygen uptake ( V . O2) in response to moderate-intensity cycling on three occasions within 15 months in competitive youth cyclists. Furthermore, the muscle Δdeoxy[heme] on-kinetics and the Δdeoxy[heme]-to- V . O2 ratio were modeled to examine possible mechanistic basis regulating pulmonary V . O2 on-kinetics. Methods: Eleven cyclists (initial age, 14.3 ± 1.6 y; peak V . O2, 62.2 ± 4.5 mL.min-1.kg-1) with a training history of 2-5 years and a training volume of ~10 h per week participated in this investigation. V . O2 and Δdeoxy[heme] responses during workrate-transitions to moderate-intensity cycling were measured with breath-by-breath spirometry and near-infrared spectroscopy, respectively, and subsequently modeled with mono-exponential models to derive parameter estimates. Additionally, a normalized Δdeoxy[heme]-to- V . O2 ratio was calculated for each participant. One-way repeated-measures ANOVA was used to assess effects of time on the dependent variables of the responses. Results: The V . O2 time constant remained unchanged between the first (~24 s) and second visit (~22 s, P > 0.05), whereas it was significantly improved through the third visit (~13 s, P = 0.006-0.013). No significant effects of time were revealed for the parameter estimates of the Δdeoxy[heme] response (P > 0.05). A significant Δdeoxy[heme]-to- V . O2 ratio "overshoot" was evident on the first (1.09 ± 0.10, P = 0.006) and second (1.05 ± 0.09, P = 0.047), though not the third (0.97 ± 0.10, P > 0.05), occasion. These "overshoots" showed strong positive relationships with the V . O2 time constant during the first (r = 0.66, P = 0.028) and second visit (r = 0.76, P = 0.007). Further, strong positive relationships have been observed between the individual changes of the fundamental phase τp and the Δdeoxy[heme]-to- V . O2 ratio "overshoot" from occasion one to two (r = 0.70, P = 0.017), and two to three (r = 0.74, P = 0.009). Conclusion: This suggests that improvements in muscle oxygen provision and utilization capacity both occurred, and each may have contributed to enhancing the dynamic adjustment of the oxidative "machinery" in competitive youth cyclists. Furthermore, it indicates a strong link between an oxygen maldistribution within the tissue of interrogation and the V . O2 time constant.

10.
Am J Sports Med ; 50(13): 3643-3648, 2022 11.
Article in English | MEDLINE | ID: mdl-36263917

ABSTRACT

BACKGROUND: Repair tension and microvascular blood flow within the rotator cuff has a critical impact on tendon healing after rotator cuff repair. However, the relationship between repair tension and microvascular blood flow within the rotator cuff remains unclear. PURPOSE/HYPOTHESIS: The purpose of this study was to determine how much tension adversely affects microvascular blood flow within the rotator cuff. The hypothesis was that as the repair tension increases, the microvascular blood flow within the rotator cuff decreases. STUDY DESIGN: Controlled laboratory study. METHODS: Repair tension and microvascular blood flow within the rotator cuff of 30 patients with full-thickness rotator cuff tears were simultaneously measured using a digital tension meter and a contact-type laser Doppler flowmeter, respectively. Microvascular blood flow was measured under 4 levels of tension (0, 10, 20, and 30 N) at 5 points on the rotator cuff. The obtained values were statistically analyzed by a linear mixed-effects model to clarify the effect of tension on microvascular blood flow within the rotator cuff. RESULTS: There was no statistically significant difference in microvascular blood flow (mL/min/100 g) within the rotator cuff between 0 N (mean, 3.51; 95% CI, 3.0-4.0) and 10 N (mean, 3.74; 95% CI, 3.2-4.3) of tension (P = .716). However, there were statistically significant differences in microvascular blood flow within the rotator cuff between 0 and 20 N of tension (mean, 2.84; 95% CI, 2.3-3.4) (P = .002) and between 0 and 30 N of tension (mean, 2.45; 95% CI, 1.9-3.0) (P < .001). CONCLUSION/CLINICAL RELEVANCE: Our findings indicate that tension of ≥10 N during rotator cuff repair significantly decreases the microvascular blood flow within the rotator cuff. These data will contribute to determining the optimal repair tension during rotator cuff repair.


