Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Front Cell Dev Biol ; 11: 1234592, 2023.
Article in English | MEDLINE | ID: mdl-37731818

ABSTRACT

Introduction: Inosine monophosphate dehydrogenase 1 (IMPDH1) is a critical enzyme in the retina, essential for the correct functioning of photoreceptor cells. Mutations in IMPDH1 have been linked to autosomal dominant retinitis pigmentosa subtype 10 (adRP-10), a genetic eye disorder. Some of these mutations such as the Asp226Asn (D226N) lead to the assembly of large filamentous structures termed cytoophidia. D226N also gives IMPDH1 resistance to feedback inhibition by GDP/GTP. This study aims to emulate the adRP-10 condition with a long-term expression of IMPDH1-D226N in vitro and explore cytoophidium assembly and cell survival. We also assessed whether the introduction of an additional mutation (Y12C) to disrupt the cytoophidium has an attenuating effect on the toxicity caused by the D226N mutation. Results: Expression of IMPDH1-D226N in HEp-2 cells resulted in cytoophidium assembly in ∼70% of the cells, but the presence of the Y12C mutation disrupted the filaments. Long-term cell survival was significantly affected by the presence of the D226N mutation, with a decrease of ∼40% in the cells expressing IMPDH1-D226N when compared to IMPDH1-WT; however, survival was significantly recovered in IMPDH1-Y12C/D226N, with only a ∼10% decrease when compared to IMPDH1-WT. On the other hand, the IMPDH1 expression level in the D226N-positive cells was <30% of that of the IMPDH1-WT-positive cells and only slightly higher in the Y12C/D226N, suggesting that although cell survival in Y12C/D226N was recovered, higher expression levels of the mutated IMPDH1 were not tolerated by the cells in the long term. Conclusion: The IMPDH1-D226N effect on photoreceptor cell survival may be the result of a sum of problems: nucleotide unbalance plus a toxic long-life cytoophidium, supported by the observation that by introducing Y12C in IMPDH1 the cytoophidium was disrupted and cell survival significantly recovered, but not the sensibility to GDP/GTP regulation since higher expression levels of IMPDH1-D226N were not tolerated.

2.
J Cell Biochem ; 123(7): 1259-1277, 2022 07.
Article in English | MEDLINE | ID: mdl-35644025

ABSTRACT

Alzheimer's disease (AD) is the leading cause of dementia worldwide. Despite causing great social and economic impact, there is currently no cure for AD. The most effective therapy to manage AD symptoms is based on acetylcholinesterase inhibitors (AChEi), from which rivastigmine presented numerous benefits. However, mutations in AChE, which affect approximately 5% of the population, can modify protein structure and function, changing the individual response to Alzheimer's treatment. In this study, we performed computer simulations of AChE wild type and variants R34Q, P135A, V333E, and H353N, identified by one or more genome-wide association studies, to evaluate their effects on protein structure and interaction with rivastigmine. The functional effects of AChE variants were predicted using eight machine learning algorithms, while the evolutionary conservation of AChE residues was analyzed using the ConSurf server. Autodock4.2.6 was used to predict the binding modes for the hAChE-rivastigmine complex, which is still unknown. Molecular dynamics (MD) simulations were performed in triplicates for the AChE wild type and mutants using the GROMACS packages. Among the analyzed variants, P135A was classified as deleterious by all the functional prediction algorithms, in addition to occurring at highly conserved positions, which may have harmful consequences on protein function. The molecular docking results suggested that rivastigmine interacts with hAChE at the upper active-site gorge, which was further confirmed by MD simulations. Our MD findings also suggested that the complex hAChE-rivastigmine remains stable over time. The essential dynamics revealed flexibility alterations at the active-site gorge upon mutations P135A, V333E, and H353N, which may lead to strong and nonintuitive consequences to hAChE binding. Nonetheless, similar binding affinities were registered in the MMPBSA analysis for the hAChE wild type and variants when complexed to rivastigmine. Finally, our findings indicated that the rivastigmine binding to hAChE is an energetically favorable process mainly driven by negatively charged amino acids.


