Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters











Publication year range
1.
Exp Gerontol ; 193: 112465, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38795789

ABSTRACT

Overall health relies on features of skeletal muscle that generally decline with age, partly due to mechanisms associated with mitochondrial redox imbalance and bioenergetic dysfunction. Previously, aged mice genetically devoid of the mitochondrial NAD(P)+ transhydrogenase (NNT, encoded by the nicotinamide nucleotide transhydrogenase gene), an enzyme involved in mitochondrial NADPH supply, were shown to exhibit deficits in locomotor behavior. Here, by using young, middle-aged, and older NNT-deficient (Nnt-/-) mice and age-matched controls (Nnt+/+), we aimed to investigate how muscle bioenergetic function and motor performance are affected by NNT expression and aging. Mice were subjected to the wire-hang test to assess locomotor performance, while mitochondrial bioenergetics was evaluated in fiber bundles from the soleus, vastus lateralis and plantaris muscles. An age-related decrease in the average wire-hang score was observed in middle-aged and older Nnt-/- mice compared to age-matched controls. Although respiratory rates in the soleus, vastus lateralis and plantaris muscles did not significantly differ between the genotypes in young mice, the rates of oxygen consumption did decrease in the soleus and vastus lateralis muscles of middle-aged and older Nnt-/- mice. Notably, the soleus, which exhibited the highest NNT expression level, was the muscle most affected by aging, and NNT loss. Additionally, histology of the soleus fibers revealed increased numbers of centralized nuclei in older Nnt-/- mice, indicating abnormal morphology. In summary, our findings suggest that NNT expression deficiency causes locomotor impairments and muscle dysfunction during aging in mice.


Subject(s)
Aging , Energy Metabolism , Mitochondria, Muscle , Muscle, Skeletal , Animals , Aging/metabolism , Aging/physiology , Mice , Muscle, Skeletal/metabolism , Mitochondria, Muscle/metabolism , Male , NADP Transhydrogenase, AB-Specific/metabolism , NADP Transhydrogenase, AB-Specific/genetics , Oxygen Consumption/physiology , Mice, Knockout , Mice, Inbred C57BL , Mitochondrial Proteins
2.
Mol Cell Biochem ; 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38498105

ABSTRACT

Mucopolysaccharidosis type II (MPS II; Hunter syndrome) is a lysosomal storage disease caused by mutations in the gene encoding the enzyme iduronate 2-sulfatase (IDS) and biochemically characterized by the accumulation of glycosaminoglycans (GAGs) in different tissues. It is a multisystemic disorder that presents liver abnormalities, the pathophysiology of which is not yet established. In the present study, we evaluated bioenergetics, redox homeostasis, and mitochondrial dynamics in the liver of 6-month-old MPS II mice (IDS-). Our findings show a decrease in the activity of α-ketoglutarate dehydrogenase and an increase in the activities of succinate dehydrogenase and malate dehydrogenase. The activity of mitochondrial complex I was also increased whereas the other complex activities were not affected. In contrast, mitochondrial respiration, membrane potential, ATP production, and calcium retention capacity were not altered. Furthermore, malondialdehyde levels and 2',7'-dichlorofluorescein oxidation were increased in the liver of MPS II mice, indicating lipid peroxidation and increased ROS levels, respectively. Sulfhydryl and reduced glutathione levels, as well as glutathione S-transferase, glutathione peroxidase (GPx), superoxide dismutase, and catalase activities were also increased. Finally, the levels of proteins involved in mitochondrial mass and dynamics were decreased in knockout mice liver. Taken together, these data suggest that alterations in energy metabolism, redox homeostasis, and mitochondrial dynamics can be involved in the pathophysiology of liver abnormalities observed in MPS II.

3.
J Trace Elem Med Biol ; 83: 127399, 2024 May.
Article in English | MEDLINE | ID: mdl-38325180

ABSTRACT

BACKGROUND: Thimerosal (TM) is a toxic, organometallic mercury compound (which releases ethyl-mercury-containing compounds in aqueous solutions) used as a preservative in vaccines. Mitochondria are organelle which are highly vulnerable to many chemical compounds, including mercury (Hg) and its derivatives. METHOD: Wistar rats (at 21 days of age) were used to model a child's TM exposure following childhood vaccination, divided in two groups: TM exposed (20 µg/kg/day) and unexposed controls (saline solution), both for 24 h. Atomic Fluorescence Spectrometry was used to quantify the amounts of mercury in tissues. The electron transport chain (ETC) from isolated mitochondria was evaluated using an oxygen electrode. The mitochondrial membrane potential and H2O2 production were analyzed using selective fluorescence probes. The activity of some enzymes (SOD, CAT, GPx, and AChE) and secondary markers of oxidative stress (GSH, GSSG, total free thiol) were also examined in tissues. RESULTS: Hg accumulation in the brain and liver was higher in exposed animals when compared to the control. Liver-isolated mitochondria showed that TM improved respiratory control by 23%; however, states 3 and 4 of the ETC presented a decrease of 16% and 37%, respectively. Furthermore, brain-isolated mitochondria presented an improvement of 61% in respiratory control. Brain enzyme activities were significantly impacted in TM-exposed rats compared to unexposed rats as follows: decreases in SOD (32%) and AChE (42%) and increases in GPx (79%) and CAT (100%). GPx enzyme activity in the liver was significantly increased (37%). Among secondary oxidative stress markers, the brain's total reduced thiol (SH) concentration was significantly increased (41%). CONCLUSION: Acute TM treatment exposure in a Wistar rat model mimicking TM exposure in an infant following childhood vaccination significantly damaged brain bioenergetic pathways. This study supports the ability of TM exposure to preferentially damage the nervous system.


