Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Food Sci Anim Resour ; 44(4): 885-898, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38974730

ABSTRACT

Ovomucin (OM), which has insoluble fractions is a viscous glycoprotein, found in egg albumin. Enzymatic hydrolysates of OM have water solubility and bioactive properties. This study investigated that the immunostimulatory effects of OM hydrolysates (OMHs) obtained by using various proteolytic enzymes (Alcalase®, bromelain, α-chymotrypsin, Neutrase®, pancreatin, papain, Protamax®, and trypsin) in RAW 264.7 cells. The results showed that OMH prepared with pancreatin (OMPA) produced the highest levels of nitrite oxide in RAW 264.7 cells, through upregulation of inducible nitric oxide synthase mRNA expression. The production of pro-inflammatory cytokines such as tumor necrosis factor-α and interleukin-6 were increased with the cytokines mRNA expression. The effect of OMPA on mitogen-activated protein kinase signaling pathway was increased the phosphorylation of p38, c-Jun NH2-terminal kinase, and extracellular signal-regulated kinase in a concentration-dependent manner. Therefore, OMPA could be used as a potential immune-stimulating agent in the functional food industry.

2.
Biomedicines ; 12(3)2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38540084

ABSTRACT

Prognoses for TNBC remain poor due to its aggressive nature and the lack of therapies that target its "drivers". RASA1, a RAS-GAP or GTPase-activating protein whose activity inhibits RAS signaling, is downregulated in up to 77% of TNBC cases. As such, RAS proteins become hyperactive and similar in effect to mutant hyperactive RAS proteins with impaired GTPase activities. PCAIs are a novel class of agents designed to target and disrupt the activities of KRAS and other G-proteins that are hyperactive in various cancers. This study shows the anticancer mechanisms of the PCAIs in two breast cancer cell lines, MDA-MB-468 and MDA-MB-231. PCAIs (NSL-YHJ-2-27) treatment increased BRAF phosphorylation, whereas CRAF phosphorylation significantly decreased in both cell lines. Moreover, the PCAIs also stimulated the phosphorylation of MEK, ERK, and p90RSK by 116, 340, and 240% in MDA-MB-468 cells, respectively. However, in MDA-MB-231 cells, a significant increase of 105% was observed only in p90RSK phosphorylation. Opposing effects were observed for AKT phosphorylation, whereby an increase was detected in MDA-MB-468 cells and a decrease in MDA-MB-231 cells. The PCAIs also induced apoptosis, as observed in the increased pro-apoptotic protein BAK1, by 51%, after treatment. The proportion of live cells in PCAIs-treated spheroids decreased by 42 and 34% in MDA-MB-468 and MDA-MB-231 cells, respectively, which further explains the PCAIs-induced apoptosis. The movement of the cells through the Matrigel was also inhibited by 74% after PCAIs exposure, which could have been due to the depleted levels of F-actin and vinculin punctate, resulting in the shrinkage of the cells by 76%, thereby impeding cell movement. These results show promise for PCAIs as potential therapies for TNBC as they significantly inhibit the hallmark processes and pathways that promote cell proliferation, migration, and invasion, which result in poor prognoses for breast cancer patients.

3.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1006271

ABSTRACT

ObjectiveThe antitumor activity of sesquiterpenoid M36 isolated from Myrrha against human hepatoma HepG2 cells was investigated in this study. MethodHepG2 cells were treated with M36 at different concentrations (0, 2, 4, 6, 8, 10 μmol·L-1). Firstly, the effects of M36 on the proliferation of human hepatoma HepG2 cells were detected by methyl thiazolyl tetrazolium (MTT), colony formation assay, and EdU proliferation assay. Hoechst staining, flow cytometry analysis, and Western blot were used to explore the effect of M36 on the apoptosis of human hepatoma HepG2 cells. Acridine orange staining and western blotting were used to examine the effect of M36 on autophagy in HepG2 cells. Finally, Western blot was used to detect protein expression of cancer-related signaling pathways. ResultCompared with the blank group, M36 treatment significantly inhibited the proliferation of human hepatoma HepG2 cells (P<0.01), and the half inhibitory concentration (IC50) value of M36 for 48 h was 5.03 μmol·L-1, in a dose- and time-dependent manner. M36 was also able to induce apoptosis and autophagy in human hepatoma HepG2 cells. After treatment with 8 μmol·L-1 M36 for 48 hours, the apoptosis rate of HepG2 cells was (42.03±9.65)% (P<0.01). Compared with the blank group, HepG2 cells treated with 4 and 8 μmol·L-1 M36 for 48 h had a significant increase in cleaved poly ADP-ribose polymerase (cleaved-PARP) protein levels (P<0.01). Acridine orange staining showed that autophagy was significantly activated in HepG2 cells treated with 4 and 8 μmol·L-1 M36 for 48 h compared with the blank group (P<0.01), which was further verified by the up-regulation of microtubule-associated protein 1 light chain 3 Ⅱ (LC3 Ⅱ). Western blot results showed that compared with the blank group, the levels of phosphorylated extracellular regulated protein kinase (p-ERK), phosphorylated p38 mitogen-activated protein kinase (p-p38 MAPK), phosphorylated c-Jun N-terminal kinase (p-JNK), and its downstream nuclear transcription factors c-Jun and p-c-Jun protein were significantly increased in M36 group (P<0.05, P<0.01). The mechanism may be related to the up-regulation of MAPK signaling pathway. ConclusionThe sesquiterpenoid M36 isolated from Myrrha inhibits the proliferation of human hepatoma HepG2 cells and promotes apoptosis and autophagy, which may be related to the activation of the MAPK signaling pathway.

