Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Language
Publication year range
1.
Molecules ; 29(18)2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39339471

ABSTRACT

Lithium, a natural element, has been employed as a mental stabilizer in psychiatric treatments; however, some reports indicate it has an anticancer effect, prompting the consideration of repurposing lithium for cancer treatment. The potential anticancer use of lithium may depend on its form (salt type) and the type of cancer cells targeted. Little is known about the effects of Li2CO3 or LiCl on cancer cells, so we focused on exploring their effects on proliferation, apoptosis, migration, and cell cycle as part of the hallmarks of cancer. Firstly, we established the IC50 values on HeLa, SiHa, and HaCaT cells with LiCl and Li2CO3 and determined by crystal violet that cell proliferation was time-dependent in the three cell lines (IC50 values for LiCl were 23.43 mM for SiHa, 23.14 mM for HeLa, and 15.10 mM for HaCaT cells, while the IC50 values for Li2CO3 were 20.57 mM for SiHa, 11.52 mM for HeLa, and 10.52 mM for HaCaT cells.) Our findings indicate that Li2CO3 and LiCl induce DNA fragmentation and caspase-independent apoptosis, as shown by TUNEL, Western Blot, and Annexin V/IP assay by flow cytometry. Also, cell cycle analysis showed that LiCl and Li2CO3 arrested the cervical cancer cells at the G1 phase. Moreover, lithium salts displayed an anti-migratory effect on the three cell lines observed by the wound-healing assay. All these findings imply the viable anticancer effect of lithium salts by targeting several of the hallmarks of cancer.


Subject(s)
Apoptosis , Cell Movement , Cell Proliferation , Lithium Chloride , Uterine Cervical Neoplasms , Humans , Lithium Chloride/pharmacology , Cell Proliferation/drug effects , Apoptosis/drug effects , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/metabolism , Cell Movement/drug effects , Female , HeLa Cells , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Lithium Carbonate/pharmacology , Cell Cycle/drug effects , Drug Repositioning
2.
Exp Parasitol ; 256: 108670, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38092297

ABSTRACT

Ivermectin (IVM) resistance in parasitic nematodes such as Haemonchus contortus has spurred a search for substances that help to recover its efficacy. One potential agent is the natural product curcumin (CUR). In this study, CUR was combined with polyvinylpyrrolidone (PVP) (CUR/PVP) to improve its solubility and biological applicability. This study determined the effect of CUR preincubation on the effective concentration 50% (EC50) of IVM in three H. contortus isolates with different susceptibilities to IVM. The IVM EC50 was determined for three H. contortus isolates with different IVM susceptibilities using the larval migration inhibition (LMI) test. The three isolates were (i) PARAISO (IVM resistant), (ii) FMVZ-UADY (IVM susceptible), and (iii) CENID-SAI INIFAP (reference IVM susceptible). The L3 of each isolate were preincubated for 3 h with one of three concentrations of CUR (µg curcumin/mL): CONC-1 (3.67), CONC-2 (5.67), or CONC-3 (8.48). Corresponding controls were performed without CUR. The EC50 of IVM was determined for each isolate after they were exposed to the different CUR concentrations. The EC50 of IVM differed between the isolates PARAISO > FMVZ-UADY > CENID-SAI INIFAP (P < 0.05). The CUR preincubation at CONC-1 did not decrease the EC50 of IVM for any of the three isolates, suggesting a hormetic effect. By contrast, CUR preincubation at CONC-2 or CONC-3 decreased the IVM EC50 for the PARAISO isolate (P < 0.05) compared with the reference isolate and reduced the EC50 of IVM for the FMVZ-UADY and CENID-SAI INIFAP isolates below the EC50 for the CENID-SAI INIFAP isolate without CUR preincubation. In conclusion, preincubation of H. contortus L3 with CUR reduced the EC50 of IVM for field isolates classified as resistant and susceptible to IVM. The CUR preincubation reduced the IVM resistance factor in the different isolates tested.