Subject(s)
Acetylcholinesterase , Alzheimer Disease , Acetylcholinesterase/chemistry , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Genome-Wide Association Study , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Rivastigmine/therapeutic use
3.
Comput Methods Programs Biomed ; 219: 106768, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35367915

ABSTRACT

BACKGROUND AND OBJECTIVES: Hemophilia A (HA) is an X-linked blood disorder. It is caused by pathogenic F8 gene variants, among which missense mutations are the most prevalent. The resulting amino acid substitutions may have different impacts on physicochemical properties and, consequently, on protein functionality. Regular prediction tools do not include structural elements and their physiological significance, which hampers our ability to functionally link variants to disease phenotype, opening an ample field for investigation. The present study aims to elucidate how physicochemical changes generated by substitutions in different protein domains relate to HA, and which of these features are more consequential to protein function and its impact on HA phenotype. METHODS: An in silico evaluation of 71 F8 variants found in patients with different HA phenotypes (mild, moderate, severe) was performed to understand protein modifications and functional impact. Homology modeling was used for the structural analysis of physicochemical changes including electrostatic potential, hydrophobicity, solvent-accessible/excluded surface areas, disulfide disruptions, and substitutions indexes. These variants and properties were analyzed by hierarchical clustering analysis (HCA) and principal component analysis (PCA), independently and in combination, to investigate their relative contribution. RESULTS: About 69% of variants show electrostatic changes, and almost all show hydrophobicity and surface area modifications. HCA combining all physicochemical properties analyzed was better in reflecting the impact of different variants in disease severity, more so than the single feature analysis. On the other hand, PCA led to the identification of prominent properties involved in the clustering results for variants of different domains. CONCLUSIONS: The methodology developed here enables the assessment of structural features not available in other prediction tools (e.g., surface distribution of electrostatic potential), evaluating what kind of physicochemical changes are involved in FVIII functional disruption. HCA results allow distinguishing substitutions according to their properties, and yielded clusters which were more homogeneous in phenotype. All evaluated properties are involved in determining disease severity. The nature, as well as the position of the variants in the protein, were shown to be relevant for physicochemical changes, demonstrating that all these aspects must be collectively considered to fine-tune an approach to predict HA severity.


Subject(s)
Factor VIII/chemistry , Hemophilia A , Factor VIII/genetics , Factor VIII/metabolism , Hemophilia A/genetics , Hemophilia A/pathology , Humans , Mutation , Mutation, Missense , Phenotype , Static Electricity
4.
Genes (Basel) ; 12(5)2021 05 10.
Article in English | MEDLINE | ID: mdl-34068831

ABSTRACT

The rare form of retinal dystrophy, Bietti crystalline dystrophy, is associated with variations in CYP4V2, a member of the cytochrome P450 family. This study reports patients affected by typical and atypical Bietti crystalline dystrophy, expanding the spectrum of this disease. This is an observational case series of patients with a clinical and molecular diagnosis of Bietti crystalline dystrophy that underwent multimodal imaging. Four unrelated patients are described with two known variants, c.802-8_810del17insGC and c.518T > G (p.Leu173Trp), and one novel missense variant, c.1169G > T (p.Arg390Leu). The patient with the novel homozygous variant had the most severe phenotype resulting in macular hole formation and retinal detachment in both eyes. To the best of our knowledge, there is no association of these features with Bietti crystalline dystrophy. Patient 1 was the youngest patient and had the mildest phenotype with crystals in the retina without chorioretinal atrophy and visual complaints. Patients 2 and 3 presented with fewer crystals and chorioretinal atrophy. These three patients presented a classic phenotype. The fourth patient presented with an atypical and severe phenotype. This study reveals a new genotype and new phenotype associated with this disorder.