Subject(s)
Ethylmercury Compounds , Mercury Compounds , Mercury , Humans , Child , Infant , Rats , Animals , Mercury/toxicity , Mercury/metabolism , Thimerosal/pharmacology , Hydrogen Peroxide/metabolism , Rats, Wistar , Mitochondria/metabolism , Superoxide Dismutase , Sulfhydryl Compounds
4.
Cells ; 13(4)2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38391929

ABSTRACT

In this study, we investigated the inter-organelle communication between the Golgi apparatus (GA) and mitochondria. Previous observations suggest that GA-derived vesicles containing phosphatidylinositol 4-phosphate (PI(4)P) play a role in mitochondrial fission, colocalizing with DRP1, a key protein in this process. However, the functions of these vesicles and potentially associated proteins remain unknown. GOLPH3, a PI(4)P-interacting GA protein, is elevated in various types of solid tumors, including breast cancer, yet its precise role is unclear. Interestingly, GOLPH3 levels influence mitochondrial mass by affecting cardiolipin synthesis, an exclusive mitochondrial lipid. However, the mechanism by which GOLPH3 influences mitochondria is not fully understood. Our live-cell imaging analysis showed GFP-GOLPH3 associating with PI(4)P vesicles colocalizing with YFP-DRP1 at mitochondrial fission sites. We tested the functional significance of these observations with GOLPH3 knockout in MDA-MB-231 cells of breast cancer, resulting in a fragmented mitochondrial network and reduced bioenergetic function, including decreased mitochondrial ATP production, mitochondrial membrane potential, and oxygen consumption. Our findings suggest a potential negative regulatory role for GOLPH3 in mitochondrial fission, impacting mitochondrial function and providing insights into GA-mitochondria communication.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/pathology , MDA-MB-231 Cells , Mitochondrial Dynamics , Golgi Apparatus/metabolism , Energy Metabolism , Membrane Proteins/metabolism
5.
Arch Biochem Biophys ; 753: 109880, 2024 03.
Article in English | MEDLINE | ID: mdl-38171410

ABSTRACT

Thioredoxin-1 (Trx1) has cardioprotective effects on ischemia/reperfusion (I/R) injury, although its role in ischemic postconditioning (PostC) in middle-aged mice is not understood. This study aimed to evaluate if combining two cardioprotective strategies, such as Trx1 overexpression and PostC, could exert a synergistic effect in reducing infarct size in middle-aged mice. Young or middle-aged wild-type mice (Wt), transgenic mice overexpressing Trx1, and dominant negative (DN-Trx1) mutant of Trx1 mice were used. Mice hearts were subjected to I/R or PostC protocol. Infarct size, hydrogen peroxide (H2O2) production, protein nitration, Trx1 activity, mitochondrial function, and Trx1, pAkt and pGSK3ß expression were measured. PostC could not reduce infarct size even in the presence of Trx1 overexpression in middle-aged mice. This finding was accompanied by a lack of Akt and GSK3ß phosphorylation, and Trx1 expression (in Wt group). Trx1 activity was diminished and H2O2 production and protein nitration were increased in middle-age. The respiratory control rate dropped after I/R in Wt-Young and PostC restored this value, but not in middle-aged groups. Our results showed that Trx1 plays a key role in the PostC protection mechanism in young but not middle-aged mice, even in the presence of Trx1 overexpression.


Subject(s)
Ischemic Postconditioning , Myocardial Reperfusion Injury , Animals , Mice , Hydrogen Peroxide , Infarction , Mice, Transgenic , Myocardial Reperfusion Injury/prevention & control , Myocardial Reperfusion Injury/metabolism , Thioredoxins/genetics , Thioredoxins/metabolism
6.
Methods Mol Biol ; 2664: 283-308, 2023.
Article in English | MEDLINE | ID: mdl-37423995

ABSTRACT

Proper kidney function depends highly on mitochondria homeostasis. This organelle is the primary source of ATP production in the kidney and regulates other cellular processes such as redox and calcium homeostasis. Although the mitochondria's primary recognized function is cellular energy production, through the function of the Krebs cycle, electron transport system (ETS), as well as oxygen and electrochemical gradient consumption, this function is interconnected with multiple signaling and metabolic pathways, making bioenergetics a central hub in renal metabolism. Furthermore, mitochondrial biogenesis, dynamics, and mass are also strongly related to bioenergetics. This central role is not surprising given that mitochondrial impairment, including functional and structural alterations, has been recently reported in several kidney diseases. Here, we describe assessment of mitochondrial mass, structure, and bioenergetics in kidney tissue and renal-derived cell lines. These methods allow investigation of mitochondrial alterations in kidney tissue and renal cells under different experimental conditions.


Subject(s)
Energy Metabolism , Mitochondria , Mitochondria/metabolism , Kidney/metabolism , Histological Techniques , Microscopy, Electron, Transmission
7.
J Nutr Biochem ; 120: 109415, 2023 10.
Article in English | MEDLINE | ID: mdl-37437746

ABSTRACT

Omega-3 fatty acids (w-3 FA) have anti-inflammatory effects and improve mitochondrial function. Nonetheless, little is known about their effect on mitochondrial bioenergetics of peripheral blood mononuclear cells (PBMCs) in individuals with obesity. Thus, this study aimed to determine the mitochondrial bioenergetics status and cell subset composition of PBMCs during obesity, before and after 1 month supplementation with w-3 FA. We performed a case-control study with twelve women with normal BMI (lean group) and 19 with grade 2 obesity (obese group), followed by a before-after prospective study where twelve subjects with obesity received a 1 month intervention with 5.25 g of w-3 FA (3.5 g eicosapentaenoic (EPA) and 1.75 g docosahexaenoic (DHA) acids), and obtained PBMCs from all participants. Mitochondrial bioenergetic markers, including basal and ATP-production associated respiration, proton leak, and nonmitochondrial respiration, were higher in PBMCs from the obese group vs. the lean group. The bioenergetic health index (BHI), a marker of mitochondrial function, was lower in the obese vs. the lean group. In addition, Th1, Th2, Th17, CD4+ Tregs, CD8+ Tregs, and Bregs, M1 monocytes and pDCreg cells were higher in PBMCs from the obese group vs. the lean group. The w-3 FA intervention improved mitochondrial function, mainly by decreasing nonmitochondrial respiration and increasing the reserve respiratory capacity and BHI. The intervention also reduced circulating pro-inflammatory and anti-inflammatory lymphocyte and monocytes subsets in individuals with obesity. The mitochondrial dysfunction of PBMCs and the higher proportion of peripheral pro-inflammatory and anti-inflammatory immune cells in subjects with obesity, improved with 1 month supplementation with EPA and DHA.


Subject(s)
Fatty Acids, Omega-3 , Leukocytes, Mononuclear , Humans , Female , Case-Control Studies , Prospective Studies , Docosahexaenoic Acids/pharmacology , Docosahexaenoic Acids/therapeutic use , Fatty Acids, Omega-3/pharmacology , Fatty Acids, Omega-3/therapeutic use , Obesity/drug therapy , Inflammation/drug therapy , Mitochondria , Dietary Supplements , Eicosapentaenoic Acid/pharmacology , Eicosapentaenoic Acid/therapeutic use , Fatty Acids
8.
Pharmaceutics ; 15(5)2023 May 18.
Article in English | MEDLINE | ID: mdl-37242775

ABSTRACT

From the venom of the Bothrops pictus snake, an endemic species from Peru, we recently have described toxins that inhibited platelet aggregation and cancer cell migration. In this work, we characterize a novel P-III class snake venom metalloproteinase, called pictolysin-III (Pic-III). It is a 62 kDa proteinase that hydrolyzes dimethyl casein, azocasein, gelatin, fibrinogen, and fibrin. The cations Mg2+ and Ca2+ enhanced its enzymatic activity, whereas Zn2+ inhibited it. In addition, EDTA and marimastat were also effective inhibitors. The amino acid sequence deduced from cDNA shows a multidomain structure that includes a proprotein, metalloproteinase, disintegrin-like, and cysteine-rich domains. Additionally, Pic-III reduces the convulxin- and thrombin-stimulated platelet aggregation and in vivo, it has hemorrhagic activity (DHM = 0.3 µg). In epithelial cell lines (MDA-MB-231 and Caco-2) and RMF-621 fibroblast, it triggers morphological changes that are accompanied by a decrease in mitochondrial respiration, glycolysis, and ATP levels, and an increase in NAD(P)H, mitochondrial ROS, and cytokine secretion. Moreover, Pic-III sensitizes to the cytotoxic BH3 mimetic drug ABT-199 (Venetoclax) in MDA-MB-231 cells. To our knowledge, Pic-III is the first SVMP reported with action on mitochondrial bioenergetics and may offer novel opportunities for promising lead compounds that inhibit platelet aggregation or ECM-cancer-cell interactions.

