Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.358
Filter
1.
Appl Microbiol Biotechnol ; 108(1): 423, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39037499

ABSTRACT

The Chinese medicinal fungi "Sanghuang" have been long recognized for their significant and valued medicinal properties, as documented in ancient medical literature. However, in traditional folk medicine, various macrofungi sharing similar appearance, habitat, and therapeutic effects with Sanghuang were erroneously used. These Sanghuang-like fungi mainly belong to the Porodaedalea, Phellinus, and Inonotus genera within the Hymenochaetaceae family. Despite the establishment of the Sanghuangporus genus and the identification of multiple species, the emerging taxonomic references based on morphological, ITS, and mycelial structural features have been inadequate to differentiate Sanghuangporus and Sanghuang-like fungi. To address this limitation, this study presents the first comparative and phylogenetic analysis of Sanghuang-related fungi based on mitogenomes. Our results show that Sanghuangporus species show marked convergence in mitochondrial genomic features and form a distinct monophyletic group based on phylogenetic analyses of five datasets. These results not only deepen our understanding of Sanghuang-like fungi but also offer novel insights into their mitochondrial composition and phylogeny, thereby providing new research tools for distinguishing members of the Sanghuangporus genus. KEY POINTS: • Sanghuangporus, Inonotus, and Porodaedalea are monophyly in sanghuang-like species. • Mitogenome-based analysis exhibits high resolution in sanghuang-like genus. • The mitogenomes provide strong evidence for reclassifying Phellinus gilvus S12 as Sanghuangporus vaninii.


Subject(s)
Phylogeny , Genome, Mitochondrial , Basidiomycota/genetics , Basidiomycota/classification , DNA, Fungal/genetics , Medicine, Chinese Traditional , Sequence Analysis, DNA
2.
Genes (Basel) ; 15(7)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-39062653

ABSTRACT

The genus Orthopodomyia Theobald, 1904 (Diptera: Culicidae) comprises 36 wild mosquito species, with distribution largely restricted to tropical and temperate areas, most of which are not recognized as vectors of epidemiological importance due to the lack of information related to their bionomy and involvement in the cycle transmission of infectious agents. Furthermore, their evolutionary relationships are not completely understood, reflecting the scarcity of genetic information about the genus. Therefore, in this study, we report the first complete description of the mitochondrial genome of a Neotropical species representing the genus, Orthopodomyia fascipes Coquillet, 1906, collected in the Brazilian Amazon region. Using High Throughput Sequencing, we obtained a mitochondrial sequence of 15,598 bp, with an average coverage of 418.5×, comprising 37 functional subunits and a final portion rich in A + T, corresponding to the control region. The phylogenetic analysis, using Maximum Likelihood and Bayesian Inference based on the 13 protein-coding genes, corroborated the monophyly of Culicidae and its two subfamilies, supporting the proximity between the tribes Orthopodomyiini and Mansoniini, partially disagreeing with previous studies based on the use of molecular and morphological markers. The information generated in this study contributes to a better understanding of the taxonomy and evolutionary history of the genus and other groups of Culicidae.


Subject(s)
Culicidae , Genome, Mitochondrial , Phylogeny , Animals , Culicidae/genetics , Culicidae/classification , Brazil , High-Throughput Nucleotide Sequencing
3.
Genes (Basel) ; 15(7)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-39062672

ABSTRACT

In the present study, the mitochondrial genomic characteristics of Acanthopsetta nadeshnyi have been reported and have depicted the phylogenetic relationship among Pleuronectidae. Combined with a comparative analysis of 13 PCGs, the TN93 model was used to review the neutral evolution and habitat evolution catalysis of the mitogenome to verify the distancing and purification selectivity of the mitogenome in Pleuronectidae. At the same time, a species differentiation and classification model based on mitogenome analysis data was established. This study is expected to provide a new perspective on the phylogenetic relationship and taxonomic status of A. nadeshnyi and lay a foundation for further exploration of environmental and biological evolutionary mechanisms.


Subject(s)
Evolution, Molecular , Genome, Mitochondrial , Phylogeny , Animals , Flatfishes/genetics , Flatfishes/classification
4.
Genes (Basel) ; 15(7)2024 Jun 24.
Article in English | MEDLINE | ID: mdl-39062609

ABSTRACT

The blue whistling thrush (Myophonus caeruleus) is a bird belonging to the order Passeriformes and family Muscicapidae. M. caeruleus is widely distributed in China, Pakistan, India, and Myanmar and is a resident bird in the southern part of the Yangtze River in China and summer migratory bird in the northern part of the Yangtze River. At present, there are some controversies about the classification of M. caeruleus. We use complete mitochondrial genomes to provide insights into the phylogenetic position of M. caeruleus and its relationships among Muscicapidae. The mitochondrial genome (GenBank: MN564936) is 16,815 bp long and contains 13 protein-coding genes (PCGs), 2 rRNA genes, 22 tRNA genes, and a non-coding control region (D-loop). The thirteen PCGs started with GTG and ATG and ended with five types of stop codons. The nucleotide composition of T was 23.71%, that of C was 31.45%, that of A was 30.06%, and that of G was 14.78%. The secondary structures of 22 tRNAs were predicted, all of which could form typical cloverleaf structures. There were 24 mismatches, mainly G-U mismatches. Through phylogenetic tree reconstruction, it was found that Saxicola, Monticola, Oenanthe, and Phoenicurus were clustered into one clade, together with the sister group of Myophonus.


Subject(s)
Genome, Mitochondrial , Phylogeny , RNA, Transfer , Animals , RNA, Transfer/genetics , Songbirds/genetics , Songbirds/classification , RNA, Ribosomal/genetics , Base Composition/genetics , China
5.
Genes (Basel) ; 15(7)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-39062613

ABSTRACT

Dendrobium loddigesii is a precious traditional Chinese medicine with high medicinal and ornamental value. However, the characterization of its mitochondrial genome is still pending. Here, we assembled the complete mitochondrial genome of D. loddigesii and discovered that its genome possessed a complex multi-chromosome structure. The mitogenome of D. loddigesii consisted of 17 circular subgenomes, ranging in size from 16,323 bp to 56,781 bp. The total length of the mitogenome was 513,356 bp, with a GC content of 43.41%. The mitogenome contained 70 genes, comprising 36 protein-coding genes (PCGs), 31 tRNA genes, and 3 rRNA genes. Furthermore, we detected 403 repeat sequences as well as identified 482 RNA-editing sites and 8154 codons across all PCGs. Following the sequence similarity analysis, 27 fragments exhibiting homology to both the mitogenome and chloroplast genome were discovered, accounting for 9.86% mitogenome of D. loddigesii. Synteny analysis revealed numerous sequence rearrangements in D. loddigesii and the mitogenomes of related species. Phylogenetic analysis strongly supported that D. loddigesii and D. Amplum formed a single clade with 100% bootstrap support. The outcomes will significantly augment the orchid mitochondrial genome database, offering profound insights into Dendrobium's intricate mitochondrial genome architecture.


Subject(s)
Dendrobium , Endangered Species , Genome, Mitochondrial , Phylogeny , Dendrobium/genetics , Dendrobium/classification , Genome, Mitochondrial/genetics , China , RNA, Transfer/genetics , Whole Genome Sequencing , Base Composition , Chromosomes, Plant/genetics , Genome, Plant , Genome, Chloroplast
6.
Data Brief ; 55: 110581, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38966661