Subject(s)
Corneal Dystrophies, Hereditary/genetics , Retinal Diseases/genetics , Aged , Corneal Dystrophies, Hereditary/pathology , Female , Genotype , Homozygote , Humans , Male , Middle Aged , Phenotype , Retina/pathology , Retinal Diseases/pathology , Young Adult
5.
Rev. invest. clín ; Rev. invest. clín;73(3): 132-137, May.-Jun. 2021. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1280449

ABSTRACT

ABSTRACT Background: Fukuyama congenital muscular dystrophy (FCMD) is the most common form of a group of autosomal recessive disorders characterized by altered α-dystroglycan glycosylation and caused by FKTN gene mutations. However, mutations of this gene may cause a broad range of phenotypes, including Walker-Warburg syndrome, muscle-brain-eye disease, FCMD, limb-girdle muscular dystrophy without mental retardation, and cardiomyopathy with no or minimal skeletal muscle weakness. Objective: Our purpose was to describe two siblings who died at a young age with dilated cardiomyopathy (DCM), no muscle weakness, or atrophy, and were homozygous for a FKTN missense mutation. Methods: Site-directed next-generation sequencing (NGS) was performed. Pathogenicity of variants of interest was established according to the American College of Medical Genetics (ACMG) criteria, and all available first-degree relatives were screened for mutations by Sanger sequencing. Results: NGS revealed a homozygous FKTN variant in the index case (p.Gly424Ser, rs752358445), classified as likely pathogenic by ACMG criteria. Both parents and an unaffected brother were heterozygous carriers. Since the siblings had no apparent skeletal muscle weakness or central nervous system involvement, FKTN mutations were not initially suspected. Conclusions: This is the first report demonstrating that heterozygous individuals for the FKTN p.Gly424Ser mutation were healthy, while two homozygous brothers suffered severe DCM, strongly suggesting that this FKTN mutation is a rare cause of autosomal recessive DCM.

6.
Mol Syndromol ; 12(1): 57-63, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33776629

ABSTRACT

Noonan syndrome with multiple lentigines (NSML), previously known as LEOPARD syndrome, is a rare autosomal dominant disorder with an unknown prevalence. Characteristics of this disease include cutaneous, neurologic, and cardiologic abnormalities. In this case report, we present a 12-year-old girl who was admitted to the emergency department for acute-onset left weakness, unsteady gait, nausea, and vomiting. Her physical exam notably showed left side upper motor neuron signs and dysmetria. CT scan revealed an acute hemorrhage of the right thalamus. Physical exam exhibited several craniofacial dysmorphisms and lentigines. The genetic test revealed a heterozygous missense mutation in the protein tyrosine phosphatase non-receptor type 11 (PTPN11) gene and a variant of unknown significance of the MYH11 gene. To the best of our knowledge, this is the first case of a patient with NSML presenting an intracerebral hemorrhage.

7.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;54(11): e11396, 2021. graf
Article in English | LILACS | ID: biblio-1339444

ABSTRACT

Current understanding of the genetic factors contributing to the etiology of non-syndromic craniosynostosis (NSC) remains scarce. The present work investigated the presence of variants in ALX4, EFNA4, and TWIST1 genes in children with NSC to verify if variants within these genes may contribute to the occurrence of these abnormal phenotypes. A total of 101 children (aged 45.07±40.94 months) with NSC participated in this cross-sectional study. Parents and siblings of the probands were invited to participate. Medical and family history of craniosynostosis were documented. Biological samples were collected to obtain genomic DNA. Coding exons of human TWIST1, ALX4, and EFNA4 genes were amplified by polymerase chain reaction and Sanger sequenced. Five missense variants were identified in ALX4 in children with bilateral coronal, sagittal, and metopic synostosis. A de novo ALX4 variant, c.799G>A: p.Ala267Thr, was identified in a proband with sagittal synostosis. Three missense variants were identified in the EFNA4 gene in children with metopic and sagittal synostosis. A TWIST1 variant occurred in a child with unilateral coronal synostosis. Variants were predicted to be among the 0.1% (TWIST1, c.380C>A: p. Ala127Glu) and 1% (ALX4, c.769C>T: p.Arg257Cys, c.799G>A: p.Ala267Thr, c.929G>A: p.Gly310Asp; EFNA4, c.178C>T: p.His60Tyr, C.283A>G: p.Lys95Glu, c.349C>A: Pro117Thr) most deleterious variants in the human genome. With the exception of ALX4, c.799G>A: p.Ala267Thr, all other variants were present in at least one non-affected family member, suggesting incomplete penetrance. Thus, these variants may contribute to the development of craniosynostosis, and should not be discarded as potential candidate genes in the diagnosis of this condition.