4.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1003412

ABSTRACT

ObjectiveTo observe the effects and underlying mechanisms of Fagopyri Dibotryis Rhizoma extract on the proliferation, apoptosis, and autophagy of human colorectal cancer HCT-116 cells. MethodFirstly, cellular activity was detected by the cell proliferation and activity-8 (CCK-8) assay, and the half inhibition rate (IC50) was calculated. Blank group and Fagopyri Dibotryis Rhizoma group (2, 4, 8 mg·L-1) were set. The effect of Fagopyri Dibotryis Rhizoma on the proliferation of HCT-116 cells was observed by cloning experiments, and that of Fagopyri Dibotryis Rhizoma on apoptosis was observed by flow cytometry. The expressions of autophagy-related proteins, p38 mitogen-activated protein kinase (p38 MAPK), extracellular signal-regulated kinase (ERK), c-Jun amino-terminal kinase (JNK), phosphorylated (p)-p38, p-ERK, p-JNK, and other proteins were detected by Western blot. Finally, flow cytometry instrumentation and fluorescence microscopy were used to analyze the changes in reactive oxygen species (ROS), and a ROS scavenger (NAC) was adopted for verification. ResultCompared with the blank group, the activity of HCT-116 cells was significantly decreased in the Fagopyri Dibotryis Rhizoma group (P<0.05, P<0.01). The apoptosis rate of HCT-116 cells in the Fagopyri Dibotryis Rhizoma group was significantly increased (P<0.01). The expression of autophagy-related protein ubiquitin-binding protein (p62) was decreased, but that of autophagy-specific genes (Beclin1) and autophagic microtubule-associated protein 1 light-chain 3B (LC3B) was enhanced (P<0.05, P<0.01). Compared with the Fagopyri Dibotryis Rhizoma group, the apoptosis rate of HCT-116 cells in the Fagopyri Dibotryis Rhizoma + NAC group was significantly reduced (P<0.01). The expression of related autophagy protein Beclin1 was significantly reduced (P<0.01), and that of LC3B protein was reduced (P<0.01). In addition, the expression of MAPK pathway-related proteins ERK and JNK was decreased in the Fagopyri Dibotryis Rhizoma group (P<0.05, P<0.01), and that of p-ERK and p-JNK was enhanced (P<0.05, P<0.01). ConclusionFagopyri Dibotryis Rhizoma can inhibit the proliferation of HCT-116 cells and induce apoptosis and autophagy through the ROS/MAPK signaling pathway.

5.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1013363

ABSTRACT

With a global rise in morbidity rates, obesity has become a pressing public health issue. With increased adipocyte number and volume as the main characteristics, obesity is also manifested by metabolic disorders to varying degrees. At the same time, obesity is a risk factor for diabetes, hypertension, stroke, cancer, and cardiovascular diseases, imposing burdens on society and families. Influenced by lifestyle, environment, behavior, and genetics, obesity is caused by the interaction of many factors, and its pathological process is complex, involving inflammation, autophagy, and intestinal dysbiosis. The mitogen-activated protein kinase (MAPK) cascade reaction, a pivotal signaling pathway, plays a crucial role in cellular processes such as proliferation, differentiation, apoptosis, and stress responses. Both Chinese and international studies indicate that the MAPK signaling pathway can effectively regulate obesity through various pathways, including the modulation of adipocyte differentiation and apoptosis, appetite control, and inflammation improvement. Moreover, traditional Chinese medicine (TCM) has demonstrated significant efficacy in preventing and treating obesity, leveraging advantages such as multiple targets, diverse components, and minimal adverse effects. Research indicates that the MAPK signaling pathway is a primary focus of TCM regulation in this context, although a systematic review in this field is currently lacking. Therefore, this paper, by reviewing the latest Chinese and international research, provided a concise overview of the basic structure of the MAPK pathway, with a specific emphasis on recent progress in TCM interventions targeting the MAPK pathway for obesity treatment. The results indicate that regulating adipose tissue formation, differentiation, and thermogenesis, reducing inflammation and oxidative stress levels, and improving insulin sensitivity and metabolic disorders seem to be the main ways for TCM to regulate the MAPK pathway to prevent and treat obesity. However, it is necessary to find more research methods and explore potential mechanisms underlying TCM formulations based on the MAPK pathway for obesity prevention and treatment.

6.
J Biochem Mol Toxicol ; 37(9): e23404, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37352019

ABSTRACT

The role and mechanism of Gremlin-1 in osteoarthritis (OA) were expected to be probed in this study. Firstly, an in vitro OA model was constructed by stimulating human chondrocyte cell line CHON-001 with IL-1ß. Next, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) were utilized for assessing the effect of IL-1ß with different concentrations (5, 10, and 20 ng/mL) on the activity and Gremlin-1 messenger RNA of CHON-001 cells, respectively. Besides, the influence of knocking down/over-expressing Gremlin-1 on the inflammatory factors (IL-6, TNF-α, IL-18 and PGE2), oxidative stress-related substances (malondialdehyde [MDA]; superoxide dismutase [SOD]; lactate dehydrogenase [LDH]), extracellular matrix (ECM) degradation-related proteins, and mitogen-activated protein kinase (MAPK) pathway proteins in IL-1ß-stimulated CHON-001 cells were tested by enzyme-linked immunosorbent assay, related kits, qRT-PCR, and western blot, respectively. IL-1ß inhibited CHON-001 cell proliferation and upregulated Gremlin-1 expression in a concentration-dependent manner. Overexpression of Gremlin-1 increased the IL-6, TNF-α, IL-18, PGE2, and MDA levels, enhanced the LDH activity, and decreased the SOD activity in IL-1ß-induced CHON-001 cells; while the effect of Gremlin-1 knockdown on the above factors was in contrast with that of the overexpression. Furthermore, overexpression of Gremlin-1 upregulated protein expression of matrix metalloproteinase (MMP)-3, MMP-13, and ADAMTS4 while downregulated protein expression of collagen III, aggrecan, and SOX-9 in IL-1ß-stimulated CHON-001 cells. Besides, overexpression of Gremlin-1 increased the p-p38/p38 value while decreased the p-JNK/JNK value in L-1ß-stimulated CHON-001 cells; however, knockdown of Gremlin-1 reversed the above results. Gremlin-1 may promote IL-1ß-stimulated CHON-001 cell inflammation and ECM degradation by activating the MAPK signaling pathway.


Subject(s)
MicroRNAs , Osteoarthritis , Humans , Chondrocytes/metabolism , Interleukin-18/metabolism , Mitogen-Activated Protein Kinases/metabolism , Tumor Necrosis Factor-alpha/metabolism , Dinoprostone/metabolism , Interleukin-6/metabolism , Cells, Cultured , Inflammation/chemically induced , Inflammation/metabolism , Signal Transduction , Osteoarthritis/metabolism , Extracellular Matrix/metabolism , Interleukin-1beta/pharmacology , Interleukin-1beta/metabolism , MicroRNAs/metabolism
7.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-998182

ABSTRACT

Osteoporosis (OP) is a systemic metabolic disease that affects the health of middle-aged and elderly people by crosslinking multiple signaling pathways. With the increasing aging of the population, the incidence of OP is also increasing year by year. Because of a series of problems such as high incidence, difficulty in treatment, and poor prognosis, it has been widely studied and reported by scholars in China and abroad. At present, the drugs used by western medicine are mainly divided into two categories: Bone resorption inhibitors and bone formation promoters. Although the efficacy is reliable, there are still deficiencies such as poor dependence of patients on the drug, uncontrollable side effects, and high costs. However, in recent years, with the continuous deepening and innovation of traditional Chinese medicine (TCM) research, the treatment of OP by TCM has been widely recognized in clinical practice. Many scholars have found that the mechanism of TCM in the treatment of OP includes the widespread involvement of mitogen-activated protein kinase (MAPK) signaling pathway, which mainly promotes the differentiation of bone marrow mesenchymal stem cells (BMSCs) to osteoblasts (OB), inhibits the differentiation of osteoclasts (OC), and improves the expression of osteogenesis-related factors alkaline phosphatase (ALP), Runt-associated transcription factor 2 (Runx2), type Ⅰ collagen (ColⅠ) to treat OP. Although the current research on the TCM treatment of OP through the MAPK pathway is deepening, there are still certain deficiencies in the study of its molecular mechanism. Therefore, this paper reviewed the relationship between the MAPK signaling pathway and key target protein factors and OP to clarify the important role of the MAPK signaling pathway in OP. At the same time, the targeted regulation of MAPK signaling pathways by TCM to treat OP was systematically summarized in order to provide a scientific basis for the further accurate treatment of OP in TCM.

8.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-996506

ABSTRACT

ObjectiveTo observe the protective effect of Baoshen prescription against renal fibrosis and explore its underlying mechanism through network pharmacology, molecular docking, and in vivo experiments. MethodAll mice were randomly divided into sham surgery group, model group, low-, medium-, and high-dose Baoshen prescription groups, and a benazepril hydrochloride group. Unilateral ureteral obstruction (UUO) was performed to establish a renal fibrosis model, and the administration of Baoshen prescription at low, medium, and high doses (0.455, 0.91, and 1.82 g·kg-1), and benazepril hydrochloride (1.68 mg·kg-1) or distilled water began on the same day as model preparation. Mice in the model group and the sham surgery group were given an equal volume of distilled water. The intervention was carried out once daily for 14 days. Mouse serum levels of blood urea nitrogen (BUN) and creatinine (Cr) were measured. Hematoxylin-eosin (HE) staining and Masson staining were used to observe renal pathological changes. Western blot and immunohistochemistry were used to assess the expression of fibronectin (FN), α-smooth muscle actin (α-SMA), and E-cadherin, which are related to renal fibrosis. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was used to measure the mRNA expression of transforming growth factor-β1 (TGF-β1), tumor necrosis factor-α (TNF-α), NOD-like receptor protein 3 (NLRP3), and monocyte chemoattractant protein-1 (MCP-1) in renal tissues. The mechanism of Baoshen prescription in improving renal fibrosis was explored through network pharmacology, molecular docking, and Western blot experiments. ResultCompared with the sham surgery group, the model group showed significantly increased levels of BUN and Cr (P<0.01). The model group exhibited abnormal renal glomerular morphology, loss of tubular brush borders, tubular dilation, and an enlarged area of blue collagen fibers. Mice in the model group showed significantly elevated levels of FN and α-SMA (P<0.01), significantly decreased expression of E-cadherin (P<0.01), and significantly increased expression of TGF-β1, TNF-α, NLRP3, and MCP-1 mRNA (P<0.05, P<0.01). Compared with the model group, the Baoshen prescription groups showed significantly reduced BUN and Cr levels (P<0.01), alleviated renal pathological damage, improved fibrosis, reduced expression of FN and α-SMA (P<0.01), increased E-cadherin expression (P<0.01), and downregulated mRNA expression of TGF-β1, TNF-α, NLRP3, and MCP-1 (P<0.05, P<0.01). Network pharmacology and molecular docking predicted that Baoshen prescription could potentially improve renal fibrosis through the extracellular signal-regulated kinase (ERK)/p38 mitogen-activated protein kinase (MAPK) signaling pathway. Pharmacological research showed that compared with the sham surgery group, the model group exhibited significantly increased expression of phosphorylated (p)-ERK and p-p38 (P<0.05, P<0.01). Compared with the model group, medium- and high-dose Baoshen prescription groups showed significantly downregulated expression of p-ERK and p-p38 proteins (P<0.05, P<0.01). ConclusionBaoshen prescription can effectively improve renal fibrosis induced by UUO in mice, and its mechanism of action may be related to the ERK/p38 MAPK signaling pathway.