Subject(s)
Anthelmintics , Curcumin , Haemonchiasis , Haemonchus , Animals , Ivermectin/pharmacology , Ivermectin/therapeutic use , Anthelmintics/pharmacology , Anthelmintics/therapeutic use , Curcumin/pharmacology , Curcumin/therapeutic use , Povidone/pharmacology , Povidone/therapeutic use , Drug Resistance , Larva , Haemonchiasis/drug therapy , Haemonchiasis/veterinary
3.
Mol Genet Genomic Med ; 11(11): e2252, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37485818

ABSTRACT

BACKGROUND: Some cytokines are strongly implicated in the development of squamous cell carcinoma (SCC) such as the Macrophage migration inhibitory factor (MIF). The haplotype -794 (CATT)5-8 /-173G>C in MIF gene polymorphisms has been associated with some types of cancer. The aim of this study is to establish the possible association between the presence of this haplotype in the MIF gene and its subsequent soluble levels with the susceptibility of SCC in western Mexican population. METHODS: This study included 175 SCC patients and 175 age-sex-matched individuals as a reference group (RG) from western Mexico. Genomic DNA was extracted from peripheral blood leukocytes. Polymorphisms were genotyped by endpoint PCR and PCR-RFLP, and the determination of MIF serum levels was measured by ELISA. Clinical characteristics were evaluated by a group of dermatologists. RESULTS: Analysis of [-794(CATT)5-8 /-173G>C] MIF gene polymorphisms showed that the 5C (OR = 2.7, p = 0.02) and the 7G (OR = 3.39, p < 0.01) haplotypes are associated with susceptibility in SCC. MIF soluble levels in SCC patients showed a median of 13.93 ng/mL, whereas the reference group showed 6.000 ng/mL. CONCLUSIONS: Our findings suggest that 5C and 7G [-794(CATT)5-8 /-173G>C] MIF gene haplotypes are associated with susceptibility to SCC and that SCC patients present increased soluble levels of MIF.


Subject(s)
Carcinoma, Squamous Cell , Macrophage Migration-Inhibitory Factors , Skin Neoplasms , Humans , Haplotypes , Carcinoma, Squamous Cell/genetics , Mexico , Genetic Predisposition to Disease , Skin Neoplasms/genetics , Polymorphism, Genetic , Macrophage Migration-Inhibitory Factors/genetics , Intramolecular Oxidoreductases/genetics
4.
Anticancer Agents Med Chem ; 21(14): 1901-1910, 2021.
Article in English | MEDLINE | ID: mdl-33292143

ABSTRACT

BACKGROUND: Triple-negative BC is the most aggressive type of breast cancer and its lack of responsiveness to conventional therapies requires screening of new chemical entities. Anti-migratory compounds are promising to treat metastatic cancer since they inhibit one of the main steps of the metastatic cascade. Spirocyclic compounds are non-conventional structures used as building blocks for the synthesis of biologically active molecules and considered interesting structures in the search for new targets in cancer research. OBJECTIVE: Here, we evaluated the potential of eight synthetic spirocyclohexadienones as cell migration inhibitors. METHODS: The anti-migratory ability of compounds was tested by wound healing and Boyden chamber approaches. Experiments in tubulin were performed by fluorescence and tubulin polymerization techniques. Finally, compounds were submitted to cell proliferation inhibition and flow cytometry assays to explore the mechanism by which they inhibit cell migration. RESULTS: Four compounds inhibited cell migration significantly. Analogs containing the 3,4,5-trimethoxyphenil ring at R1 position were the most potent and, thus, selected for additional experiments. Tubulin polymerization and fluorescence assays highlighted a possible binding of spirocyclohexadienones in the colchicine binding site; however, these compounds did not affect the cell cycle to the same extent as colchicine. Cell proliferation was affected and, notably, the most potent analogs induced apoptosis of tumor cells, suggesting a different mechanism by which they inhibit cell migration. CONCLUSION: We presented, for the first time, a series of eight synthetic spirocyclohexadienones with the ability to inhibit TNBC cell migration. These compounds represent a new category to be explored as anticancer agents.


Subject(s)
Antineoplastic Agents/pharmacology , Cyclohexenes/pharmacology , Spiro Compounds/pharmacology , Triple Negative Breast Neoplasms/drug therapy , Tubulin Modulators/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Movement/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Cyclohexenes/chemical synthesis , Cyclohexenes/chemistry , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Polymerization/drug effects , Spiro Compounds/chemical synthesis , Spiro Compounds/chemistry , Triple Negative Breast Neoplasms/pathology , Tubulin/metabolism , Tubulin Modulators/chemical synthesis , Tubulin Modulators/chemistry
5.
Braz. J. Pharm. Sci. (Online) ; 55: e18276, 2019. graf
Article in English | LILACS | ID: biblio-1011640

ABSTRACT

To study the effect of small interfering RNA targeting metastasis-associated lung adenocarcinoma transcript1 (si-MALAT1) combining with curcumin on the invasion and migration abilities of human colon cancer SW480 cells, and to explore the involved molecular mechanism. The recombinant lentiviral vector expressing si-MALAT1 was constructed, and its titer was determined by gradient dilution method. The colon cancer SW480 cells with stable expression of si-MALAT1 was established, followed by treatment with curcumin at different concentrations. The effect of curcumin or si-MALAT1 alone and the combination of the two on the cell activity was detected by MTT assay. The cell invasion and migration abilities were detected by transwell and scratch-wound assay. The relative expression level of MALAT1 was detected by RT-qPCR. The protein expression was determined by Western blot analysis. The IC50 of curcumin alone was 77.69 mmol/L, which was 51.17 mol/L when combined with curcumin and random sequence. The IC50 of curcumin was 30.02 mmol/L when combined with si-MALAT1. The increased susceptibility multiples was 2.58. The wound healing rates were 30.9% and 67.5% after treatment with si-MALAT1 combined with curcumin for 24 hrs and 48 hrs, respectively. The numbers of invasion cells were 200±12, 162±13, 66±8, 53±4 and 16±3 after treatment with si-MALAT1 combined with curcumin for 48 hrs. The relative expression level of lncRNA-MALAT1 in the curcumin group was 68%, and the relative expression level of lncRNA-MALAT1 in si-MALAT1group was 56%, and that for the combination treatment group was about 21%. The protein expression levels of β- catenin, c-myc and cyclinD1 were significantly down-regulated upon treatment with certain concentration of si-MALAT1 alone or combined with curcumin.si-MALAT1 could significantly inhibit the invasion and migration of SW480 cells by enhancing the sensitivity of SW480 cells to curcumin. The mechanism involved mignt be related to the down-regulation of β-catenin, c-myc and cyclinD1 proteins.


Subject(s)
Cell Migration Inhibition/drug effects , Colonic Neoplasms , Curcumin/pharmacology , Neoplasms/prevention & control , RNA , RNA, Small Interfering/drug effects
6.
Inflammation ; 40(2): 511-522, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28091830

ABSTRACT

D-limonene epoxidation generates (+)-limonene epoxide, an understudied compound in the pharmacologically point of view. Herein, we investigated the anti-inflammatory and antinociceptive potentialities of (+)-limonene epoxide and suggested a mechanism of action. The anti-inflammatory potential was analyzed using agents to induce paw edema, permeability, and myeloperoxidase (MPO) activity. Pro-inflammatory cytokines and cell migration of peritoneal cells were also assessed. Antinociceptive effects were evaluated by writhing test induced by acetic acid, formalin, and hot plate assays and contribution of opioid pathways. Pretreated animals with (+)-limonene epoxide showed reduced carrageenan-induced paw edema in all doses (25, 50, and 75 mg/kg) (P < 0.05). At 75 mg/kg, it suppressed edema provoked by compound 48/80, histamine, prostaglandin E2, and serotonin and reduced permeability determined by Evans blue and MPO activity. It also reduced leukocytes, neutrophils, and IL-1ß levels in the peritoneal cavity in comparison with carrageenan group (P < 0.05). (+)-Limonene epoxide diminished abdominal contortions induced by acetic acid (78.9%) and paw licking times in both 1 (41.8%) and 2 (51.5%) phases and a pretreatment with naloxone (3 mg/kg) reverted the antinociceptive action in morphine- and (+)-limonene epoxide-treated groups (P < 0.05). Additionally, it enlarged response times to the thermal stimulus after 60 and 90 min. In conclusion, (+)-limonene epoxide inhibited release/activity of inflammatory mediators, vascular permeability, migration of neutrophils and displayed systemic and peripheral analgesic-dependent effects of the opioid system.


Subject(s)
Analgesics/pharmacology , Anti-Inflammatory Agents/pharmacology , Edema/drug therapy , Monoterpenes/pharmacology , Animals , Capillary Permeability/drug effects , Cell Movement/drug effects , Cyclohexane Monoterpenes , Dose-Response Relationship, Drug , Edema/chemically induced , Inflammation Mediators , Male , Mice , Monoterpenes/therapeutic use , Neutrophils/cytology , Pain/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL