ABSTRACT
BACKGROUND: Human T-lymphotropic virus 1 (HTLV-1) is associated with the development of several pathologies and chronic infection in humans. The inefficiency of the available treatments and the challenge in developing a protective vaccine highlight the need to produce effective immunotherapeutic tools. The HTLV-1 basic leucine zipper (bZIP) factor (HBZ) plays an important role in the HTLV-1 persistence, conferring a survival advantage to infected cells by reducing the HTLV-1 proteins expression, allowing infected cells to evade immune surveillance, and enhancing cell proliferation leading to increased proviral load. METHODS: We have generated a recombinant Modified Virus Vaccinia Ankara (MVA-HBZ) and a plasmid DNA (pcDNA3.1(+)-HBZ) expressing a multiepitope protein based on peptides of HBZ to study the immunogenic potential of this viral-derived protein in BALB/c mice model. Mice were immunized in a prime-boost heterologous protocol and their splenocytes (T CD4+ and T CD8+) were immunophenotyped by flow cytometry and the humoral response was evaluated by ELISA using HBZ protein produced in prokaryotic vector as antigen. RESULTS: T CD4+ and T CD8+ lymphocytes cells stimulated by HBZ-peptides (HBZ42-50 and HBZ157-176) showed polyfunctional double positive responses for TNF-α/IFN-γ, and TNF-α/IL-2. Moreover, T CD8+ cells presented a tendency in the activation of effector memory cells producing granzyme B (CD44+High/CD62L-Low), and the activation of Cytotoxic T Lymphocytes (CTLs) and cytotoxic responses in immunized mice were inferred through the production of granzyme B by effector memory T cells and the expression of CD107a by CD8+ T cells. The overall data is consistent with a directive and effector recall response, which may be able to operate actively in the elimination of HTLV-1-infected cells and, consequently, in the reduction of the proviral load. Sera from immunized mice, differently from those of control animals, showed IgG-anti-HBZ production by ELISA. CONCLUSIONS: Our results highlight the potential of the HBZ multiepitope protein expressed from plasmid DNA and a poxviral vector as candidates for therapeutic vaccine.
Subject(s)
Human T-lymphotropic virus 1 , Vaccines, DNA , Mice , Humans , Animals , CD8-Positive T-Lymphocytes , Granzymes/genetics , Tumor Necrosis Factor-alpha , Vaccines, DNA/genetics , Viral Proteins/metabolism , Vaccinia virus/genetics , DNA , Basic-Leucine Zipper Transcription Factors , Retroviridae Proteins/geneticsABSTRACT
The feline immunodeficiency virus (FIV) is a retrovirus with global impact and distribution, affecting both domestic and wild cats. This virus can cause severe and progressive immunosuppression culminating in the death of felids. Since the discovery of FIV, only one vaccine has been commercially available. This vaccine has proven efficiency against FIV subtypes A and D, whereas subtype B (FIV-B), found in multiple continents, is not currently preventable by vaccination. We, therefore, developed and evaluated a vaccine prototype against FIV-B using the recombinant viral vector modified vaccinia virus Ankara (MVA) expressing the variable region V1-V3 of the FIV-B envelope protein. We conducted preclinical tests in immunized mice (C57BL/6) using a prime-boost protocol with a 21 day interval and evaluated cellular and humoral responses as well the vaccine viability after lyophilization and storage. The animals immunized with the recombinant MVA/FIV virus developed specific splenocyte proliferation when stimulated with designed peptides. We also detected cellular and humoral immunity activation with IFN-y and antibody production. The data obtained in this study support further development of this immunogen and testing in cats.
ABSTRACT
In the intraerythrocytic protozoan parasites of the genus Babesia both innate and adaptive immune responses are necessary to confer protection against clinical disease. In particular, the adaptive immune response involves the production of neutralizing antibodies as well as the presentation of parasite antigens to CD4+ T lymphocytes by professional antigen-presenting cells. Therefore, the development of alternative vaccines that replace the use of live attenuated strains should include relevant epitopes targeting both B and T cell responses. The aim of this study was to design new Babesia bigemina immunogens and evaluate the humoral and cellular responses in mice. To achieve this, three B. bigemina recombinant antigens called Apical Membrane Antigen 1 (AMA-1), Rhoptry Associated Protein 1 (RAP-1) and the Thrombospondin Related Anonymous Protein 1 (TRAP-1) were obtained. Besides, two recombinant modified vaccinia virus Ankara vectors coding for chimeric constructs containing bioinformatically predicted B and T cell epitopes from the same three antigens were generated. These immunogens were evaluated in prime-boost heterologous schemes. Among the combinations tested, priming with a cocktail of the three proteins followed by a booster immunization with a mix of both viruses induced the highest activation of IFN-γ+ CD4+ and CD8+ antigen-specific T cell responses. Remarkably, all vaccine schemes containing antigen cocktails also induced antibodies that were capable of neutralizing merozoite invasion of bovine erythrocytes in vitro at a level comparable to an anti B. bigemina hyperimmune bovine serum. Our results offer a new perspective for vaccines against B. bigemina combining bioinformatics predictions and prime-boost immunization regimes for future control measures against bovine babesiosis.
Subject(s)
Babesia , Protozoan Vaccines , Animals , Antibodies, Neutralizing , Immunity, Cellular , Immunization, Secondary , Mice , Vaccinia virusABSTRACT
Porcine circovirus 2 (PCV2) infections are related to a number of syndromes and clinical manifestations, generally known as Porcine circovirus-associated diseases, which are related to losses in the swine industry. There are commercially available vaccines and new vaccines being tested, however, persistency of the PCV2 as an important pig pathogen, and the growing number of affected farms in different countries have suggested that there is room for vaccine improvement. In this study, we describe the construction and testing of a recombinant live vaccine based on a modified Vaccinia virus Ankara (MVA) vector expressing the PCV2b capsid protein (CAP). Using a two-dose homologous vaccination regimen, in mice, we demonstrated that the vaccine induced high titers of anti-PCV2 antibodies. The vaccine is stable upon lyophilization, and, together with the good immunogenicity potential observed, the results support further evaluation of the MVA-CAP vaccine in the target species.