9.
Biochim Biophys Acta Bioenerg ; 1864(2): 148961, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36812958

ABSTRACT

Refsum disease is an inherited peroxisomal disorder caused by severe deficiency of phytanoyl-CoA hydroxylase activity. Affected patients develop severe cardiomyopathy of poorly known pathogenesis that may lead to a fatal outcome. Since phytanic acid (Phyt) concentrations are highly increased in tissues of individuals with this disease, it is conceivable that this branched-chain fatty acid is cardiotoxic. The present study investigated whether Phyt (10-30 µM) could disturb important mitochondrial functions in rat heart mitochondria. We also determined the influence of Phyt (50-100 µM) on cell viability (MTT reduction) in cardiac cells (H9C2). Phyt markedly increased mitochondrial state 4 (resting) and decreased state 3 (ADP-stimulated) and uncoupled (CCCP-stimulated) respirations, besides reducing the respiratory control ratio, ATP synthesis and the activities of the respiratory chain complexes I-III, II, and II-III. This fatty acid also reduced mitochondrial membrane potential and induced swelling in mitochondria supplemented by exogenous Ca2+, which were prevented by cyclosporin A alone or combined with ADP, suggesting the involvement of the mitochondrial permeability transition (MPT) pore opening. Mitochondrial NAD(P)H content and Ca2+ retention capacity were also decreased by Phyt in the presence of Ca2+. Finally, Phyt significantly reduced cellular viability (MTT reduction) in cultured cardiomyocytes. The present data indicate that Phyt, at concentrations found in the plasma of patients with Refsum disease, disrupts by multiple mechanisms mitochondrial bioenergetics and Ca2+ homeostasis, which could presumably be involved in the cardiomyopathy of this disease.


Subject(s)
Cardiomyopathies , Refsum Disease , Rats , Animals , Refsum Disease/metabolism , Phytanic Acid/pharmacology , Phytanic Acid/metabolism , Calcium/metabolism , Rats, Wistar , Cardiomyopathies/drug therapy , Cardiomyopathies/metabolism , Energy Metabolism , Mitochondria, Heart/metabolism , Fatty Acids/metabolism , Mitochondrial Permeability Transition Pore/metabolism , Homeostasis
10.
Exp Neurol ; 363: 114352, 2023 05.
Article in English | MEDLINE | ID: mdl-36813223

ABSTRACT

Decreasing neurotrophic support and impaired mitochondrial bioenergetics are key mechanisms for long-term neurodegeneration and cognitive decline after traumatic brain injury (TBI). We hypothesize that preconditioning with lower and higher volumes of physical exercise upregulates the CREB-BDNF axis and bioenergetic capability, which might serve as neural reserves against cognitive impairment after severe TBI. Using a running wheel mounted in the home cage, mice were engaged in lower (LV, 48 h free access, and 48 h locked) and higher (HV, daily free access) exercise volumes for thirty days. Subsequently, LV and HV mice remained for additional thirty days in the home cage with the running wheel locked and were euthanized. The sedentary group had the running wheel always locked. For the same type of exercise stimulus in a given time, daily workout presents higher volume than alternate days workout. The total distance ran in the wheel was the reference parameter to confirm distinct exercise volumes. On average, LV exercise ran 27.522 m and HV exercise ran 52.076 m. Primarily, we investigate whether LV and HV protocols increase neurotrophic and bioenergetic support in the hippocampus thirty days after exercise ceased. Regardless of volume, exercise increased hippocampal pCREBSer133-CREB-proBDNF-BDNF signaling and mitochondrial coupling efficiency, excess capacity, and leak control, that may compose the neurobiological basis for neural reserves. Further, we challenge these neural reserves against secondary memory deficits triggered by a severe TBI. After thirty days of exercise LV and HV, and sedentary (SED) mice were submitted to the CCI model. Mice remained for additional thirty days in the home cage with the running wheel locked. The mortality after severe TBI was approximately 20% in LV and HV, while in the SED was 40%. Also, LV and HV exercise sustained hippocampal pCREBSer133-CREB-proBDNF-BDNF signaling, mitochondrial coupling efficiency, excess capacity, and leak control for thirty days after severe TBI. Corroborating these benefits, the mitochondrial H2O2 production linked to complexes I and II was attenuated by exercise regardless of the volume. These adaptations attenuated spatial learning and memory deficits caused by TBI. In summary, preconditioning with LV and HV exercise builds up long-lasting CREB-BDNF and bioenergetic neural reserves that preserve memory fitness after severe TBI.