9.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-979448

ABSTRACT

ObjectiveTo investigate the regulatory effects of Xuanfu Daizhetang on a mouse model of allergic asthma induced by ovalbumin (OVA). MethodSixty female BALB/c mice (6-8 weeks old, SPF) were randomly divided into groups. Ten mice were assigned to the normal group and given 0.2 mL of saline, while the remaining groups received intraperitoneal injections of Al(OH)3 at 5 g·L-1 and OVA at 1 g·L-1. The mice were divided into normal group (10 mL·kg-1 saline), OVA model group (10 mL·kg-1 saline), dexamethasone group (OVA+DEX, 1 mg·kg-1), OVA+ low-dose Xuanfu Daizhetang group (OVA+XL, 7.065 g·kg-1), OVA+ medium-dose Xuanfu Daizhetang group (OVA+XM, 14.13 g·kg-1), and OVA+ high-dose Xuanfu Daizhetang group (OVA+XH, 28.26 g·kg-1). An OVA-induced asthma model was established in mice. Hematoxylin-eosin (HE) and periodic acid-Schiff (PAS) staining methods were used to observe bronchial tissue pathological changes. Enzyme-linked immunosorbent assay (ELISA) was performed to measure the levels of immunoglobulin E (IgE), interleukin-4 (IL-4), IL-5, IL-13, IL-17A, and γ interferon (IFN-γ) in bronchoalveolar lavage fluid. Western blot was used to detect the phosphorylation of extracellular signal-regulated kinase (ERK), p38 mitogen-activated protein kinase (MAPK), and c-Jun N-terminal kinase (JNK) proteins in lung tissue. ResultCompared with the normal group, the OVA model group showed increased inflammatory cell infiltration in mouse alveoli, elevated levels of IL-4, IL-5, IL-13, IL-17A, IFN-γ in bronchoalveolar lavage fluid, and IgE in serum (P<0.05, P<0.01), and promoted phosphorylation of MAPK signaling pathway-related proteins. Compared with the model group, the OVA+XL, OVA+XM, and OVA+XH groups showed reduced inflammatory cell infiltration in mouse alveoli, decreased levels of IL-4, IL-5, IL-13, IL-17A, IFN-γ in bronchoalveolar lavage fluid, and IgE in serum (P<0.05, P<0.01), and inhibited phosphorylation of MAPK signaling pathway-related proteins. ConclusionThe results of this study suggest that Xuanfu Daizhetang has potential anti-allergic asthma activity, providing a theoretical basis for its future clinical application.

10.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-962630

ABSTRACT

ObjectiveTo investigate the feasibility of ethyl acetate fraction of Ipomoea muricatum (IM-EA) in the prevention and treatment of alcoholic gastric ulcer (GU) and explore its mechanism of action based on network pharmacology and experimental verification. MethodForty SD rats were randomly divided into a control group, a model group, a ranitidine group (2.7 mg·kg-1), and low- and high-dose IM-EA groups (30,60 mg·kg-1) after adaptive feeding for 7 days. The GU model was replicated by hydrochloric acid in absolute ethanol (150 mmol·L-1) in rats after prophylactic administration for one week. Hematoxylin-eosin (HE) staining and periodic acid-Schiff (PAS) staining were used to preliminarily evaluate the efficacy of IM-EA in the prevention and treatment of GU. Lead compounds of IM-EA were screened out by ADMET, and the SwissTarget platform was used to identify the potential targets for these compounds. GU-related targets were collected through DisGeNET, OMIM, and GeneCards databases, which were mapped to potential IM-EA targets to obtain the potential targets of IM-EA against GU. The STRING database was used to construct the protein-protein interaction (PPI) network to screen the hub targets, and the DAVID platform was used to annotate the biological functions of common targets to explore the underlying mechanism of IM-EA against GU. Autodock Vina software was used for the preliminary verification of the computer simulation. The serum levels of tumor necrosis factor (TNF)-α and interleukin (IL)-6 and the content of prostaglandin E2 (PGE2), matrix metalloproteinase-9 (MMP-9), and superoxide dismutase (SOD) in the gastric tissues were determined by enzyme-linked immunosorbent assay (ELISA). The relative expression levels of core proteins in the mitogen-activated protein kinase (MAPK) signaling pathway, such as Jun oncoprotein, extracellular signal-regulated kinase (ERK), and p38, in the gastric tissues were detected by Western blot. ResultAs revealed by the results of animal experiments, compared with the control group, the model group showed significantly damaged gastric tissues and reduced secretion of gastric mucus. Compared with the model group, the groups with drug intervention showed reduced ulcer areas in the gastric tissues (P<0.01) and improved gastric histopathological status and gastric mucus secretion, suggesting that IM-EA was effective in the prevention and treatment of GU. Sixteen lead compounds of IM-EA were screened out by ADMET, and 257 potential targets of IM-EA against GU were obtained. The hub nodes in the PPI network included targets of TNF-α, protein kinase B1 (Akt1), tumor protein 53 (TP53), epidermal growth factor receptor (EGFR), and ERK. Biological functional annotation and molecular docking results suggested that the MAPK signaling pathway potentially played a key role in the prevention and treatment of GU by IM-EA, which was synergistic with the vascular endothelial growth factor (VEGF) signaling pathway, phosphoinositide 3-kinase (PI3K)/Akt signaling pathway, and nuclear factor (NF)-κB signaling pathway in anti-inflammation, anti-oxidation, and damage repair. The pharmacological experiment results showed that compared with the control group, the model group showed increased serum IL-6 content (P<0.01), an increasing trend of TNF-α content, increased MMP-9 content in the gastric tissues (P<0.01), and decreased SOD content (P<0.05). Compared with the model group, the IM-EA groups showed decreased TNF-α and IL-6 levels in the serum and PGE2 and MMP-9 levels in the gastric tissues (P<0.01), and increased SOD content in the gastric tissues (P<0.01). Compared with the control group, the model group showed up-regulated expression of p-p38, p-Jun, and p-ERK in the gastric tissues (P<0.01) and up-regulated p38 and Jun (P<0.01). Compared with the model group, the IM-EA groups showed down-regulated p-p38, p-Jun, p-ERK, and p38 in the gastric tissues (P<0.01) and up-regulated relative expression of Jun and ERK (P<0.05). ConclusionIM-EA has a remarkable effect in the prevention and treatment of alcoholic gastric injury, which may be achieved through the mechanisms of anti-inflammation, anti-oxidation, and wound repair mediated by the MAPK signaling pathway.

