ABSTRACT
The main concern with concrete at high temperatures is loss of strength and explosive spalling, which are more pronounced in high-strength concretes, such as Ultra-High Performance Concrete (UHPC). The use of polymeric fibers in the mixture helps control chipping, increasing porosity and reducing internal water vapor pressure, but their addition can impact its mechanical properties and workability. This study evaluated the physical and mechanical properties of UHPC with metallic and PVA fibers under high temperatures using a 23 central composite factorial design. The consistency of fresh UHPC and the compressive strength and elasticity modulus of hardened UHPC were measured. Above 300 °C, both compressive strength and elasticity modulus decreased drastically. Although the addition of PVA fibers reduced fluidity, it decreased the loss of compressive strength after exposure to high temperatures. The response surface indicates that the ideal mixture-1.65% steel fiber and 0.50% PVA fiber-achieved the highest compressive strength, both at room temperature and at high temperatures. However, PVA fibers did not protect UHPC against explosive spalling at the levels used in this research.
ABSTRACT
Objective To analyze the mechanical properties of the patellar (PT) and semitendinosus (ST) tendons from fresh-frozen human cadavers from a tissue bank using supersonic shear-wave imaging (SSI) elastography and tensile tests. Methods We tested seven PT and five ST samples on a traction machine and performed their simultaneous assessment through SSI. The measurements enabled the comparison of the mechanical behavior of the tendons using the stress x strain curve and shear modulus (µ) at rest. In addition, we analyzed the stress x µ relationship under tension and tested the relationship between these parameters. The statistical analysis of the results used unpaired t -tests with Welch correction, the Pearson correlation, and linear regression for the Young modulus (E) estimation. Results The µ values for the PT and ST at rest were of 58.86 ± 5.226 kPa and 124.3 ± 7.231 kPa respectively, and this difference was statistically significant. The correlation coefficient between stress and µ for the PT and ST was very strong. The calculated E for the PT and ST was of 19.97 kPa and 124.8 kPa respectively, with a statistically significant difference. Conclusion The ST was stiffer than the PT in the traction tests and SSI evaluations. The µ value was directly related to the stress imposed on the tendon. Clinical relevance The present is an evaluation of the mechanical properties of the tendons most used as grafts in knee ligament reconstruction surgeries.
ABSTRACT
Titanium and its alloys, especially Ti-6Al-4V, are widely studied in implantology for their favorable characteristics. However, challenges remain, such as the high modulus of elasticity and concerns about cytotoxicity. To resolve these issues, research focuses on ß-type titanium alloys that incorporate elements such as Mo, Nb, Sn, and Ta to improve corrosion resistance and obtain a lower modulus of elasticity compatible with bone. This review comprehensively examines current ß titanium alloys, evaluating their mechanical properties, in particular the modulus of elasticity, and corrosion resistance. To this end, a systematic literature search was carried out, where 81 articles were found to evaluate these outcomes. In addition, this review also covers the formation of the alloy, processing methods such as arc melting, and its physical, mechanical, electrochemical, tribological, and biological characteristics. Because ß-Ti alloys have a modulus of elasticity closer to that of human bone compared to other metal alloys, they help reduce stress shielding. This is important because the alloy allows for a more even distribution of forces by having a modulus of elasticity more similar to that of bone. In addition, these alloys show good corrosion resistance due to the formation of a noble titanium oxide layer, facilitated by the incorporation of ß stabilizers. These alloys also show significant improvements in mechanical strength and hardness. Finally, they also have lower cytotoxicity and bacterial adhesion, depending on the ß stabilizer used. However, there are persistent challenges that require detailed research in critical areas, such as optimizing the composition of the alloy to achieve optimal properties in different clinical applications. In addition, it is crucial to study the long-term effects of implants on the human body and to advance the development of cutting-edge manufacturing techniques to guarantee the quality and biocompatibility of implants.
