Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Trends Genet ; 39(2): 125-139, 2023 02.
Article in English | MEDLINE | ID: mdl-36137834

ABSTRACT

Mitochondria, organelles that harbor their own circular genomes, are critical for energy production and homeostasis maintenance in eukaryotic cells. Recent studies discovered hundreds of mitochondria-encoded noncoding RNAs (mt-ncRNAs), including novel subtypes of mitochondria-encoded circular RNAs (mecciRNAs) and mitochondria-encoded double-stranded RNAs (mt-dsRNAs). Here, we discuss the emerging field of mt-ncRNAs by reviewing their expression patterns, biogenesis, metabolism, regulatory roles, and functional mechanisms. Many mt-ncRNAs have regulatory roles in cellular physiology, and some are associated with, or even act as, causal factors in human diseases. We also highlight developments in technologies and methodologies and further insights into future perspectives and challenges in studying these noncoding RNAs, as well as their potential biomedical applications.


Subject(s)
RNA, Long Noncoding , RNA, Untranslated , Humans , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , Mitochondria/genetics , Mitochondria/metabolism , RNA, Circular/genetics , RNA, Long Noncoding/metabolism
2.
Front Physiol ; 8: 816, 2017.
Article in English | MEDLINE | ID: mdl-29104541

ABSTRACT

Background: Although small non-coding RNAs are mostly encoded by the nuclear genome, thousands of small non-coding RNAs encoded by the mitochondrial genome, termed as mitosRNAs were recently reported in human, mouse and trout. In this study, we first identified chicken mitosRNAs in breast muscle using small RNA sequencing method and the differential abundance was analyzed between modern pedigree male (PeM) broilers (characterized by rapid growth and large muscle mass) and the foundational Barred Plymouth Rock (BPR) chickens (characterized by slow growth and small muscle mass). Methods: Small RNA sequencing was performed with total RNAs extracted from breast muscles of PeM and BPR (n = 6 per group) using the 1 × 50 bp single end read method of Illumina sequencing. Raw reads were processed by quality assessment, adapter trimming, and alignment to the chicken mitochondrial genome (GenBank Accession: X52392.1) using the NGen program. Further statistical analyses were performed using the JMP Genomics 8. Differentially expressed (DE) mitosRNAs between PeM and BPR were confirmed by quantitative PCR. Results: Totals of 183,416 unique small RNA sequences were identified as potential chicken mitosRNAs. After stringent filtering processes, 117 mitosRNAs showing >100 raw read counts were abundantly produced from all 37 mitochondrial genes (except D-loop region) and the length of mitosRNAs ranged from 22 to 46 nucleotides. Of those, abundance of 44 mitosRNAs were significantly altered in breast muscles of PeM compared to those of BPR: all mitosRNAs were higher in PeM breast except those produced from 16S-rRNA gene. Possibly, the higher mitosRNAs abundance in PeM breast may be due to a higher mitochondrial content compared to BPR. Our data demonstrate that in addition to 37 known mitochondrial genes, the mitochondrial genome also encodes abundant mitosRNAs, that may play an important regulatory role in muscle growth via mitochondrial gene expression control.

3.
Metab Eng ; 40: 69-79, 2017 03.
Article in English | MEDLINE | ID: mdl-28088541

ABSTRACT

Chinese Hamster Ovary (CHO) cells are the most commonly used host for the production of biopharmaceuticals. Although transcription and translation engineering strategies have been employed to generate high-producer cell clones, the secretory pathway still remains a bottleneck in cellular productivity. In this study we show that ectopic expression of a human mitochondrial genome-encoded small RNA (mitosRNA-1978) in an IgG expressing CHO cell line strongly improved specific productivity by functioning in a microRNA-like fashion. By next generation sequencing we identified two endoplasmic reticulum (ER)-localized proteins, Ceramide Synthase 2 (CerS2) and the Rab1 GAP Tbc domain family member 20 (Tbc1D20), as target genes of mitosRNA-1978. Combined transient siRNA-mediated knockdown of CerS2 and Tbc1D20 resulted in increased specific productivity of CHO-IgG cells, thus recapitulating the mitosRNA-1978 phenotype. In support of a function in vesicular trafficking at the level of the ER, we provide evidence for altered cellular ceramide composition upon CerS2 knockdown and increased activity of Rab1 in CHO-IgG cells depleted of Tbc1D20. Importantly, in a fed-batch process, the combined stable knockdown of CerS2 and Tbc1D20 in CHO-IgG cells resulted in dramatically increased antibody production which was accompanied by enhanced cell growth. Thus, by identifying mitosRNA-1978 target genes in combination with an informed shRNA-mediated co-engineering approach we successfully optimized the secretory capacity of CHO producer cells used for the manufacturing of therapeutic proteins.


Subject(s)
Genetic Enhancement/methods , Membrane Proteins/genetics , Metabolic Networks and Pathways/genetics , MicroRNAs/genetics , RNA, Small Interfering/genetics , Secretory Pathway/physiology , Sphingosine N-Acyltransferase/genetics , Tumor Suppressor Proteins/genetics , rab1 GTP-Binding Proteins/genetics , Animals , CHO Cells , Cricetulus , Genome, Mitochondrial , RNA/genetics , RNA, Mitochondrial
4.
Mar Biotechnol (NY) ; 18(5): 584-597, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27778119

ABSTRACT

Many factors have been reported to affect rainbow trout egg quality, among which, postovulatory aging is one of the most significant causes as reared rainbow trout do not usually volitionally oviposit the ovulated eggs. In order to uncover the genetic regulation underling egg deterioration caused by postovulatory aging in rainbow trout, mitochondrial genome-encoded small RNA (mitosRNAs) were analyzed from unfertilized eggs on Days 1, 7, and 14 postovulation with fertilization rates of 91.8, 73.4, and less than 50 %, respectively. A total of 248 mitosRNAs were identified from Illumina high-throughput sequencing of the small RNA libraries derived from the eggs of ten females. Ninety-eight of the small RNAs exhibited more than a threefold difference in expression between eggs from females exhibiting high fertilization rates at Day 1 and low fertilization rates at Day 14. The differentially expressed mitosRNAs were predominantly derived from mitochondrial D-loop, tRNA, rRNA, COII, and Cytb gene regions. Real-time quantitative PCR analysis was carried out for 14 differentially expressed mitosRNAs, of which, 12 were confirmed to be consistent with the sequencing reads. Further characterization of the differentially expressed mitosRNAs may lead to the development of new biomarkers for egg quality in rainbow trout.


Subject(s)
Cellular Senescence/genetics , Genome, Mitochondrial , Oncorhynchus mykiss/genetics , Ovum/metabolism , RNA/genetics , Animals , Chromosome Mapping , Female , Fertilization , Gene Expression Regulation , Molecular Sequence Annotation , Ovulation/physiology , Ovum/growth & development , RNA, Mitochondrial
SELECTION OF CITATIONS
SEARCH DETAIL