Subject(s)
Brain Injuries, Traumatic , Cognitive Reserve , Physical Conditioning, Animal , Mice , Animals , Brain-Derived Neurotrophic Factor/metabolism , Hydrogen Peroxide , Physical Conditioning, Animal/physiology , Hippocampus/metabolism , Memory Disorders/etiology , Brain Injuries, Traumatic/complications
11.
Drug Chem Toxicol ; 46(3): 575-587, 2023 May.
Article in English | MEDLINE | ID: mdl-35502483

ABSTRACT

Mancozeb (MZ), a manganese/zinc containing ethylene-bis-dithiocarbamate, is a broad-spectrum fungicide. Chronic exposure to MZ has been related to several organisms' neurological, hormonal, and developmental disorders. However, little is known about the post-natal effects of developmental exposure to MZ. In this study, Drosophila melanogaster was subjected to a pre-imaginal (eggs-larvae-pupae stage) model of exposure to MZ at 0.1 and 0.5 mg/mL. The emergence rate, body size, locomotor performance, sleep patterns, and molecular and biochemical parameters were evaluated in post-emerged flies. Results demonstrate that pre-imaginal exposure to MZ significantly impacted early emerged flies. Additionally, reduced progeny viability, smaller body size and delaying in emergence period, locomotor impairment, and prolonged sleep time were observed. Content of glucose, proteins, and triglycerides were altered, and the bioenergetics efficiency and oxidative phosphorylation at complex I were inhibited. mRNA stade state levels of genes responsive to stress, metabolism, and regulation of circadian cycle (Nrf2, p38, Hsp83, Akt1, GPDH, tor, per, tim, dILP2, and dILP6) were augmented, pointing out to stimulation of antioxidant defenses, insulin-dependent signaling pathway activation, and disruption of sleep regulation. These data were followed by increased lipid peroxidation and lower glutathione levels. In addition, the activity of catalase and glutathione-S-transferase were induced, whereas superoxide dismutase was inhibited. Together, these results demonstrate that developmental exposure to MZ formulation led to phenotype and behavioral alterations in young flies, possibly related to disruption of energetic metabolism, oxidative stress, and deregulation of genes implied in growth, sleep, and metabolism.


Subject(s)
Drosophila melanogaster , Zineb , Animals , Zineb/toxicity , Oxidative Stress , Antioxidants/pharmacology , Glutathione/metabolism
12.
J Ethnopharmacol ; 294: 115344, 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-35526731

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: In Paraguay, healers from the Mbya culture treat cancer with a recipe prepared with the native toad Rhinella schneideri. However, the chemical composition and biological effects of the recipe remain unknown. AIM OF THE STUDY: The aim is to determine the composition of the traditional preparation made using the toad R. schneideri and to evaluate its effect on human breast cancer (BC) cells. MATERIALS AND METHODS: The metabolites contained in the preparation were concentrated using XAD-7 resin, and the concentrate was analyzed by HPLC-MS/MS. The effect of the preparation was assessed in normal (MCF10F) and BC cells (MDA-MB-231 and MCF7). The mitochondrial membrane potential (Δψm), reactive oxygen species (ROS) levels, and cell cycle progression were determined by flow cytometry. The oxygen consumption rate (OCR) was measured by Clark electrode, and fibronectin-dependent migration in normoxia and hypoxia-like conditions were evaluated by transwell assay. RESULTS: From the Amberlite-retained extract from the preparation, 24 compounds were identified, including alkaloids, amino acids, bufadienolides, and flavonoids, among others. The crude extract (CE) did not affect cell cycle progression and viability of BC cell lines. Moreover, it did not make cancer cells more sensitive to the cytotoxic effect of the chemotherapeutics doxorubicin and teniposide. On the other hand, the CE reduced the menadione-induced ROS production and increased NADH, Δψm, and the OCR. Respiratory complexes I and III as well as ATP synthase levels were increased in an AMPK-dependent manner. Moreover, the CE inhibited the migration of BC cells in normoxia and a hypoxia-like condition using CoCl2 as a HIF1α-stabilizing agent. This latter effect involved an AMPK-dependent reduction of HIF1α levels. CONCLUSIONS: The Paraguayan toad recipe contains metabolites from the toad ingredient, including alkaloids and bufadienolide derivatives. The CE lacks cytotoxic effects alone or in combination with chemotherapeutics. However, it increases mitochondrial bioenergetics and inhibits the cancer cell migration in an AMPK-dependent manner in BC cells. This is the first report of the in vitro anticancer effect of a traditional Rhinella sp. toad preparation based on Mbya tradition.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , AMP-Activated Protein Kinases , Animals , Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Bufonidae , Cell Line, Tumor , Energy Metabolism , Female , Humans , Hypoxia , Reactive Oxygen Species , Tandem Mass Spectrometry
13.
Int J Biol Macromol ; 206: 990-1002, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35321814

ABSTRACT

Bothorps atrox is responsible for most of the ophidism cases in Perú. As part of the envenoming, myotoxicity is one of the most recurrent and destructive effects. In this study, a myotoxin, named BaMtx, was purified from B. atrox venom to elucidate its biological, immunological, and molecular characteristics. BaMtx was purified using CM-Sephadex-C-25 ion-exchange resin and SDS-PAGE analysis showed a unique protein band of 13 kDa or 24 kDa under reducing or non-reducing conditions, respectively. cDNA sequence codified a 122-aa mature protein with high homology with other Lys49-PLA2s; modeled structure showed a N-terminal helix, a ß-wing region, and a C-terminal random coil. This protein has a poor phospholipase A2 enzymatic activity. BaMtx has myotoxic (DMM = 12.30 ± 0.95 µg) and edema-forming (DEM = 26.00 ± 1.15 µg) activities. Rabbit immunization with purified enzyme produced anti-BaMtx antibodies that reduced 50.28 ± 10.15% of myotoxic activity and showed significant cross-reactivity against B. brazili and B pictus venoms. On the other hand, BaMtx exhibits mild anti-proliferative and anti-migratory effects on breast cancer cells, affecting the ROS and NADH levels, which may reduce mitochondrial respiration. These results contribute to the understanding of B. atrox Lys49-PLA2 effects and establish the anticancer potential de BaMtx.