Subject(s)
Rotator Cuff Injuries , Rotator Cuff , Humans , Rotator Cuff/physiology , Microcirculation , Arthroscopy , Tendons
11.
Rev. argent. cardiol ; 90(3): 194-202, ago. 2022. tab, graf
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1407143

ABSTRACT

RESUMEN Introducción: Una de las causas propuestas del síndrome INOCA (por sus siglas en inglés: Ischemia with Non-Obstructive Coronary Arteries) es la disfunción microvascular (DMV), la cual puede evaluarse en forma no invasiva, mediante la cuantificación del flujo sanguíneo miocárdico (FSM) y la reserva de flujo miocárdica (RFM). Las imágenes de perfusión miocárdica (IPM) y dinámicas con CZT-SPECT en reposo - dipiridamol - y prueba de frio (PF), permiten establecer la presencia de DMV evaluando diferentes mecanismos fisiopatológicos: endotelio independiente o dependiente, respectivamente. Objetivos: Evaluar la utilidad de CZT-SPECT en el diagnóstico de DMV y los diferentes mecanismos patológicos involucrados, en pacientes con diagnóstico de INOCA. Material y métodos: Se incluyeron en forma prospectiva 93 pacientes consecutivos con diagnóstico de INOCA, a los que se les realizó IPM e imágenes dinámicas con CZT-SPECT en reposo-dipiridamol-PF. El FSM se cuantificó con el software 4DM. Se consideró respuesta anormal al dipiridamol una RFM menor a 2 y a la variación del FSM (∆FSM) menor a 1,5 con PF. Se definió DMV a la presencia de una o ambas respuestas anormales. Resultados: El CZT-SPECT detectó DMV en un 85% (n=79) de los pacientes con INOCA. El 42% tuvo respuesta anormal con ambos apremios mientras que el 43% restante, mostró una respuesta alterada del FSM sólo con PF. Conclusiones: El uso de CZT-SPECT empleando ambos apremios, permitió evaluar diferentes mecanismos fisiopatológicos que causan DMV presente en la mayoría de los pacientes con INOCA.


ABSTRACT Background: One of the causes of INOCA (Ischemia with Non- Obstructive Coronary Arteries) is microvascular dysfunction (MVD), which can be noninvasively assessed through the quantification of myocardial blood flow (MBF) and myocardial flow reserve (MFR). Dynamic myocardial perfusion imaging (MPI) by CZT-SPECT at rest, with dipyridamole stress test and cold pressor test (CPT) can establish the presence of two different pathophysiological mechanisms of MVD: endothelium-independent or endothelium-dependent, respectively. Objectives: The aim of this study was to evaluate the usefulness of CZT-SPECT for the diagnosis of MVD and the different mechanisms involved in patients with INOCA. Materials and Methods : A total of 93 consecutive INOCA patients were prospectively included and underwent dynamic MPI with CZT-SPECT at rest and with dipyridamole stress test and CPT. THe MBF was quantified using 4DM® software. A MFR response to dipyridamole <2, and changes in MBF (∆MBF) <1.5 with CPT were considered abnormal responses. MVD was defined in the presence of one abnormal response or both. Results: CZT-SPECT detected MVD in 85% (n=79) of the patients with INOCA. Forty-two percent had an abnormal response to both stressors while 43% presented an abnormal response of MBF only with CPT. Conclusion: The use of CZT-SPECT with both stress tests allowed the evaluation of different possible pathophysiological mechanisms of MVD present in most patients with INOCA.

12.
Bull Math Biol ; 84(8): 85, 2022 07 08.
Article in English | MEDLINE | ID: mdl-35802265

ABSTRACT

We analyse mathematical models in order to understand how microstructural features of vascular networks may affect blood flow dynamics, and to identify particular characteristics that promote the onset of self-sustained oscillations. By focusing on a simple three-node motif, we predict that network "redundancy", in the form of a redundant vessel connecting two main flow-branches, together with differences in haemodynamic resistance in the branches, can promote the emergence of oscillatory dynamics. We use existing mathematical descriptions for blood rheology and haematocrit splitting at vessel branch-points to construct our flow model; we combine numerical simulations and stability analysis to study the dynamics of the three-node network and its relation to the system's multiple steady-state solutions. While, for the case of equal inlet-pressure conditions, a "trivial" equilibrium solution with no flow in the redundant vessel always exists, we find that it is not stable when other, stable, steady-state attractors exist. In turn, these "nontrivial" steady-state solutions may undergo a Hopf bifurcation into an oscillatory state. We use the branch diameter ratio, together with the inlet haematocrit rate, to construct a two-parameter stability diagram that delineates regimes in which such oscillatory dynamics exist. We show that flow oscillations in this network geometry are only possible when the branch diameters are sufficiently different to allow for a sufficiently large flow in the redundant vessel, which acts as the driving force of the oscillations. These microstructural properties, which were found to promote oscillatory dynamics, could be used to explore sources of flow instability in biological microvascular networks.