ABSTRACT

Pholas orientalis (angelwing clam) is a mollusc species found in the coastal areas of Southeast Asia. Despite its economic significance, genetic information on the species is lacking. In this study, a P. orientalis specimen was collected from Kedah, Malaysia, and its complete mitochondrial genome was assembled using whole-genome sequencing data generated on an DNBSEQ-G400 platform. The circular mitochondrial genome of P. orientalis is 18,995 bp in size and contains 12 protein-coding genes (PCGs), 22 tRNAs, two rRNAs, and three control regions (D-loops). All genes are located on the heavy strand. The mitogenome has a base composition of 25.4 % A, 41.5 % T, 22.1% G, and 11 % C, exhibiting a bias towards AT content (66.9 %). The mitochondrial genomes of P. orientalis and 11 other Pholadoidea species were included in a phylogenetic analysis, which indicated that P. orientalis is closely related to Xyloredo nooi. The data reported in this study represents the first time that a Pholas mitochondrial genome has been reported. Such data will contribute to the better understanding of genetic relationships between P. orientalis and its relatives, leading to informed conservation and sustainable utilization of the species.

7.
BMC Plant Biol ; 24(1): 645, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38972991

ABSTRACT

Melia azedarach is a species of enormous value of pharmaceutical industries. Although the chloroplast genome of M. azedarach has been explored, the information of mitochondrial genome (Mt genome) remains surprisingly limited. In this study, we used a hybrid assembly strategy of BGI short-reads and Nanopore long-reads to assemble the Mt genome of M. azedarach. The Mt genome of M. azedarach is characterized by two circular chromosomes with 350,142 bp and 290,387 bp in length, respectively, which encodes 35 protein-coding genes (PCGs), 23 tRNA genes, and 3 rRNA genes. A pair of direct repeats (R1 and R2) were associated with genome recombination, resulting in two conformations based on the Sanger sequencing and Oxford Nanopore sequencing. Comparative analysis identified 19 homologous fragments between Mt and chloroplast genome, with the longest fragment of 12,142 bp. The phylogenetic analysis based on PCGs were consist with the latest classification of the Angiosperm Phylogeny Group. Notably, a total of 356 potential RNA editing sites were predicted based on 35 PCGs, and the editing events lead to the formation of the stop codon in the rps10 gene and the start codons in the nad4L and atp9 genes, which were verified by PCR amplification and Sanger sequencing. Taken together, the exploration of M. azedarach gap-free Mt genome provides a new insight into the evolution research and complex mitogenome architecture.


Subject(s)
Genome, Mitochondrial , Phylogeny , Recombination, Genetic , Repetitive Sequences, Nucleic Acid/genetics , Genome, Chloroplast , Genome, Plant , RNA Editing
8.
Data Brief ; 55: 110588, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38974010

ABSTRACT

Spiny lobsters (Decapoda: Palinuridae) in the genus Panulirus are targets of lucrative fisheries globally and have relevant ecological functions in tropical and subtropical environments. Only a few, but increasing, number of genetic and genomic resources exist for them. Nuclear and mitochondrial genome assemblies can provide insights into their phylogenetic relationships and support fishery management strategies in species that are heavily exploited. Herein, using Illumina short reads whole genome sequencing, we assembled the nuclear and mitochondrial genomes of a total of 14 species. Genomic DNA was extracted from specimens deposited at Clemson University Crustacean Collection and sequenced in a HiSeq X Ten system. The number of paired-end (PE) reads generated for the different studied species varied between 219,917,346 in P. argus and 70,215,423 in P. cygnus. Nuclear and mitochondrial genomes were 'de novo' assembled. Nuclear genomes ranged between 1,624,400,357 bp in P. guttatus and 935,571,898 bp in P. cygnus with scaffold numbers varying between 466,583 in P. versicolor and 852,228 in P. longipes. Mitochondrial genomes varied between 15,613 bp and 15,768 bp in P. pascuensis and P. versicolor, respectively. The totality of the short reads, nuclear, and mitochondrial genome assemblies are available at NCBI's GenBank.