Subject(s)
Alloys , Dental Implants , Titanium , Titanium/chemistry , Humans , Alloys/chemistry , Alloys/pharmacology , Corrosion , Materials TestingABSTRACT
Filler content in dental composites is credited for affecting its physical and mechanical properties. This study evaluated the correlation between the filler percentage and strength, modulus, shrinkage stress, depth of cure, translucency and radiopacity of commercially available high- and low-viscosity dental composites. Filler weight percentage (wt%) was determined through the burned ash technique (800 °C for 15 min). Three-point bend flexural strength and modulus were measured according to ISO 4049 with 2 mm × 2 mm × 25 mm bars. Shrinkage stress was evaluated using a universal testing machine in which composite was polymerized through two transparent acrylic rods 2 mm apart. Shrinkage was measured from the maximum force following 500 s. The translucency parameter (TP) was measured as the difference in color (ΔE00) of 1 mm thick specimens against white and black tiles. The depth of cure was measured according to ISO 4049 in a cylindrical metal mold (4 mm diameter) with a 10 s cure. Radiopacity was measured by taking a digital X-ray (70 kVp for 0.32 s at 400 mm distance) of 1 mm thick specimens and comparing the radiopacity to an aluminum step wedge using image analysis software. The correlation between the filler wt% and properties was measured by Pearson's correlation coefficient using SPSS. There was a positive linear correlation between the filler wt% and modulus (r = 0.78, p < 0.01), flexural strength (r = 0.46, p < 0.01) and radiopacity (r = 0.36, p < 0.01) and negative correlation with translucency (r = -0.29, p < 0.01). Filler wt% best predicts the modulus and strength and, to a lesser extent, the radiopacity and translucency. All but two of the high- and low-viscosity composites from the same manufacturer had statistically equivalent strengths as each other; however, the high-viscosity materials almost always had a statistically higher modulus. For two of the flowable composites measured from the same manufacturer (3M and Dentsply), there was a lower shrinkage stress in the bulk-fill version of the material but not for the other two manufacturers (Ivoclar and Tokuyama). All flowable bulk-fill composites achieved a deeper depth of cure than the flowable composite from the same manufacturer other than Omnichroma Flow Bulk.
ABSTRACT
BACKGROUND: Multifidus is an important lumbar muscle with distinct superficial and deep fibers responsible for torque production and stabilization, respectively. Its mechanical properties change when transitioning from lying to sitting positions, necessitating enhanced stability. It holds crucial clinical relevance to assess these layers separately, especially in the sitting posture, which demands increased neuromuscular control compared to the prone position. OBJECTIVE: To compare lumbar multifidus stiffness in lying versus sitting postures, analyzing both superficial and deep layers. METHODS: Supersonic Shear Imaging captured elastographic images from 26 asymptomatic volunteers in prone and seated positions. RESULTS: Left multifidus shear modulus in lying: 5.98 ± 1.80/7.96 ± 1.59 kPa (deep/superficial) and sitting: 12.58 ± 4.22/16.04 ± 6.65 kPa. Right side lying: 6.08 ± 1.97/7.80 ± 1.76 kPa and sitting: 13.25 ± 4.61/17.95 ± 7.12 kPa. No side differences (lying p= 0.99, sitting p= 0.43). However, significant inter-postural differences occurred. CONCLUSION: Lumbar multifidus exhibits increased stiffness in sitting, both layers affected, with superior stiffness in superficial versus deep fibers. Applying these findings could enhance assessing multifidus stiffness changes, for classifying tension-induced low back pain stages.
Subject(s)
Elasticity Imaging Techniques , Paraspinal Muscles , Sitting Position , Humans , Prone Position/physiology , Male , Female , Paraspinal Muscles/physiology , Paraspinal Muscles/diagnostic imaging , Adult , Young Adult , Healthy Volunteers , Lumbosacral Region/diagnostic imaging , Lumbosacral Region/physiology , Lumbar Vertebrae/diagnostic imaging , Lumbar Vertebrae/physiology , Posture/physiologyABSTRACT
Finite element analysis (FEA) has been used to analyze the behavior of dental materials, mainly in implantology. However, FEA is a mechanical analysis and few studies have tried to simulate the biological characteristics of the healing process of loaded implants. This study used the rule of mixtures to simulate the biological healing process of immediate implants in an alveolus socket and bone-implant junction interface through FEA. Three-dimensional geometric models of the structures were obtained, and material properties were derived from the literature. The rule of mixtures was used to simulate the healing periods-immediate and early loading, in which the concentration of each cell type, based on in vivo studies, influenced the final elastic moduli. A 100 N occlusal load was simulated in axial and oblique directions. The models were evaluated for maximum and minimum principal strains, and the bone overload was assessed through Frost's mechanostat. There was a higher strain concentration in the healing regions and cortical bone tissue near the cervical portion. The bone overload was higher in the immediate load condition. The method used in this study may help to simulate the biological healing process and could be useful to relate FEA results to clinical practice.
Subject(s)
Dental Implants , Elastic Modulus , Finite Element Analysis , Immediate Dental Implant Loading , Tooth Socket , Wound Healing , Humans , Tooth Socket/physiology , Wound Healing/physiology , Biomechanical Phenomena , Computer Simulation , Bone-Implant Interface/physiology , Stress, Mechanical , Alveolar Process/physiology , Models, Biological , Osseointegration/physiology , Bite Force , Dental Stress Analysis/methods , Osteoblasts/physiology , Cortical Bone/physiology , Imaging, Three-Dimensional/methodsABSTRACT
This data article presents information on the measurement of Indirect Tensile Stiffness Modulus of laboratory and field asphalt mixtures. The asphalt mixes are composed of three distinct binders that were categorised by their penetration grade (40/55-TLA, 60/75-TLA, and 60/70-MB) and aggregates (limestone, sharp sand, and filler). The asphalt mixtures are called dense-graded hot mix asphalt (HMA) and gap-graded stone matrix asphalt (SMA). The variables in the dataset were selected in accordance with the specifications of the dynamic modulus models that are currently in use as well as the needs for the quality control and assurance (QC & QA) assessment of asphalt concrete mixes. The data parameters included are temperature, asphalt content, and binder viscosity, air void content, cumulative percent retained on 19, 12.5, and 4.75 mm sieves, maximum theoretical specific gravity, aggregate passing #200 sieve, effective asphalt content, density, flow, marshal stability, coarse-to-fine particle ratio and the Indirect Tensile Stiffness Modulus (ITSM). Utilising soft computing techniques, models were developed utilising the data thus eliminating the requirement for complex and time-consuming laboratory testing.
ABSTRACT
Aim: The tensile strength and modulus of elasticity of gutta-percha cones can be chemically altered due to disinfectant solutions. Therefore, the aim of the present study was to compare tensile strength and elastic modulus of gutta-percha cones subjected to sodium hypochlorite (NaOCl) disinfection at different times. Materials and Methods: This in vitro and longitudinal experimental study consisted of 45 gutta-percha cones, divided equally into three groups: Group 1 (disinfection with 2.5% NaOCl), Group 2 (disinfection with 5.25% NaOCl), and control group. All groups were subdivided according to immersion times for 1, 5, and 10 minutes. Tensile strength and elastic modulus were measured with a universal testing machine. For comparing more than two independent groups, parametric analysis of variance test with Sheffe's post hoc was used and for multivariate analysis, and multivariate analysis of variance test based on Pillai's Trace was used. In all statistical analysis, a significance level P ≤ 0.05 was considered. Results: When comparing the tensile strength of gutta-percha cones, no significant differences were observed after being immersed at 1, 5, and 10 minutes in NaOCl 2.5% (P = 0.715) and 5.25% (P = 0.585). Regarding the elastic modulus, a significant decrease (P < 0.05) was observed in those that were immersed in NaOCl 2.5% and 5.25% for 1, 5, and 10 minutes. Furthermore, increased NaOCl concentration significantly reduced the elastic modulus (P < 0.001). However, there were no significant differences in tensile strength (P > 0.05) and elastic modulus (P > 0.05), when evaluating the interaction between NaOCl concentration and time. Conclusion: Increasing NaOCl concentration significantly reduced the modulus of elasticity without affecting the tensile strength of gutta-percha cones, regardless of immersion time. Furthermore, the interaction of time and NaOCl concentration did not significantly affect the tensile strength and elastic modulus.