11.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-962621

ABSTRACT

ObjectiveTo explore the anti-inflammatory mechanism of Huangqintang based on the inflammation model in RAW264.7 cells. MethodHuangqintang was prepared and the safe dose to RAW264.7 cells was screened out. The RAW264.7 cells were seeded in 24-well plates and incubated with Huangqintang and lipopolysaccharide (LPS), successively. The concentrations of nitric oxide (NO), interleukin (IL)-6, tumor necrosis factor (TNF)-α, and prostaglandin E2 (PGE2) were measured by Griess assay and enzyme-linked immunosorbent assay (ELISA), respectively. Meanwhile, RAW264.7 cells were inoculated in 6-well plates, and normal group, LPS group, LPS+Huangqintang group, nuclear factor-κB (NF-κB) p65 inhibitor PDTC group, p38 mitogen-activated protein kinase (MAPK) inhibitor SB203580 group, extracellular signal-regulated kinase (ERK) inhibitor PD98059 group, c-Jun N-terminal kinase (JNK) inhibitor SP600125 group, and Janus kinase (JAK) inhibitor AG490 group were set up. After the cells were incubated with corresponding inhibitors and Huangqintang and stimulated by LPS, RNA and protein were extracted. The mRNA and protein expression levels of NF-κB p65, p38 MAPK, ERK, JNK, and JAK were detected by Real-time fluorescence-based quantitative polymerase chain reaction (Real-time PCR) and Western blot, respectively, to explore the anti-inflammatory mechanism of Huangqintang by regulating the NF-κB, MAPK, and JAK/signal transducer and activator of transcription protein (STAT) signaling pathways. ResultAfter stimulation with LPS, the concentrations of NO, IL-6, TNF-α, and PGE2 in the cells of the model group increased significantly(P<0.05,P<0.01). Compare with the model group, after incubation with Huangqintang, the secretion of NO, IL-6, TNF-α, and PGE2 showed a downward trend (P<0.05,P<0.01). Compared with the normal group, the model group showed increased mRNA expression of p38 MAPK, ERK, JNK, JAK, and NF-κB p65 and total protein expression in cells after stimulation with LPS (P<0.05,P<0.01). Compare with the model group,after incubation with Huangqintang, the total protein and mRNA expression of p38 MAPK, ERK, JNK, JAK, and NF-κB p65 in inflammatory cells decreased (P<0.05,P<0.01). Meanwhile, the expression of NF-κB p65 total protein and mRNA in each inhibitor group showed a downward trend (P<0.05,P<0.01). ConclusionHuangqintang can inhibit the inflammatory response through the NF-κB, MAPK, and JAK-STAT signaling pathways.

12.
Eur J Pharmacol ; 932: 175235, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36049560

ABSTRACT

In clinic, there is still no unified standard for the treatment of non-alcoholic fatty liver disease (NAFLD), and the development of effective novel drugs to alleviate NAFLD remains a challenge. This study aimed to explore the effect and mechanism of amorphous selenium nanodots (A SeNDs) in alleviating NAFLD. Model rats with NAFLD were induced by the high-fat diet (HFD). Histomorphology was used to observe liver tissue, automatic biochemical analyzer was used to analyze liver function indicators, and ELISA kit was used to detect the effect of A SeNDs on oxidative stress and inflammatory factors in NAFLD rats. The results exhibited that A SeNDs could reduce hepatocyte steatosis, liver index, blood lipid level, and transaminase level in NAFLD rats. Furthermore, A SeNDs could relieve the oxidative stress and inflammatory reaction and maintain liver tissue structure in NAFLD rats. Mechanistically, A SeNDs (0.3 mg/kg/day) inhibit the phosphorylation of JNK/p38 MAPK pathways after activating vascular endothelial growth factor receptor 1 (VEGFR1) in the liver of rats with NAFLD to allay oxidative stress and inflammatory response and improves hepatic structure and liver function. Therefore, it should be an important method to mitigate NAFLD by supplementing A SeNDs to normalize hepatic structure and liver function.


Subject(s)
Non-alcoholic Fatty Liver Disease , Selenium , Animals , Diet, High-Fat/adverse effects , Lipids , Liver , Non-alcoholic Fatty Liver Disease/metabolism , Phosphorylation , Rats , Selenium/metabolism , Selenium/pharmacology , Signal Transduction/physiology , Transaminases/metabolism , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-1/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
13.
Anim Biosci ; 35(7): 964-974, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34991196

ABSTRACT

OBJECTIVE: The highly pathogenic avian influenza virus (HPAIV) is a threat to the poultry industry and economy and remains a potential source of pandemic infection in humans. Antiviral genes are considered a potential factor for studies on HPAIV resistance. Therefore, in this study, we investigated gene expression related to the mitogen-activated protein kinase (MAPK) signaling pathway by comparing non-infected, HPAI-infected resistant, and susceptible Ri chicken lines. METHODS: Resistant (Mx/A; BF2/B21) and susceptible Ri chickens (Mx/G; BF2/B13) were selected by genotyping the Mx and BF2 genes. Then, the tracheal tissues of non-infected and HPAIV H5N1 infected chickens were collected for RNA sequencing. RESULTS: A gene set overlapping test between the analyzed differentially expressed genes (DEGs) and functionally categorized genes was performed, including biological processes of the gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathways. A total of 1,794 DEGs were observed between control and H5N1-infected resistant Ri chickens, 432 DEGs between control and infected susceptible Ri chickens, and 1,202 DEGs between infected susceptible and infected resistant Ri chickens. The expression levels of MAPK signaling pathway-related genes (including MyD88, NF-κB, AP-1, c-fos, Jun, JunD, MAX, c-Myc), cytokines (IL-1ß, IL-6, IL-8), type I interferons (IFN-α, IFN-ß), and IFN-stimulated genes (Mx1, CCL19, OASL, and PRK) were higher in H5N1-infected than in non-infected resistant Ri chickens. MyD88, Jun, JunD, MAX, cytokines, chemokines, IFNs, and IFN-stimulated expressed genes were higher in resistant-infected than in susceptible-infected Ri chickens. CONCLUSION: Resistant Ri chickens showed higher antiviral activity compared to susceptible Ri chickens, and H5N1-infected resistant Ri chickens had immune responses and antiviral activity (cytokines, chemokines, interferons, and IFN-stimulated genes), which may have been induced through the MAPK signaling pathway in response to H5N1 infection.

14.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-940479

ABSTRACT

ObjectiveTo explore the mechanism of Fuzi Lizhongwan alleviating the damage of chemotherapy-induced peripheral neuropathy (CIPN) mice caused by cisplatin based on mitogen-activated protein kinase (MAPK) signaling pathway. MethodA total of 40 female KM mice were randomized into blank group (distilled water, ig), model group (distilled water, ig), Fuzi Lizhongwan group (3.5 g·kg-1, ig), and aspirin group (0.026 g·kg-1, ig). Cisplatin (3 mg·kg-1, ip, 5 days) was used to induce CIPN in mice. Administration began while modeling and lasted 12 days. The general conditions and behaviors of mice were observed. After the last administration, samples were collected. Pathological changes of the soles were observed based on hematoxylin-eosin (HE) staining. Biochemical assay was employed to determine the levels of serum superoxide dismutase (SOD), hydrogen peroxide (H2O2), malondialdehyde (MDA), and nitric oxide (NO), enzyme-linked immunosorbent assay (ELISA) the content of interleukin-6 (IL-6), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and glutathione peroxidase-3 (GPX-3) in kidney tissue, and Western blotting the expression of extracellular signal-regulated kinase1/2 (ERK1/2), phosphorylated-ERK1/2 (p-ERK1/2), p38 MAPK, and phosphorylated-p38 MAPK (p-p38 MAPK) in kidney tissue. ResultCompared with the blank group, model group demonstrated obvious pathological damage on the soles, hyperkeratosis of the epidermis with a basketweave pattern, atrophy of stratum spinosum, reduction of cells, and intracellular edema. Compared with the model group, Fuzi Lizhongwan significantly alleviated the pathological damage of the skin tissue of the soles. The model group showed lower body weight, mechanical pain threshold, thermal pain threshold (P<0.01), and SOD activity (P<0.05), higher content of H2O2, MDA, and NO (P<0.01), and higher expression of IL-6, IL-1β, and TNF-α (P<0.01) than the blank group. Fuzi Lizhongwan group demonstrated higher body weight, mechanical pain threshold, thermal pain threshold (P<0.01), and SOD activity (P<0.05), lower content of H2O2, MDA, and NO (P<0.05), and lower expression of IL-6, IL-1β, and TNF-α (P<0.01) than the model group. The expression of ERK1/2, p-ERK1/2, p38 MAPK, and p-p38 MAPK increased significantly (P<0.01) in the model group compared with that in the blank group, while the expression decreased significantly (P<0.01) in the Fuzi Lizhongwan group compared with that in the model group. ConclusionFuzi Lizhongwan can relieve the neurological injury of cisplatin-induced CIPN mice and increase the pain threshold of mice, possibly by regulating the MAPK signaling pathway and inhibiting inflammatory response and oxidative stress.

15.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-940457

ABSTRACT

ObjectiveTo observe the repair effect of Dahuanglingxian prescription (DHLX) on bile duct epithelial cells of rats. To explore whether its mechanism of action is to adjust the mutual binding of transforming growth factor -β (TGF-β) activated kinase 1(TAK1) and tumor necrosis factor receptor-associated factor 6 (TRAF6), and regulate the activation of the nuclear transcription factor -κB (NF-κB)/mitogen-activated protein kinase (MAPK) signaling pathway. MethodThe 20 SD rats were randomly divided into normal group and DHLX group, 10 rats in each group, were given saline and DHLX (320 mg·kg-1·d-1) for 8 days, to prepare normal serum and DHLX serum. Biliary epithelial cells were extracted from normal SD rats and divided into 9 groups: Normal group, model group (20 mg·L-1), LPS+DHLX group (20 mg·L-1+10% DHLX), LPS+PDTC group (20 mg·L-1+200 μmol·L-1), LPS+SB203580 group (20 mg·L-1+0.5 μmol·L-1), LPS+PDTC+SB203580 group (20 mg·L-1+200 μmol·L-1+0.5 μmol·L-1), LPS+PDTC+DHLX group (20 mg·L-1+200 μmol·L-1+10% DHLX serum), LPS+SB203580+DHLX group (20 mg·L-1+0.5 μmol·L-1+10% DHLX serum), LPS+PDTC+SB203580 +DHLX group (20 mg·L-1+200 μmol·L-1+0.5 μmol·L-1+10% DHLX serum). The microscopic observation of morphological changes in each group of cells after drug intervention. Enzyme-linked immunosorbent assay(ELISA) was used to detect the expression of (IL)-1β and IL-6 in each group of cells. Western blot detected the expression levels of TAK1 and TRAF6 proteins in each group of cells, Co-IP detected the interaction between TAK1 and TRAF6, and further observed the distribution and co-localization of TAK1 and TRAF6 using Laser confocal microscope. ResultAfter the action of LPS, the cell synapses are reduced, the cell body becomes significantly rounded and smaller, but the cell morphology of each group tends to be normal after medication. Compared with normal group, the expression levels of IL-1β and IL-6 in model group were significantly increased (P<0.05), while the expression level of TAK1 was decreased while the expression level of TRAF6 was increased (P<0.05). The content of TAK1-TRAF6 protein complex showed a decreasing trend, and the two proteins co-located in the cytoplasm. Compared with model group, the expression levels of IL-1β and IL-6 in LPS+DHLX group were significantly decreased (P<0.05), the expression level of TAK1 was increased and the expression level of TRAF6 was decreased (P<0.05), the content of TAK1-TRAF6 protein complex was significantly increased (P<0.01), and the two proteins were significantly co-located in cytoplasm. Compared with LPS+DHLX group, the expression levels of IL-1β and IL-6 in other groups were significantly decreased (P<0.05,P<0.01). TAK1-TRAF6 protein complex content in each group was significantly decreased after pathway blocker intervention (P<0.05), while TAK1-TRAF6 protein complex content in each group was significantly increased after pathway blocker combined with DHLX intervention (P<0.05). Co-localization of the TAK1-TRAF6 in cytoplasm was not obvious. ConclusionIn the LPS-induced inflammatory response of bile duct cells, the binding of TAK1 and TRAF6 showed a weakening trend, but DHLX could reverse the phenomenon, we think the mechanism of action may be related to promoting the mutual binding of TAK1 and TARF6 to inhibit the activation of the NF-κB/MAPK signaling pathway.