Subject(s)
Bothrops , Crotalid Venoms , Viperidae , Amino Acid Sequence , Animals , Bothrops/metabolism , Myotoxicity , Peru , Phospholipases A2/chemistry , Rabbits , Viperidae/metabolism
14.
Curr Res Microb Sci ; 3: 100110, 2022.
Article in English | MEDLINE | ID: mdl-35199071

ABSTRACT

Chagas disease (CD), caused by Trypanosoma cruzi, occurs in several countries in Latin America and non-endemic countries. Heterogeneity among T. cruzi population has been the Achilles' heel to find a better treatment for CD. In this study, we characterized the biochemical parameters and mitochondrial bioenergetics of epimastigotes differentiated from eight T. cruzi isolates (I1-I8) obtained from Brazilian CD patients. Molecular analysis of parasites DTUs grouped all of them as TcII. The profile of the growth curves in axenic cultures was distinct among them, except for I1 and I3 and I2 and I4. Doubling times, growth rates, cell body length, and resistance to benznidazole were also significantly different among them. All the isolates were more glucose-dependent than other T. cruzi strains adapted to grow in axenic culture. Mitochondrial bioenergetics analysis showed that each isolate behaved differently regarding oxygen consumption rates in non-permeabilized and in digitonin-permeabilized cells in the presence of a complex II-linked substrate. When complex IV-linked respiratory chain substrate was used to provide electrons to the mitochondrial respiratory chain (MRC), similarity among the isolates was higher. Our findings show that TcII epimastigotes derived from patients' trypomastigotes displayed their own characteristics in vitro, highlighting the intra-TcII diversity, especially regarding the functionality of mitochondrial respiratory complexes II and IV. Understanding T. cruzi intraspecific biological features help us to move a step further on our comprehension regarding parasite's survival and adaptability offering clues to improve the development of new therapies for CD.

15.
J Exp Biol ; 225(1)2022 01 01.
Article in English | MEDLINE | ID: mdl-34904632

ABSTRACT

The interaction between supraphysiological cytosolic Ca2+ levels and mitochondrial redox imbalance mediates the mitochondrial permeability transition (MPT). The MPT is involved in cell death, diseases and aging. This study compared the liver mitochondrial Ca2+ retention capacity and oxygen consumption in the long-lived red-footed tortoise (Chelonoidis carbonaria) with those in the rat as a reference standard. Mitochondrial Ca2+ retention capacity, a quantitative measure of MPT sensitivity, was remarkably higher in tortoises than in rats. This difference was minimized in the presence of the MPT inhibitors ADP and cyclosporine A. However, the Ca2+ retention capacities of tortoise and rat liver mitochondria were similar when both MPT inhibitors were present simultaneously. NADH-linked phosphorylating respiration rates of tortoise liver mitochondria represented only 30% of the maximal electron transport system capacity, indicating a limitation imposed by the phosphorylation system. These results suggested underlying differences in putative MPT structural components [e.g. ATP synthase, adenine nucleotide translocase (ANT) and cyclophilin D] between tortoises and rats. Indeed, in tortoise mitochondria, titrations of inhibitors of the oxidative phosphorylation components revealed a higher limitation of ANT. Furthermore, cyclophilin D activity was approximately 70% lower in tortoises than in rats. Investigation of critical properties of mitochondrial redox control that affect MPT demonstrated that tortoise and rat liver mitochondria exhibited similar rates of H2O2 release and glutathione redox status. Overall, our findings suggest that constraints imposed by ANT and cyclophilin D, putative components or regulators of the MPT pore, are associated with the enhanced resistance to Ca2+-induced MPT in tortoises.