Subject(s)
Humans , Child , Craniosynostoses/genetics , Transcription Factors/genetics , Base Sequence , Family , Cross-Sectional Studies , Mutation, Missense/genetics , DNA-Binding Proteins/genetics
8.
Epilepsy Behav ; 112: 107469, 2020 11.
Article in English | MEDLINE | ID: mdl-33181902

ABSTRACT

The most common form of genetic generalized epilepsy (GGE) is juvenile myoclonic epilepsy (JME), which accounts for 5 to 10% of all epilepsy cases. The gene EFHC1 has been implicated as a putative cause of JME. However, it remains debatable whether testing for EFHC1 mutations should be included in the diagnostic epilepsy gene panels. To investigate the clinical utility of EFHC1 testing, we studied 125 individuals: 100 with JME and 25 with other GGEs. We amplified and sequenced all EFHC1 coding exons. Then, we predicted the pathogenicity or benign impact of the variants using the analyses proposed by the American College of Medical Genetics and Genomics (ACMG)/Association for Molecular Pathology (AMP). Mutation screening revealed 11 missense variants in 44 probands with JME (44%) and one of the seven individuals with generalized tonic-clonic seizures on awakening (14%). Six of the 11 variants (54%) were classified as 'benign,' and the remaining variants were considered variants of uncertain significance (VUS). There is currently a limitation to test for genes that predispose an individual to complex, nonmonogenic phenotypes. Thus, we show suggestive evidence that EFHC1 testing lacks a scientific foundation based on the disputed nature of the gene-disease relationship and should be currently limited to research purposes.


Subject(s)
Epilepsy, Generalized , Myoclonic Epilepsy, Juvenile , Calcium-Binding Proteins/genetics , Epilepsy, Generalized/genetics , Humans , Myoclonic Epilepsy, Juvenile/genetics , Pedigree , Phenotype
9.
Medwave ; 19(5): e7645, 2019 Jun 04.
Article in Spanish, English | MEDLINE | ID: mdl-31226102

ABSTRACT

INTRODUCTION: The congenital myasthenic syndromes are a heterogeneous group of genetic disorders characterized by an abnormal synaptic transmission in the neuromuscular plate. REPORT: We present a two-year-old patient, male, with hypotonia, palpebral ptosis, and proximal symmetric weakness with a neonatal onset that motivated several and prolonged hospitalizations for pneumonia and respiratory failure. From two years of age, the parents noticed that the facial and general weakness worsened in the afternoons and with repeated or prolonged physical activity. The physical examination showed palpebral ptosis, predominantly proximal weakness, and fatigability with sustained muscular effort. The electromyography showed a 27% decrement in the Compound Muscular Action Potential and the case-parents genetic study showed compound heterozygosity with the transmission of two different mutations in the rapsyn gene from both parents. The patient received pyridostigmine with great improvement, achieving optimal performance in school, sports, and daily life activities. CONCLUSIONS: Weakness and fatigability with neonatal onset, mainly affecting the muscles with brain stem innervation and the decrement greater than 10 percent in the Compound Muscular Action Potential in the electromyographic studies, should make us suspect in a congenital myasthenic syndrome. We review the literature and key clinical points to establish a timely diagnosis and effective treatment in some of these syndromes.