Subject(s)
Mathematical Concepts , Models, Biological , Hemodynamics , Microvessels/physiology , Models, Theoretical
15.
Geroscience ; 43(6): 2667-2678, 2021 12.
Article in English | MEDLINE | ID: mdl-34562202

ABSTRACT

Impairments in muscle microvascular function are associated with the pathogenesis of sarcopenia and cardiovascular disease. High-intensity interval training (HIIT) is an intervention by which a myriad of beneficial skeletal muscle/cardiovascular adaptations have been reported across age, including capillarisation and improved endothelial function. Herein, we hypothesised that HIIT would enhance muscle microvascular blood flow and vascular reactivity to acute contractile activity in older adults, reflecting HIIT-induced vascular remodelling. In a randomised controlled-trial, twenty-five healthy older adults aged 65-85 years (mean BMI 27.0) were randomised to 6-week HIIT or a no-intervention control period of an equal duration. Measures of microvascular responses to a single bout of muscle contractions (i.e. knee extensions) were made in the m. vastus lateralis using contrast-enhanced ultrasound during a continuous intravenous infusion of Sonovue™ contrast agent, before and after the intervention period, with concomitant assessments of cardiorespiratory fitness and resting blood pressure. HIIT led to improvements in anaerobic threshold (13.2 ± 3.4 vs. 15.3 ± 3.8 ml/kg/min, P < 0.001), dynamic exercise capacity (145 ± 60 vs. 159 ± 59 W, P < 0.001) and resting (systolic) blood pressure (142 ± 15 vs. 133 ± 11 mmHg, P < 0.01). Notably, HIIT elicited significant increases in microvascular blood flow responses to acute contractile activity (1.8 ± 0.63 vs. 2.3 ± 0.8 (arbitrary contrast units (AU), P < 0.01)), with no change in any of these parameters observed in the control group. Six weeks HIIT improves skeletal muscle microvascular responsiveness to acute contractile activity in the form of active hyperaemia-induced by a single bout of resistance exercise. These findings likely reflect reports of enhanced large vessel distensibility, improved endothelial function, and muscle capillarisation following HIIT. Moreover, our findings illustrate that HIIT may be effective in mitigating deleterious alterations in muscle microvascular mediated aspects of sarcopenia.


Subject(s)
Cardiorespiratory Fitness , High-Intensity Interval Training , Muscle Contraction , Muscle, Skeletal , Perfusion
16.
Circ Cardiovasc Imaging ; 14(9): e012208, 2021 09.
Article in English | MEDLINE | ID: mdl-34503339

ABSTRACT

BACKGROUND: Coronary microvascular dysfunction has been described in patients with autoimmune rheumatic disease (ARD). However, it is unknown whether positron emission tomography (PET)-derived myocardial flow reserve (MFR) can predict adverse events in this population. METHODS: Patients with ARD without coronary artery disease who underwent dynamic rest-stress 82Rubidium PET were retrospectively studied and compared with patients without ARD matched for age, sex, and comorbidities. The association between MFR and a composite end point of mortality or myocardial infarction or heart failure admission was evaluated with time to event and Cox-regression analyses. RESULTS: In 101 patients with ARD (88% female, age: 62±10 years), when compared with matched patients without ARD (n=101), global MFR was significantly reduced (median: 1.68 [interquartile range: 1.34-2.05] versus 1.86 [interquartile range: 1.58-2.28]) and reduced MFR (<1.5) was more frequent (40% versus 22%). MFR did not differ among subtypes of ARDs. In survival analysis, patients with ARD and low MFR (MFR<1.5) had decreased event-free survival for the combined end point, when compared with patients with and without ARD and normal MFR (MFR>1.5) and when compared with patients without ARD and low MFR, after adjustment for the nonlaboratory-based Framingham risk score, rest left ventricular ejection fraction, severe coronary calcification, and the presence of medium/large perfusion defects. In Cox-regression analysis, ARD diagnosis and reduced MFR were both independent predictors of adverse events along with congestive heart failure diagnosis and presence of medium/large stress perfusion defects on PET. Further analysis with inclusion of an interaction term between ARD and impaired MFR revealed no significant interaction effects between ARD and impaired MFR. CONCLUSIONS: In our retrospective cohort analysis, patients with ARD had significantly reduced PET MFR compared with age-, sex-, and comorbidity-matched patients without ARD. Reduced PET MFR and ARD diagnosis were both independent predictors of adverse outcomes.