16.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-940290

ABSTRACT

ObjectiveProteoglycan TPG-1 isolated from Trametes robiniophila(Huaier) has proved to have anti-hepatoma activity, and this paper aims to explore the molecular mechanism. MethodHuman hepatoma SK-HEP-1 cells were treated with TPG-1 (0, 0.05, 0.1, 0.25, 0.5, 1 g·L-1). Then cell survival was detected by methyl thiazolyl tetrazolium (MTT) and apoptosis by flow cytometry. In addition, expression of genes in SK-HEP-1 cells treated with or without TPG-1 was examined by DNA microarray to preliminarily explore the anti-hepatoma molecular mechanism of TPG-1. ResultTPG-1 inhibited the proliferation of SK-HEP-1 cells as compared with the blank group (P<0.01). After treatment with 1 g·L-1 TPG-1 for 48 h, the apoptosis rate of SK-HEP-1 cells increased (P<0.01), and TPG-1 promoted the cleavage of cysteinyl aspartate specific proteinase (Caspase)-3 and Caspase-7, the key mediators of apoptosis (P<0.01). Additionally, TPG-1 (1 g·L-1) suppressed the migration of SK-HEP-1 cells (P<0.05). A total of 971 differentially expressed genes (DEGs) were identified in SK-HEP-1 cells after treatment with TPG-1, with 486 up-regulated and 485 down-regulated. These DEGs were mainly involved in the Gene Ontology (GO) terms of interleukin-6 (IL-6) biosynthesis, antigen processing and presentation, superoxide dismutase activity, positive regulation of mitogen-activated protein kinase kinase kinase (MAPKKK) cascade, nature killer (NK) cell chemotaxis, and chemokine biosynthesis, and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of nucleotide-binding oligomerization domain (NOD)-like receptor signaling pathway, apoptosis, Toll-like receptor signaling pathway, retinoic acid-inducible gene-Ⅰ (RIG-Ⅰ)-like receptor signaling pathway, T-cell receptor signaling pathway, and chemokine signaling pathway. Western blot results showed that TPG-1 (1 g·L-1) activated mitogen-activated protein kinase (MAPK) signaling pathway in SK-HEP-1 cells (P<0.01). ConclusionProteoglycan TPG-1 inhibited the proliferation and migration, and induced apoptosis of human hepatoma SK-HEP-1 cells. Up-regulation of MAPK signaling pathway may be responsible for the growth inhibition of human hepatoma SK-HEP-1 cells by TPG-1.

17.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-940180

ABSTRACT

ObjectiveTo study the effect of apigenin on the proliferation and apoptosis of human colon cancer CL187 cells and the underlying mechanisms. MethodHuman colorectal cancer CL187 cells were treated with different concentrations of apigenin (0, 30, 45, 60 mg·L-1) according to the results of the preliminary experiment. The proliferation of CL187 cells was detected by methyl thiazolyl tetrazolium (MTT) and colony formation assays, and the apoptosis was observed via Hoechst 33258 staining. Real-time fluorescence quantitative PCR was conducted to determine the mRNA levels of cysteine protease-3 (Caspase-3), B-cell lymphoma-2 (Bcl-2), and Bcl-2-associated X protein (Bax) in the CL187 cells treated with apigenin. Western blot was employed to measure the protein levels of Caspase-3, Bcl-2, and Bax associated with apoptosis, protein kinase B (Akt) and phosphorylated Akt (p-Akt) in phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) pathway, and extracellular signal-regulated kinases 1/2 (ERK1/2), p-ERK1/2, c-Jun N-terminal kinase (JNK), p-JNK, p38 mitogen-activated protein kinase (MAPK), and p-p38 MAPK protein in MAPK pathway. ResultCompared with the blank group, the apigenin groups had low cell survival rates and high inhibition rates on cell proliferation (P<0.01). Apigenin decreased the cell clone number and clone formation rate, and increased the inhibition rate on clone formation (P<0.01). After CL187 cells were treated with different concentrations of apigenin for 48 h, typical apoptosis characteristics such as nuclear pyknosis, chromatin condensation, and enhanced fluorescence reaction were observed. Compared with blank group, 45, 60 mg·L-1 apigenin treatments down-regulated the mRNA level of anti-apoptotic gene Bcl-2 (P<0.01) and all the apigenin treatments up-regulated those of the pro-apoptotic genes Bax and Caspase-3 (P<0.05, P<0.01). Similarly, apigenin treatments down-regulated the protein level of Bcl-2 (P<0.05, P<0.01) and up-regulated those of Caspase-3 (P<0.05, P<0.01) and Bax (P<0.01, 45, 60 mg·L-1). The blank group had higher protein level of Akt than the 60 mg·L-1 apigenin group (P<0.01), higher protein levels of p-Akt, ERK1/2, and p-ERK1/2 than the 45, 60 mg·L-1 apigenin groups (P<0.01), and higher protein levels of JNK and p-JNK than the apigenin groups (P<0.05, P<0.01). Compared with blank group, 60 mg·L-1 apigenin up-regulated the protein level of p38 MAPK (P<0.05), and all the apigenin groups up-regulated that of p-p38 MAPK (P<0.01). Furthermore, apigenin lowered the p-Akt/Akt ratio (P<0.05, P<0.01) and p-ERK1/2/ERK1/2 ratio (P<0.01), while it increased the p-JNK/JNK ratio (45, 60 mg·L-1; P<0.05, P<0.01) and p-p38 MAPK/p38 MAPK ratio (P<0.05, P<0.01). ConclusionApigenin can inhibit the proliferation and promote the apoptosis of CL187 cells by inhibiting the PI3K/Akt signaling pathway and regulating the expression of proteins in the MAPK signaling pathway.