Subject(s)
Turtles , Animals , Calcium/metabolism , Peptidyl-Prolyl Isomerase F , Hydrogen Peroxide , Mitochondria, Liver/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Transmembrane Permeability-Driven Necrosis , Permeability , Rats , Turtles/metabolism
16.
Chem Biol Interact ; 349: 109675, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34563518

ABSTRACT

Mesoionic compounds, 4-phenyl-5-(4-X-cinnamoyl)-1,3,4-thiadiazolium-2-phenylamine chloride derivatives (MI-J: X = OH; MI-D: X = NO2), possess significant antitumor and cytotoxic effects on several cancer cells. In this work, we evaluated the cytotoxicity of MI-J and MI-D on human hepatocellular carcinoma (HepG2 cells) grown in either high glucose (HG) or galactose medium (GAL) to clarify whether the effects of mesoionics on mitochondrial bioenergetics are associated with their cytotoxicity in these cells. MI-J and MI-D (5-50 µM) decreased the viability of HepG2 cells in a dose- and time-dependent manner, as assessed by MTT, LDH release and dye with crystal violet assays. Both compounds at lower (5 µM) and intermediate (25 µM) concentrations were more toxic to cells grown in GAL medium. MI-J inhibited the basal state of respiration in HepG2 cells cultured in HG and GAL media; however, in GAL medium, this effect occurred at the lowest concentration (5 µM). A leak-state stimulus was observed only after incubation with MI-J (5 µM) for GAL medium. MI-D stimulated and inhibited the leak state in cells grown in HG medium at concentrations of 5 µM and 25 µM, respectively. In cells cultured in GAL medium, respiration was strongly inhibited by MI-D at the highest concentration (25 µM). In contrast, at 5 µM, the mesoionic inhibited the basal and uncoupled states at 30% and 50%, respectively. The inhibition of the basal state by MI-J and MI-D was consistent with the increase in lactate levels in both media, which was higher for the GAL medium. Both mesoionics slightly decreased pyruvate levels only in cells cultured in GAL medium. Additionally, MI-J (25 µM) reduced the ATP amount in cells cultured in both media, while MI-D (25 µM) promoted a reduction only in cells grown in GAL medium. Our results show that MI-J and MI-D depress mitochondrial respiration and consequently change metabolism and reduce ATP levels, effects associated with their toxicity in hepatocarcinoma cells.


Subject(s)
Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Mitochondria/pathology , Thiadiazoles/pharmacology , Hep G2 Cells , Humans , Oxidative Phosphorylation
17.
Free Radic Biol Med ; 172: 358-371, 2021 08 20.
Article in English | MEDLINE | ID: mdl-34175439

ABSTRACT

Renal fibrosis is a well-known mechanism that favors chronic kidney disease (CKD) development in obstructive nephropathy, a significant pathology worldwide. Fibrosis induction involves several pathways, and although mitochondrial alterations have recently emerged as a critical factor that triggers renal damage in the obstructed kidney, the temporal mitochondrial alterations during the fibrotic induction remain unexplored. Therefore, in this work, we evaluated the time course of mitochondrial mass and bioenergetics alterations induced by a unilateral ureteral obstruction (UUO), a widely used model to study the mechanism involved in kidney fibrosis induction and progression. Our results show a marked reduction in mitochondrial oxidative phosphorylation (OXPHOS) in the obstructed kidney on days 7 to 28 of obstruction without significant mitochondrial coupling changes. Besides, we observed that mitochondrial mass was reduced, probably due to decreased biogenesis and mitophagy induction. OXPHOS impairment was associated with decreased mitochondrial biogenesis markers, the peroxisome proliferator-activated receptor γ co-activator-1alpha (PGC-1α), and nuclear respiratory factor 1 (NRF1); and also, with the induction of mitophagy in a PTEN-induced kinase 1 (PINK1) and Parkin independent way. It is concluded that the impairment of OXPHOS capacity may be explained by the reduction in mitochondrial biogenesis and the induction of mitophagy during fibrotic progression.


Subject(s)
Ureteral Obstruction , Animals , Fibrosis , Mitochondria , Mitophagy , Organelle Biogenesis , Rats
18.
Biochim Biophys Acta Proteins Proteom ; 1869(9): 140680, 2021 09.
Article in English | MEDLINE | ID: mdl-34051341

ABSTRACT

Beta-cell death and dysfunction are involved in the development of type 1 and 2 diabetes. ER-stress impairs beta-cells function resulting in pro-apoptotic stimuli that promote cell death. Hence, the identification of protective mechanisms in response to ER-stress could lead to novel therapeutic targets and insight in the pathology of these diseases. Here, we report the identification of proteins involved in dysregulated pathways upon thapsigargin treatment of MIN6 cells. Utilizing quantitative proteomics we identified upregulation of proteins involved in protein folding, unfolded protein response, redox homeostasis, proteasome processes associated with endoplasmic reticulum and downregulation of TCA cycle, cellular respiration, lipid metabolism and ribosome assembly processes associated to mitochondria and eukaryotic initiation translation factor components. Subsequently, pro-inflammatory cytokine treatment was performed to mimic pathological changes observed in beta-cells during diabetes. Cytokines induced ER stress and impaired mitochondrial function in beta-cells corroborating the results obtained with the proteomic approach. HSPB1 levels are increased by prolactin on pancreatic beta-cells and this protein is a key factor for cytoprotection although its role has not been fully elucidated. Here we show that while up-regulation of HSPB1 was able to restore the mitochondrial dysfunction induced by beta-cells' exposure to inflammatory cytokines, silencing of this chaperone abrogated the beneficial effects promoted by PRL. Taken together, our results outline the importance of HSPB1 to mitigate beta-cell dysfunction. Further studies are needed to elucidate its role in diabetes.