Subject(s)
Autoimmune Diseases/complications , Coronary Artery Disease/physiopathology , Fractional Flow Reserve, Myocardial/physiology , Positron-Emission Tomography/methods , Rheumatic Diseases/complications , Rubidium Radioisotopes/pharmacology , Aged , Autoimmune Diseases/diagnosis , Autoimmune Diseases/immunology , Coronary Artery Disease/diagnosis , Coronary Artery Disease/etiology , Female , Follow-Up Studies , Humans , Male , Middle Aged , Retrospective Studies , Rheumatic Diseases/diagnosis , Rheumatic Diseases/immunology
17.
J Vasc Res ; : 1-10, 2021 Feb 03.
Article in English | MEDLINE | ID: mdl-33535220

ABSTRACT

INTRODUCTION: This study aims to examine the effect of a diet intervention and pyridoxamine (PM) supplementation on hepatic microcirculatory and metabolic dysfunction in nonalcoholic fatty liver disease (NAFLD). METHODS: NAFLD in Wistar rats was induced with a high-fat diet for 20 weeks (NAFLD 20 weeks), and control animals were fed with a standard diet. The NAFLD diet intervention group received the control diet between weeks 12 and 20 (NAFLD 12 weeks), while the NAFLD 12 weeks + PM group also received PM. Fasting blood glucose (FBG) levels, body weight (BW), visceral adipose tissue (VAT), and hepatic microvascular blood flow (HMBF) were evaluated at the end of the protocol. RESULTS: The NAFLD group exhibited a significant increase in BW and VAT, which was prevented by the diet intervention, irrespective of PM treatment. The FBG was elevated in the NAFLD group, and caloric restriction improved this parameter, although additional improvement was achieved by PM. The NAFLD group displayed a 31% decrease in HMBF, which was partially prevented by caloric restriction and completely prevented when PM was added. HMBF was negatively correlated to BW, FBG, and VAT content. CONCLUSION: PM supplementation in association with lifestyle modifications could be an effective intervention for metabolic and hepatic vascular complications.

18.
Clin Oral Investig ; 25(3): 1223-1233, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32613435

ABSTRACT

OBJECTIVES: The purpose of this preliminary study was to explore blood microcirculation and somatosensory profiles in periodontitis patients before and after non-surgical periodontal therapy. MATERIALS AND METHODS: Twenty patients (10 men and 10 women, 20 to 30 years old) and 20 age- and gender-matched healthy controls were included. Non-surgical periodontal therapy was performed for all patients. Clinical examination including pocket probing depth (PPD), clinical attachment loss (CAL), and bleeding on probing (BOP) were performed at baseline (BL), 1 week (1W), and 4 weeks (4W) after non-surgical periodontal therapy on 6 sites of tooth 32 and 42. Laser Doppler flowmetry (LDF) and quantitative sensory testing (QST) were applied at the attached gingiva of tooth 32 and 42 at BL, 1W, and 4W after non-surgical periodontal therapy. Data were analyzed with a two-way mixed-model of ANOVA. RESULTS: The PPD, CAL and BOP significantly improved after non-surgical periodontal therapy (p < 0.001). Periodontitis patients demonstrated a higher tissue microvascular blood cell concentration (p = 0.015) and a significant gain in thermal (p = 0.037) and mechanical (p = 0.003) somatosensory function compared to controls. After non-surgical periodontal therapy, the flux (p = 0.002) and speed (p = 0.008) of blood flow decreased significantly and thermal (p = 0.029) and mechanical (p < 0.001) somatosensory function were reversed. CONCLUSION: Gingival microcirculation and somatosensory function seem impaired in patients with periodontitis and are reversed following non-surgical periodontal therapy. CLINICAL RELEVANCE: LDF and QST may be appropriate tools to further characterize gingival inflammation and treatment responses in periodontitis.