9.
Mitochondrial DNA B Resour ; 9(7): 861-864, 2024.
Article in English | MEDLINE | ID: mdl-38983844

ABSTRACT

The complete mitochondrial genome of Blue-fronted Redstart (Phoenicurus frontalis), GenBank accession number MT360379 (NC_053917), was published by Li and colleages in 2020. Here we show that this mitogenome is actually a chimera containing DNA fragments of both P. frontalis (15,518 bp, 92.5%) and Pink-rumped Rosefinch (Carpodacus waltoni eos, 1258 bp, 7.5%). This mitogenome has been re-used in at least three phylogenies. Our study confirms that mitogenomes are best verified with multiple gene trees, and that any anomalies should be investigated by direct comparison of sequences.

10.
Int J Mol Sci ; 25(13)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-39000388

ABSTRACT

Biological invasions have been identified as the fifth cause of biodiversity loss, and their subsequent dispersal represents a major ecological challenge. The aquatic invasive species Ludwigia grandiflora subsp. hexapetala (Lgh) and Ludwigia peploides subsp. montevidensis (Lpm) are largely distributed in aquatic environments in North America and in Europe. However, they also present worrying terrestrial forms that are able to colonize wet meadows. To comprehend the mechanisms of the terrestrial adaptation of Lgh and Lpm, it is necessary to develop their genomic resources, which are currently poorly documented. We performed de novo assembly of the mitogenomes of Lgh and Lpm through hybrid assemblies, combining short reads (SR) and/or long reads (LR) before annotating both mitogenomes. We successfully assembled the mitogenomes of Lgh and Lpm into two circular molecules each, resulting in a combined total length of 711,578 bp and 722,518 bp, respectively. Notably, both the Lgh and Lpm molecules contained plastome-origin sequences, comprising 7.8% of the mitochondrial genome length. Additionally, we identified recombinations that were mediated by large repeats, suggesting the presence of multiple alternative conformations. In conclusion, our study presents the first high-quality mitogenomes of Lpm and Lgh, which are the only ones in the Myrtales order found as two circular molecules.


Subject(s)
Genome, Mitochondrial , RNA Editing , Recombination, Genetic , Phylogeny , Genomics/methods , Genome, Plant , Chromosomes, Plant/genetics
11.
Int J Mol Sci ; 25(13)2024 Jun 24.
Article in English | MEDLINE | ID: mdl-39000014

ABSTRACT

Based on the nucleotide sequences of the mitochondrial genome (mitogenome) of specimens taken from two mussel species (Arcuatula senhousia and Mytilus coruscus), an investigation was performed by means of the complex approaches of the genomics, molecular phylogenetics, and evolutionary genetics. The mitogenome structure of studied mussels, like in many other invertebrates, appears to be much more variable than in vertebrates and includes changing gene order, duplications, and deletions, which were most frequent for tRNA genes; the mussel species' mitogenomes also have variable sizes. The results demonstrate some of the very important properties of protein polypeptides, such as hydrophobicity and its determination by the purine and pyrimidine nucleotide ratio. This fact might indirectly indicate the necessity of purifying natural selection for the support of polypeptide functionality. However, in accordance with the widely accepted and logical concept of natural cutoff selection for organisms living in nature, which explains its action against deleterious nucleotide substitutions in the nonsynonymous codons (mutations) and its holding of the active (effective) macromolecules of the polypeptides in a population, we were unable to get unambiguous evidence in favor of this concept in the current paper. Here, the phylogeny and systematics of mussel species from one of the largest taxons of bivalve mollusks are studied, the family known as Mytilidae. The phylogeny for Mytilidae (order Mytilida), which currently has no consensus in terms of systematics, is reconstructed using a data matrix of 26-27 mitogenomes. Initially, a set of 100 sequences from GenBank were downloaded and checked for their gender: whether they were female (F) or male (M) in origin. Our analysis of the new data confirms the known drastic differences between the F/M mitogenome lines in mussels. Phylogenetic reconstructions of the F-lines were performed using the combined set of genetic markers, reconstructing only protein-coding genes (PCGs), only rRNA + tRNA genes, and all genes. Additionally, the analysis includes the usage of nucleotide sequences composed of other data matrices, such as 20-68 mitogenome sequences. The time of divergence from MRCA, estimated via BEAST2, for Mytilidae is close to 293 Mya, suggesting that they originate in the Silurian Period. From all these data, a consensus for the phylogeny of the subfamily of Mytilinae and its systematics is suggested. In particular, the long-debated argument on mussel systematics was resolved as to whether Mytilidae, and the subfamily of Mytilinae, are monophyletic. The topology signal, which was strongly resolved in this paper and in the literature, has refuted the theory regarding the monophyly of Mytilinae.


Subject(s)
Evolution, Molecular , Genome, Mitochondrial , Phylogeny , Animals , Genome, Mitochondrial/genetics , Mytilidae/genetics , Mytilidae/classification , RNA, Transfer/genetics , Bivalvia/genetics , Bivalvia/classification , Mytilus/genetics , Mytilus/classification
12.
Org Divers Evol ; 24(2): 217-256, 2024.
Article in English | MEDLINE | ID: mdl-39035704

ABSTRACT

Immergentia is an endolithic genus of ctenostome bryozoans and the sole member of the Immergentiidae. Etchings of their typical spindled-shaped and sometimes enantiomorphic borehole aperture in calcium carbonate substrates are accomplished by chemical dissolution. The tentacle crown of the bryozoan is essentially the only body part that extends beyond the shell surface when protruded. Previously, species were mainly described using external colony and zooidal characteristics or whole mounts, with partial histological sections conducted on a single species in 1947. Modern approaches, however, are hitherto missing. We examined the soft body morphology of Immergentia from different locations with confocal laser scanning microscopy and the production of 3D reconstructions. In addition, zooidal characteristics such as tentacle number, size, tubulets, and interzooidal distances were used to distinguish and describe species. The combination of conventional and modern methods revealed the presence of a cardiac constrictor and intercalary kenozooids that can interpose between the cystid appendages, something not previously reported in immergentiids, thus necessitating an amendment of the family diagnosis. The polypide typically has eight to ten tentacles, and the anus is positioned in the low or mid-lophophoral area. In addition, sequence data, including the mitogenome and the nuclear ribosomal genes (18S and 28S) of four species from five locations, are presented for the first time. Based on molecular and morphological data, a novel intertidal immergentiid from France, Immergentia stephanieae sp. nov., and a subtidal species from New Zealand, I. pohowskii sp. nov., are described. This work supplements the rather sparse existing knowledge on Immergentiidae and proposes additional characteristics to complement existing descriptions in order to enhance future species identification. Supplementary Information: The online version contains supplementary material available at 10.1007/s13127-024-00645-y.

13.
Front Physiol ; 15: 1406635, 2024.
Article in English | MEDLINE | ID: mdl-38974521

ABSTRACT

The rapid development of the COVID-19 pandemic resulted in a closer analysis of cell functioning during ß-coronavirus infection. This review will describe evidence for COVID-19 as a syndrome with a strong, albeit still underestimated, mitochondrial component. Due to the sensitivity of host mitochondria to coronavirus infection, SARS-CoV-2 affects mitochondrial signaling, modulates the immune response, modifies cellular energy metabolism, induces apoptosis and ageing, worsening COVID-19 symptoms which can sometimes be fatal. Various aberrations across human systems and tissues and their relationships with mitochondria were reported. In this review, particular attention is given to characterization of multiple alterations in gene expression pattern and mitochondrial metabolism in COVID-19; the complexity of interactions between SARS-CoV-2 and mitochondrial proteins is presented. The participation of mitogenome fragments in cell signaling and the occurrence of SARS-CoV-2 subgenomic RNA within membranous compartments, including mitochondria is widely discussed. As SARS-CoV-2 severely affects the quality system of mitochondria, the cellular background for aberrations in mitochondrial dynamics in COVID-19 is additionally characterized. Finally, perspectives on the mitigation of COVID-19 symptoms by affecting mitochondrial biogenesis by numerous compounds and therapeutic treatments are briefly outlined.

14.
J Phycol ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38989846

ABSTRACT

The marine prasinophyte green algae Pycnococcus provasolii and Pseudoscourfieldia marina represent the only extant genera and known species of the Pycnococcaceae. However, their taxonomic status needs to be reassessed, owing to the very close relationship inferred from previous sequence comparisons of individual genes. Although Py. provasolii and Ps. marina are morphologically different, their plastid rbcL and nuclear small subunit rRNA genes were observed to be nearly or entirely identical in sequence, thus leading to the hypothesis that they represent distinct growth forms or alternate life-cycle stages of the same organism. To evaluate this hypothesis, we used organelle genomes as molecular markers. The plastome and mitogenome of Ps. marina UIO 007 were sequenced and compared with those available for two isolates of Py. provasolii (CCMP 1203 and CCAP 190/2). The Ps. marina organelle genomes proved to be almost identical in size and had the same gene content and gene order as their Py. provasolii counterparts. Single nucleotide substitutions and insertions/deletions were localized using genome-scale sequence alignments. Over 99.70% sequence identities were observed in all pairwise comparisons of plastomes and mitogenomes. Alignments of both organelle genomes revealed that Ps. marina UIO 007 is closer to Py. provasolii CCAP 190/2 than are the two Py. provasolii strains to one another. Therefore, our results are not consistent with the placement of Ps. marina and Py. provasolii strains into distinct genera. We propose a taxonomic revision of the Pycnococcaceae and the erection of a new class of Chlorophyta, the Pseudoscourfieldiophyceae.

15.
BMC Genomics ; 25(1): 689, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39003448

ABSTRACT

BACKGROUND: The holothurians, commonly known as sea cucumbers, are marine organisms that possess significant dietary, nutritional, and medicinal value. However, the National Center for Biotechnology Information (NCBI) currently possesses only approximately 70 complete mitochondrial genome datasets of Holothurioidea, which poses limitations on conducting comprehensive research on their genetic resources and evolutionary patterns. In this study, a novel species of sea cucumber belonging to the genus Benthodytes, was discovered in the western Pacific Ocean. The genomic DNA of the novel sea cucumber was extracted, sequenced, assembled and subjected to thorough analysis. RESULTS: The mtDNA of Benthodytes sp. Gxx-2023 (GenBank No. OR992091) exhibits a circular structure spanning 17,386 bp, comprising of 13 protein-coding genes (PCGs), 24 non-coding RNAs (2 rRNA genes and 22 tRNA genes), along with two putative control regions measuring 882 bp and 1153 bp, respectively. It exhibits a high AT% content and negative AT-skew, which distinguishing it from the majority of sea cucumbers in terms of environmental adaptability evolution. The mitochondrial gene homology between Gxx-2023 and other sea cucumbers is significantly low, with less than 91% similarity to Benthodytes marianensis, which exhibits the highest level of homology. Additionally, its homology with other sea cucumbers is below 80%. The mitogenome of this species exhibits a unique pattern in terms of start and stop codons, featuring only two types of start codons (ATG and ATT) and three types of stop codons including the incomplete T. Notably, the abundance of AT in the Second position of the codons surpasses that of the First and Third position. The gene arrangement of PCGs exhibits a relatively conserved pattern, while there exists substantial variability in tRNA. Evolutionary analysis revealed that it formed a distinct cluster with B. marianensis and exhibited relatively distant phylogenetic relationships with other sea cucumbers. CONCLUSIONS: These findings contribute to the taxonomic diversity of sea cucumbers in the Elasipodida order, thereby holding significant implications for the conservation of biological genetic resources, evolutionary advancements, and the exploration of novel sea cucumber resources.