Subject(s)
Endoplasmic Reticulum Stress/physiology , Heat-Shock Proteins/metabolism , Mitochondria/metabolism , Molecular Chaperones/metabolism , Animals , Apoptosis/drug effects , Cell Death/drug effects , Cell Line , Cell Respiration/physiology , Cytokines/metabolism , Diabetes Mellitus/metabolism , Endoplasmic Reticulum/metabolism , Heat-Shock Proteins/physiology , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/physiology , Mice , Mitochondria/physiology , Molecular Chaperones/physiology , Proteomics/methods , Thapsigargin/pharmacology
19.
Free Radic Biol Med ; 154: 18-32, 2020 07.
Article in English | MEDLINE | ID: mdl-32360615

ABSTRACT

Recent studies suggest that mitochondrial bioenergetics and oxidative stress alterations may be common mechanisms involved in the progression of renal damage. However, the evolution of the mitochondrial alterations over time and the possible effects that their prevention could have in the progression of renal damage are not clear. Folic acid (FA)-induced kidney damage is a widely used experimental model to induce acute kidney injury (AKI), which can evolve to chronic kidney disease (CKD). Therefore, it has been extensively applied to study the mechanisms involved in AKI-to-CKD transition. We previously demonstrated that one day after FA administration, N-acetyl-cysteine (NAC) pre-administration prevented the development of AKI induced by FA. Such therapeutic effect was related to mitochondrial preservation. In the present study, we characterized the temporal course of mitochondrial bioenergetics and redox state alterations along the progression of renal damage induced by FA. Mitochondrial function was studied at different time points and showed a sustained impairment in oxidative phosphorylation capacity and a decrease in ß-oxidation, decoupling, mitochondrial membrane potential depolarization and a pro-oxidative state, attributed to the reduction in activity of complexes I and III and mitochondrial cristae effacement, thus favoring the transition from AKI to CKD. Furthermore, the mitochondrial protection by NAC administration before AKI prevented not only the long-term deterioration of mitochondrial function at the chronic stage, but also CKD development. Taken together, our results support the idea that the prevention of mitochondrial dysfunction during an AKI event can be a useful strategy to prevent the transition to CKD.


Subject(s)
Acute Kidney Injury , Renal Insufficiency, Chronic , Acute Kidney Injury/chemically induced , Acute Kidney Injury/drug therapy , Acute Kidney Injury/prevention & control , Disease Progression , Energy Metabolism , Folic Acid , Humans , Mitochondria/metabolism , Oxidation-Reduction , Renal Insufficiency, Chronic/chemically induced , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/metabolism
20.
Toxicol In Vitro ; 62: 104665, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31629068

ABSTRACT

cis-5-Tetradecenoic (cis-5) and myristic (Myr) acids predominantly accumulate in patients affected by very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency. They commonly manifest myopathy with muscular pain and rhabdomyolysis, whose underlying mechanisms are poorly known. Thus, in the present study we investigated the effects of cis-5 and Myr on mitochondrial bioenergetics and Ca2+ homeostasis in rat skeletal muscle. cis-5 and Myr decreased ADP-stimulated (state 3) and CCCP-stimulated (uncoupled) respiration, especially when mitochondria were supported by NADH-linked as compared to FADH2-linked substrates. In contrast, these fatty acids increased resting respiration (state 4). Similar effects were observed in skeletal muscle fibers therefore validating the data obtained with isolated mitochondria. Furthermore, cis-5 and Myr markedly decreased mitochondrial membrane potential and Ca2+ retention capacity that were avoided by cyclosporin A plus ADP and ruthenium red, indicating that cis-5 and Myr induce mitochondrial permeability transition (MPT). Finally, docosanoic acid did not disturb mitochondrial homeostasis, indicating selective effects for Myr and cis-5. Taken together, our findings indicate that major long-chain fatty acids accumulating in VLCAD deficiency behave as metabolic inhibitors, uncouplers of oxidative phosphorylation and MPT inducers. It is presumed that these pathomechanisms contribute to the muscular symptoms and rhabdomyolysis observed in patients affected by VLCAD deficiency.


Subject(s)
Acyl-CoA Dehydrogenase, Long-Chain/deficiency , Congenital Bone Marrow Failure Syndromes/metabolism , Lipid Metabolism, Inborn Errors/metabolism , Mitochondria/drug effects , Mitochondrial Diseases/metabolism , Muscle, Skeletal/drug effects , Muscular Diseases/metabolism , Myristic Acids/toxicity , Acyl-CoA Dehydrogenase, Long-Chain/metabolism , Animals , Calcium/metabolism , Energy Metabolism/drug effects , Homeostasis/drug effects , Membrane Potential, Mitochondrial/drug effects , Mitochondria/metabolism , Mitochondria/physiology , Muscle, Skeletal/metabolism , Oxygen Consumption/drug effects , Permeability/drug effects , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL