ABSTRACT
The enzymatic reduction of carbon dioxide presents limited applicability due to denaturation and the impossibility of biocatalyst recovery; disadvantages that can be minimized by its immobilization. Here, a recyclable bio-composed system was constructed by in-situ encapsulation under mild conditions using formate dehydrogenase in a ZIF-8 metalorganic framework (MOF) in the presence of magnetite. The partial dissolution of ZIF-8 in the enzyme's operation medium can be relatively inhibited if the concentration of magnetic support used exceeds 10â mg mL-1 . The bio-friendly environment for immobilization does not harm the integrity of the biocatalyst, and the production of formic acid is improved 3.4-fold compared to the free enzyme because the MOFs act as concentrators of the enzymatic cofactor. Furthermore, the bio-composed system retains 86 % of its activity after a long time of five cycles, thus indicating an excellent magnetic recovery and a good reusability.
Subject(s)
Formate Dehydrogenases , Oxidation-Reduction , Carbon Dioxide/chemistry , Formate Dehydrogenases/chemistry , Formate Dehydrogenases/metabolism , CapsulesABSTRACT
A simplified procedure to synthesize zwitterionic cellulose by means of N-protected aspartic anhydride under mild conditions was developed. The preparation of modified cellulose samples was carried out under heterogeneous, aqueous conditions by reacting NH4OH-activated cellulose with aspartic anhydrides N-protected with trifluoroacetyl (TFAc) and carbobenzyloxy (Cbz). Modified cellulose samples Cel-Asp-N-TFAc and Cel-Asp-N-Cbz were characterized by Fourier Transform Infrared (FTIR) and 13C solid state Nuclear Magnetic Resonance (NMR) spectroscopy. The functionalization degree of each cellulose sample was determined by the 13C NMR signal integration values corresponding to the cellulose C1 vs. the Cα of the aspartate residue and corroborated by elemental analysis. In agreement, both analytical methods averaged a grafting degree of 20% for Cel-Asp-N-TFAc and 16% for Cel-Asp-N-Cbz. Conveniently, Cel-Asp-N-TFAc was concomitantly partially N-deprotected (65%) as determined by the ninhydrin method. The zwitterion character of this sample was confirmed by a potentiometric titration curve and the availability of these amino acid residues on the cellulose was inspected by adsorption kinetics method with a 100 mg L-1 cotton blue dye solution. In addition, the synthesis reported in the present work involves environmentally related advantages over previous methodologies developed in our group concerning to zwitterionic cellulose preparation.
Subject(s)
Anhydrides/chemistry , Aspartic Acid/chemistry , Cellulose/chemistry , Coloring Agents/metabolism , Adsorption , Anhydrides/metabolism , Aspartic Acid/metabolism , Cellulose/metabolismABSTRACT
The present work evaluates the influence of vessel cooling simultaneously to microwave-assisted digestion performed in a closed system with diluted HNO3 under O2 pressure. The effect of outside air flow-rates (60-190 m(3) h(-1)) used for cooling of digestion vessels was evaluated. An improvement in digestion efficiency caused by the reduction of HNO3 partial pressure was observed when using higher air flow-rate (190 m(3) h(-1)), decreasing the residual carbon content for whole milk powder from 21.7 to 9.3% (lowest and highest air flow-rate, respectively). The use of high air flow-rate outside the digestion vessel resulted in a higher temperature gradient between liquid and gas phases inside the digestion vessel and improved the efficiency of sample digestion. Since a more pronounced temperature gradient was obtained, it contributed for increasing the condensation rate and thus allowed a reduction in the HNO3 partial pressure of the digestion vessel, which improved the regeneration of HNO3. An air flow-rate of 190 m(3) h(-1) was selected for digestion of animal fat, bovine liver, ground soybean, non fat milk powder, oregano leaves, potato starch and whole milk powder samples, and a standard reference material of apple leaves (NIST 1515), bovine liver (NIST 1577) and whole milk powder (NIST 8435) for further metals determination by inductively coupled plasma atomic emission spectroscopy (ICP-OES). Results were in agreement with certified values and no interferences caused by matrix effects during the determination step were observed.