Subject(s)
Evolution, Molecular , Genome, Mitochondrial , Phylogeny , Sea Cucumbers , Animals , Sea Cucumbers/genetics , RNA, Transfer/genetics , Base Composition
16.
Zookeys ; 1206: 81-98, 2024.
Article in English | MEDLINE | ID: mdl-39006402

ABSTRACT

Anagyrus, a genus of Encyrtidae (Hymenoptera, Chalcidoidea), represents a successful group of parasitoid insects that attack various mealybug pests of agricultural and forestry plants. Until now, only 20 complete mitochondrial genomes have been sequenced, including those in this study. To enrich the diversity of mitochondrial genomes in Encyrtidae and to gain insights into their phylogenetic relationships, the mitochondrial genomes of two species of Anagyrus were sequenced, and the mitochondrial genomes of these species were compared and analyzed. Encyrtid mitochondrial genomes exhibit similarities in nucleotide composition, gene organization, and control region patterns. Comparative analysis of protein-coding genes revealed varying molecular evolutionary rates among different genes, with six genes (ATP8, ND2, ND4L, ND6, ND4 and ND5) showing higher rates than others. A phylogenetic analysis based on mitochondrial genome sequences supports the monophyly of Encyrtidae; however, the two subfamilies, Encyrtinae and Tetracneminae, are non-monophyletic. This study provides valuable insights into the phylogenetic relationships within the Encyrtidae and underscores the utility of mitochondrial genomes in the systematics of this family.

17.
Front Plant Sci ; 15: 1407309, 2024.
Article in English | MEDLINE | ID: mdl-39006960

ABSTRACT

Water hyacinth (Pontederia crassipes Mart.) is a monocotyledonous aquatic plant renowned for its rapid growth, extensive proliferation, biological invasiveness, and ecological resilience to variations in pH, nutrients, and temperature. The International Union for Conservation of Nature (IUCN) has listed P. crassipes among the top 100 invasive species. However, comprehensive genomic information, particularly concerning its mitochondrial genome (mitogenome), remains surprisingly limited. In this study, the complete mitogenome of P. crassipes was analyzed using bioinformatics approaches. The mitogenome is 399,263 bp long and contains 38 protein-coding genes (PCGs), 24 tRNA genes, and 3 rRNA genes. Sequence analysis revealed that the complete mitogenome of the species contains 3,289 dispersed repeats, and 765 RNA editing sites in protein-coding genes. The P. crassipes mitogenome possessed un-conserved structures, including extensive sequence transfer between its chloroplasts and mitochondria. Our study on the mitogenome of P. crassipes offers critical insights into its evolutionary patterns and phylogenetic relationships with related taxa. This research enhances our understanding of this invasive species, known for its significant biomass and rapid overgrowth in aquatic environments.

18.
Mol Biol Rep ; 51(1): 826, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39030452

ABSTRACT

BACKGROUND: The oceanic whitetip shark Carcharhinus longimanus (family Carcharhinidae) is one of the largest sharks inhabiting all tropical and subtropical oceanic regions. Due to their life history traits and mortality attributed to pelagic longline fishing practices, this species is experiencing substantial population decline. Currently, C. longimanus is considered by the IUCN Red List of Threatened Species as "vulnerable" throughout its range and "critically endangered" in the western north Atlantic. This study sequences and describes the complete mitochondrial genome of C. longimanus in detail. METHODS AND RESULTS: The mitochondrial genome of C. longimanus was assembled through next-generation sequencing and then analyzed using specialized bioinformatics tools. The circular, double-stranded AT-rich mitogenome of C. longimanus is 16,704 bp long and contains 22 tRNA genes, 2 rRNA genes, 13 protein coding genes and a 1,065 bp long control region (CR). Out of the 22 tRNA genes, only one (tRNA-Ser1) lacked a typical 'cloverleaf' secondary structure. The prevalence of TTA (Leu), ATT (Ile) and CTA (Leu) codons in the PCGs likely contributes to the AT-rich nature of this mitogenome. In the CR, ten microsatellites were detected but no tandem repeats were found. Stem-and-loop secondary structures were common along the entire length of the CR. Ka/Ks values estimated for all PCGs were < 1, indicating that all the PCGs experience purifying selection. A phylomitogenomic analysis based on translated PCGs confirms the sister relationship between C. longimanus and C. obscurus. The analysis did not support the monophyly of the genus Carcharhinus. CONCLUSIONS: The assembled mitochondrial genome of this pelagic shark can provide insight into the phylogenetic relationships in the genus Carcharhinus and aid conservation and management efforts in the Central Pacific Ocean.


Subject(s)
Genome, Mitochondrial , Phylogeny , RNA, Transfer , Sharks , Animals , Genome, Mitochondrial/genetics , Sharks/genetics , RNA, Transfer/genetics , High-Throughput Nucleotide Sequencing/methods , RNA, Ribosomal/genetics , Endangered Species , DNA, Mitochondrial/genetics , Sequence Analysis, DNA/methods
19.
Biochem Genet ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954214

ABSTRACT

Mitochondrial genome is an important molecular marker for exploring the phylogenetic relationships of species and revealing molecular evolution. In the present study, 5 mitogenomes of Chromodorididae (Chromodoris lochi, Chromodoris colemani, Chromodoris elisabethina, Chromodoris annae and Hypselodoris whitei) were systemically investigated. The lengths of the mitogenomes sequences were 14248 bp, 14257 bp, 14252 bp, 14254 bp and 14856 bp, respectively. Most protein-coding genes (PCGs) were initiated with the common ATG codon and terminated with the TAA and TAG. We calculated Ka/Ks values for all 13 PCGs of Chromodorididae species, all ratios were less than 1, indicating selection by purification. Phylogenetic relationships were constructed by Bayesian inference (BI) and maximum likelihood (ML) methods based on all complete genomes of 50 species, primarily from the family Chromodorididae (Doridina) and 2 outgroups. This phylogenetic tree provided further additional references for the classification of the suborder Doridina. Gene rearrangement suggested a more conserved pattern of gene sequences in the superfamily Chromodoridoidea. These results and newly sequenced will contribute to a better understanding of Chromodorididae and provide reference for further phylogenetic studies.

20.
IMA Fungus ; 15(1): 15, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38863028

ABSTRACT

In the present study, three mitogenomes from the Bipolaris genus (Bipolaris maydis, B. zeicola, and B. oryzae) were assembled and compared with the other two reported Bipolaris mitogenomes (B. oryzae and B. sorokiniana). The five mitogenomes were all circular DNA molecules, with lengths ranging from 106,403 bp to 135,790 bp. The mitogenomes of the five Bipolaris species mainly comprised the same set of 13 core protein-coding genes (PCGs), two rRNAs, and a certain number of tRNAs and unidentified open reading frames (ORFs). The PCG length, AT skew and GC skew showed large variability among the 13 PCGs in the five mitogenomes. Across the 13 core PCGs tested, nad6 had the least genetic distance among the 16 Pleosporales species we investigated, indicating that this gene was highly conserved. In addition, the Ka/Ks values for all 12 core PCGs (excluding rps3) were < 1, suggesting that these genes were subject to purifying selection. Comparative mitogenomic analyses indicate that introns were the main factor contributing to the size variation of Bipolaris mitogenomes. The introns of the cox1 gene experienced frequent gain/loss events in Pleosporales species. The gene arrangement and collinearity in the mitogenomes of the five Bipolaris species were almost highly conserved within the genus. Phylogenetic analysis based on combined mitochondrial gene datasets showed that the five Bipolaris species formed well-supported topologies. This study is the first report on the mitogenomes of B. maydis and B. zeicola, as well as the first comparison of mitogenomes among Bipolaris species. The findings of this study will further advance investigations into the population genetics, evolution, and genomics of Bipolaris species.

SELECTION OF CITATIONS
SEARCH DETAIL
...