INTRODUCCIÓN: Los síndromes miasténicos congénitos son un grupo heterogéneo de desórdenes genéticos, caracterizados por una transmisión sináptica anormal en la placa neuromuscular. REPORTE: Presentamos el caso de un paciente de dos años, varón, con hipotonía, ptosis palpebral y debilidad simétrica y de predominio proximal, caracte-rísticas que aparecieron desde el nacimiento y que motivaron varias hospitalizaciones por neumonía e insuficiencia ventilatoria. Desde el inicio de la deambulación a los dos años, los padres notaron que la debilidad empeoraba por las tardes y con la actividad física repetida o prolongada. El examen físico a los dos años mostró ptosis palpebral, debilidad de predominio proximal y fatigabilidad con el esfuerzo sostenido. La electro-miografía evidenció decremento del 27% en el potencial de acción muscular compuesto. El análisis de tríos mostró heterocigosis compuesta por transmisión de dos mutaciones diferentes en el gen de rapsina, una ya conocida procedente del padre y la otra no reportada previa-mente, procedente de la madre. El paciente recibió piridostigmina obteniendo mejoría inmediata y logrando un desempeño óptimo en activi-dades escolares, deportivas y de la vida cotidiana. A la fecha, no ha presentado nuevos episodios de insuficiencia ventilatoria. CONCLUSIONES: La debilidad de inicio neonatal y la fatigabilidad o agotamiento con el esfuerzo sostenido, con afección principalmente de los músculos con inervación troncal y con un decremento mayor al 10% en el potencial de acción muscular compuesto en la electromiografía, deben hacer sospechar en un síndrome miasténico congénito. Se revisan los puntos clínicos clave que permiten establecer el diagnóstico oportuno y las opciones de tratamiento efectivo para algunos de estos síndromes.


Subject(s)
Muscle Proteins/genetics , Myasthenic Syndromes, Congenital/diagnosis , Pyridostigmine Bromide/administration & dosage , Child, Preschool , Cholinesterase Inhibitors/administration & dosage , Humans , Male , Mutation , Myasthenic Syndromes, Congenital/drug therapy , Myasthenic Syndromes, Congenital/genetics
10.
JIMD Rep ; 36: 59-66, 2017.
Article in English | MEDLINE | ID: mdl-28130718

ABSTRACT

Intellectual disability is a highly heterogeneous disease that affects the central nervous system and impairs patients' ability to function independently. Despite multiples genes involved in the etiology of disease, most of the genetic background is yet to be discovered. We used runs of homozygosity and exome sequencing to study a large Costa Rican family with four individuals affected with severe intellectual disability and found a novel homozygous missense mutation, p. 96G>R, c. 286G>A, in all affected individuals. This gene encodes for a pyridoxal enzyme involved in the production of the neurotransmitter glutamate and is highly expressed in the white matter of brain and cerebellum. Protein modeling of GPT2 predicted that the mutation is located in a loop where the substrate binds to the active site of the enzyme, therefore, suggesting that the catalytic activity is impaired. With our report of a second mutation we fortify the importance of GPT2 as a novel cause of autosomal recessive nonsyndromic intellectual disability and support the premise that GPT2 is highly important for the neurodevelopment of the central nervous system. SYNOPSIS: The mutation p. 96G>R c. 286G>A in GPT2, located in a loop where the substrate binds to the active site of the enzyme, fortifies the importance of GPT2 in the pathogenesis of nonsyndromic intellectual disability.