18.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-940148

ABSTRACT

ObjectiveTo study the effect of apigenin on the proliferation and apoptosis of human colon cancer CL187 cells and the underlying mechanisms. MethodHuman colorectal cancer CL187 cells were treated with different concentrations of apigenin (0, 30, 45, 60 mg·L-1) according to the results of the preliminary experiment. The proliferation of CL187 cells was detected by methyl thiazolyl tetrazolium (MTT) and colony formation assays, and the apoptosis was observed via Hoechst 33258 staining. Real-time fluorescence quantitative PCR was conducted to determine the mRNA levels of cysteine protease-3 (Caspase-3), B-cell lymphoma-2 (Bcl-2), and Bcl-2-associated X protein (Bax) in the CL187 cells treated with apigenin. Western blot was employed to measure the protein levels of Caspase-3, Bcl-2, and Bax associated with apoptosis, protein kinase B (Akt) and phosphorylated Akt (p-Akt) in phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) pathway, and extracellular signal-regulated kinases 1/2 (ERK1/2), p-ERK1/2, c-Jun N-terminal kinase (JNK), p-JNK, p38 mitogen-activated protein kinase (MAPK), and p-p38 MAPK protein in MAPK pathway. ResultCompared with the blank group, the apigenin groups had low cell survival rates and high inhibition rates on cell proliferation (P<0.01). Apigenin decreased the cell clone number and clone formation rate, and increased the inhibition rate on clone formation (P<0.01). After CL187 cells were treated with different concentrations of apigenin for 48 h, typical apoptosis characteristics such as nuclear pyknosis, chromatin condensation, and enhanced fluorescence reaction were observed. Compared with blank group, 45, 60 mg·L-1 apigenin treatments down-regulated the mRNA level of anti-apoptotic gene Bcl-2 (P<0.01) and all the apigenin treatments up-regulated those of the pro-apoptotic genes Bax and Caspase-3 (P<0.05, P<0.01). Similarly, apigenin treatments down-regulated the protein level of Bcl-2 (P<0.05, P<0.01) and up-regulated those of Caspase-3 (P<0.05, P<0.01) and Bax (P<0.01, 45, 60 mg·L-1). The blank group had higher protein level of Akt than the 60 mg·L-1 apigenin group (P<0.01), higher protein levels of p-Akt, ERK1/2, and p-ERK1/2 than the 45, 60 mg·L-1 apigenin groups (P<0.01), and higher protein levels of JNK and p-JNK than the apigenin groups (P<0.05, P<0.01). Compared with blank group, 60 mg·L-1 apigenin up-regulated the protein level of p38 MAPK (P<0.05), and all the apigenin groups up-regulated that of p-p38 MAPK (P<0.01). Furthermore, apigenin lowered the p-Akt/Akt ratio (P<0.05, P<0.01) and p-ERK1/2/ERK1/2 ratio (P<0.01), while it increased the p-JNK/JNK ratio (45, 60 mg·L-1; P<0.05, P<0.01) and p-p38 MAPK/p38 MAPK ratio (P<0.05, P<0.01). ConclusionApigenin can inhibit the proliferation and promote the apoptosis of CL187 cells by inhibiting the PI3K/Akt signaling pathway and regulating the expression of proteins in the MAPK signaling pathway.

19.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-906126

ABSTRACT

Objective:To investigate the protective effect of quercetin (Qu) on articular cartilage of knee osteoarthritis and its mechanism by inhibiting p38 mitogen activated protein kinase (MAPK) signaling pathway. Method:Through the network pharmacology technology,we scientifically predicted and analyzed the target factors and signal pathways of Qu in the protection of articular cartilage in patients with osteoarthritis. We selected a prediction pathway closely related to osteoarthritis and validated it by cell experiment <italic>in vitro</italic>. The best intervention concentration of the drug was selected by cell counting kit-8 (CCK-8) method. The osteoarthritis and its closely related inflammatory factors interleukin(IL)-1<italic>β</italic> and tumor necrosis factor(TNF)-<italic>α</italic> were detected by enzyme linked immunosorbent assay(ELISA). The expression of related mRNA and protein in p38 signal pathway after Qu intervention were detected by quantitative real time polymerase chain reaction(Real-time PCR) and Western blot. Result:It was predicted that MAPK signal pathway was closely related to osteoarthritis by network pharmacology,and p38 MAPK pathway,which was most closely related to osteoarthritis,was selected for study. The results showed that 100 μmol·L<sup>-1</sup> Qu had the most obvious effect in decreasing the expression of related inflammatory factors,inhibited the expression of p38,phosphorylated(p)-p38,matrix metalloproteinase-13(MMP-13),A disintegrin-like and metalloproteinase with thrombospondin type-1 motifs-4(ADAMTS-4) in the pathway,and promoted the expression of CollagenⅡ. Conclusion:Qu could decrease the expression of cartilage inflammatory factors in the prevention and treatment of osteoarthritis,and the effect can be well developed by intervening and inhibiting p38 MAPK pathway related factor expression level. All the results show that Qu can decrease osteoarthritis inflammatory factors and protect articular cartilage in patients with osteoarthritis.

20.
Inflammation ; 43(4): 1488-1497, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32232710

ABSTRACT

Integrin-α9 (ITGA9) and its corresponding ligands are involved in inflammatory and immune responses. The present study aimed to investigate whether ITGA9 participates in the development of chronic periodontitis (ChP) and to explore the underlying mechanisms. We collected gingival tissue and gingival crevicular fluid in vivo from patients to determine the levels of ITGA9 and its ligands. We cultured primary periodontal ligament cells (PDLCs) in vitro and applied small interfering RNA to knock down ITGA9 in order to analyze the changes of inflammatory cytokines and explore the related cellular signaling pathways. The expression level of ITGA9 was significantly higher in the gingiva of patients with ChP than that of healthy individuals. ITGA9 knockdown in the PDLCs inhibited the secretion of interleukin (IL)-1ß, IL-6, and IL-8. Western blot analysis indicated that this change could be attributed to the regulation of the mitogen-activated protein kinase (MAPK) signaling pathway. ITGA9 plays a regulatory role in the homeostasis of ChP. The results of the present study provide potential insights into the treatment of periodontitis. Graphical abstract.


Subject(s)
Chronic Periodontitis/metabolism , Gingiva/metabolism , Gingival Crevicular Fluid/metabolism , Integrins/biosynthesis , Adolescent , Child , Chronic Periodontitis/pathology , Female , Gingiva/pathology , Humans , Ligands , Male , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...