Subject(s)
Periodontitis , Adult , Female , Follow-Up Studies , Gingiva , Humans , Laser-Doppler Flowmetry , Male , Microcirculation , Periodontal Attachment Loss , Periodontal Index , Periodontitis/therapy , Young Adult
19.
Aging Cell ; 19(9): e13202, 2020 09.
Article in English | MEDLINE | ID: mdl-32744385

ABSTRACT

BACKGROUND: Despite its known insulin-independent effects, glucagon-like peptide-1 (GLP-1) role in muscle protein turnover has not been explored under fed-state conditions or in the context of older age, when declines in insulin sensitivity and protein anabolism, as well as losses of muscle mass and function, occur. METHODS: Eight older-aged men (71 ± 1 year, mean ± SEM) were studied in a crossover trial. Baseline measures were taken over 3 hr, prior to a 3 hr postprandial insulin (~30 mIU ml-1 ) and glucose (7-7.5 mM) clamp, alongside I.V. infusions of octreotide and Vamin 14 (±infusions of GLP-1). Four muscle biopsies were taken, and muscle protein turnover was quantified via incorporation of 13 C6 phenylalanine and arteriovenous balance kinetics, using mass spectrometry. Leg macro- and microvascular flow was assessed via ultrasound and anabolic signalling by immunoblotting. GLP-1 and insulin were measured by ELISA. RESULTS: GLP-1 augmented muscle protein synthesis (MPS; fasted: 0.058 ± 0.004% hr-1 vs. postprandial: 0.102 ± 0.005% hr-1 , p < 0.01), in comparison with non-GLP-1 trials. Muscle protein breakdown (MPB) was reduced throughout clamp period, while net protein balance across the leg became positive in both groups. Total femoral leg blood flow was unchanged by the clamp; however, muscle microvascular blood flow (MBF) was significantly elevated in both groups, and to a significantly greater extent in the GLP-1 group (MBF: 5 ± 2 vs. 1.9 ± 1 fold change +GLP-1 and -GLP-1, respectively, p < 0.01). Activation of the Akt-mTOR signalling was similar across both trials. CONCLUSION: GLP-1 infusion markedly enhanced postprandial microvascular perfusion and further stimulated muscle protein metabolism, primarily through increased MPS, during a postprandial insulin hyperaminoacidaemic clamp.


Subject(s)
Glucagon-Like Peptide 1/metabolism , Muscle, Skeletal/metabolism , Aged , Female , Humans , Male
20.
J Sports Sci ; 38(21): 2462-2470, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32654597

ABSTRACT

To establish the test-retest reliability of pulmonary oxygen uptake (V̇O2), muscle deoxygenation (deoxy[haem]) and tissue oxygen saturation (StO2) kinetics in youth elite-cyclists. From baseline pedalling, 15 youth cyclists completed 6-min step transitions to a moderate- and heavy-intensity work rate separated by 8 min of baseline cycling. The protocol was repeated after 1 h of passive rest. V̇O2 was measured breath-by-breath alongside deoxy[haem] and StO2 of the vastus lateralis by near-infrared spectroscopy. Reliability was assessed using 95% limits of agreement (LoA), the typical error (TE) and the intraclass correlation coefficient (ICC). During moderate- and heavy-intensity step cycling, TEs for the amplitude, time delay and time constant ranged between 3.5-21.9% and 3.9-12.1% for V̇O2 and between 6.6-13.7% and 3.5-10.4% for deoxy[haem], respectively. The 95% confidence interval for estimating the kinetic parameters significantly improved for ensemble-averaged transitions of V̇O2 (p < 0.01) but not for deoxy[haem]. For StO2, the TEs for the baseline, end-exercise and the rate of deoxygenation were 1.0-42.5% and 1.1-5.5% during moderate- and heavy-intensity exercise, respectively. The ICC ranged from 0.81 to 0.99 for all measures. Test-retest reliability data provide limits within which changes in V̇O2, deoxy[haem] and StO2 kinetics may be interpreted with confidence in youth athletes.


Subject(s)
Oxygen Consumption , Pulmonary Ventilation , Quadriceps Muscle/metabolism , Running/physiology , Adaptation, Physiological , Adolescent , Female , Heme/metabolism , Humans , Male , Microcirculation , Quadriceps Muscle/blood supply , Reproducibility of Results , Spectroscopy, Near-Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...