11.
Arch Oral Biol ; 60(9): 1356-67, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26142250

ABSTRACT

OBJECTIVE: Amelogenesis imperfecta (AI) is a group of clinically and genetically heterogeneous inherited conditions, causing alterations in the structure of enamel and chemical composition of enamel matrix during development. The objective of this study was to compare the clinical, radiographic, histological and immunohistochemical phenotypes of subjects affected with hypocalcified AI from three Chilean families and identify causal mutations in the FAM83H gene. DESIGN: The diagnosis was made using clinical, radiographic, histological and genealogical data from the patients, who were evaluated according to the classification criteria by Witkop. PCR and Sanger sequencing of the complete coding sequence and surrounding intron regions of the FAM83H gene were conducted. The structural study of the affected teeth was performed with light microscopy, scanning electron microscopy and immunohistochemistry. RESULTS: The probands of the three families were diagnosed with hypocalcified AI, but in only one of them the missense variant p.Gly557Cys was identified. This variant was not present in the SNP database or in 100 healthy controls and segregated with the disease in the affected family. Using light microscopy, a normal prismatic structure was observed in all three cases. However, the ultrastructure was found to be affected in two of the cases, showing persistence of organic matter including amelogenins. CONCLUSIONS: These results suggest that FAM83H missense mutation reported in one of the families analyzed in this study might cause a phenotype of hypocalcified enamel more attenuated with retention of amelogenin.


Subject(s)
Amelogenesis Imperfecta/genetics , Amelogenin/genetics , Mutation, Missense/genetics , Proteins/genetics , Chile , Exons , Female , Humans , Immunohistochemistry , Male , Microscopy, Electron, Scanning , Pedigree , Phenotype
12.
J. inborn errors metab. screen ; 2: e140008, 2014. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1090857

ABSTRACT

Abstract Fabry disease (FD) is an inborn error of metabolism characterized by deficient/absent activity of lysosomal enzyme alpha-galactosidase A, which results in systemic accumulation of glycosphingolipids and progression to renal failure, heart and cerebrovascular disease, and small-fiber peripheral neuropathy. This article describes a Brazilian family affected by FD caused by a novel mutation in exon 6 of the alpha-galactosidase A (GLA) gene (c.812G>C). Signs and symptoms identified were pain crisis, acroparesthesia, hypohidrosis, abdominal cramps and diarrhea, chronic kidney disease, cornea verticillata, left ventricular hypertrophy, and complete heart block. Headache was a common complaint and 1 of the patients presented with aseptic meningitis. The novel missense mutation in the GLA gene identified in this Brazilian family is consistent with the classic FD phenotype.

13.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;44(4): 361-365, Apr. 2011. ilus
Article in English | LILACS | ID: lil-581497

ABSTRACT

Male sex determination in humans is controlled by the SRY gene, which encodes a transcriptional regulator containing a conserved high mobility group box domain (HMG-box) required for DNA binding. Mutations in the SRY HMG-box affect protein function, causing sex reversal phenotypes. In the present study, we describe a 19-year-old female presenting 46,XY karyotype with hypogonadism and primary amenorrhea that led to the diagnosis of 46,XY complete gonadal dysgenesis. The novel p.E89K missense mutation in the SRY HMG-box was identified as a de novo mutation. Electrophoretic mobility shift assays showed that p.E89K almost completely abolished SRY DNA-binding activity, suggesting that it is the cause of SRY function impairment. In addition, we report the occurrence of the p.G95R mutation in a 46,XY female with complete gonadal dysgenesis. According to the three-dimensional structure of the human SRY HMG-box, the substitution of the conserved glutamic acid residue by the basic lysine at position 89 introduces an extra positive charge adjacent to and between the positively charged residues R86 and K92, important for stabilizing the HMG-box helix 2 with DNA. Thus, we propose that an electrostatic repulsion caused by the proximity of these positive charges could destabilize the tip of helix 2, abrogating DNA interaction.


Subject(s)
Adolescent , Female , Humans , Young Adult , DNA-Binding Proteins/genetics , Genes, sry/genetics , /genetics , Mutation/genetics , Follicle Stimulating Hormone/blood , /diagnosis , /surgery , Karyotyping
SELECTION OF CITATIONS
SEARCH DETAIL