ABSTRACT
ß-type titanium alloys with a body-centered cubic structure are highly useful in orthopedics due to their low elastic modulus, lower than other commonly used alloys such as stainless steel and Co-Cr alloys. The formation of the ß phase in titanium alloys is achieved through ß-stabilizing elements such as Nb, Mo, and Ta. To produce new ß alloys with a low modulus of elasticity, this work aimed to produce our alloy system for biomedical applications (Ti-50Nb-Mo). The alloys were produced by arc-melting and have the following compositions Ti-50Nb-xMo (x = 0, 3, 5, 7, and 12 wt% Mo). The alloys were characterized by density, X-ray diffraction, scanning electron microscopy, microhardness, and elastic modulus. It is worth highlighting that this new set of alloys of the Ti-50Nb-Mo system produced in this study is unprecedented; due to this, there needs to be a report in the literature on the production and structural characterization, hardness, and elastic modulus analyses. The microstructure of the alloys has an exclusively ß phase (with bcc crystalline structure). The results show that adding molybdenum considerably increased the microhardness and decreased the elastic modulus, with values around 80 GPa, below the metallic materials used commercially for this type of application. From the produced alloys, Ti-50Nb-12Mo is highlighted due to its lower elastic modulus.
ABSTRACT
The flexural resistence is one of the most used test in researchs of mechanical characterization of resin composites for dental restoration. ISO 4049 photopolymerization technique performed static application stages of light tip. To polymerize the entire area of the specimen some areas must receive extra radiation. These areas with extra radiation are called overlap areas. In an attempt to remedy this problem, this research compared the ISO method with a new method using constant movement (CM) during photopolymerization. Twenty specimens (SPs) were produced with 25 x 2 x 2 mm, for each group, 10 specimens being polymerized by the static technique recommended by the ISO-4049 and 10 specimens polymerized by the CM technique for each LED curing light used. After Tukey's statistical analysis, it was found that there was no statistical difference in relation to flexural strength (FS) and for the flexural modulus of elasticity (EF). However, the standard deviation of both FS and EF were much lower in MC than in ISO. Therefore, the photopolymerization by CM of the samples for the flexural strength test proved to be a possible solution to the problem of overlap of the technique proposed by ISO.
O teste de flexão é um dos mais utilizados em pesquisa de caracterização mecânica de compósitos resinosos para restauração dentária. A técnica ISO 4049 é feita em etapas com aplicação estática da luz. Para que toda a área do corpo de prova receba esta radiação é preciso que outras áreas recebam radiação extra. Na tentativa de sanar tal problema, esta pesquisa comparou o método da ISO com um método que utiliza um movimento constante (MC) durante a fotopolimerização. Foram produzidos 20 corpos de provas (CPs) com 25 x 2 x 2 mm, para cada grupo, sendo 10 polimerizados pela técnica estática recomendada pela normativa ISO-4049 e 10 polimerizados pela técnica de movimentação contínua (MC) para cada fotopolimerizador LED utilizado. Após análise estatística de Tukey apurou-se que não houve diferença estatística em relação à resistência à flexão (RF) e para o módulo de elasticidade em flexão. Porém, percebe-se, que o desvio padrão tanto da RF quanto do EF foram bem menores em MC do que em ISO. Sendo assim, a fotopolimerização em movimentação constante (MC) das amostras para o teste de resistência à flexão se mostrou como uma possível solução para o problema de sobreposição na técnica proposta pela ISO.
Subject(s)
Composite Resins , Curing Lights, Dental , Elastic Modulus , Flexural StrengthABSTRACT
Hydrogel filaments were manufactured using wet spinning technique, incorporating variations in the concentrations of sodium alginate, gelatin, and calcium chloride (crosslinking agent). The combination of biopolymer concentrations was determined using design of experiments (DoE) approach. The resulting filaments were produced from the developed hydrogels. Tensile and vertical strength analyses of the filaments were conducted using an electromechanical extensor. Atomic force microscopy was employed to evaluate the roughness, viscoelasticity, retraction, and deflection of the hydrogels. By employing DoE, a total of seventeen different combinations of biopolymers and crosslinkers were generated to construct the hydrogels. The filaments exhibited variations in electromechanical traction (measured in kPa) and produced distinct stress peaks. Furthermore, diverse roughness values were observed among the tested materials, with the combinations featuring higher concentrations of sodium alginate displaying the highest Young's modulus. This study demonstrates that manipulating the concentrations of biopolymers and crosslinking agents can modulate the micro and nanomechanical properties of biopolymeric filaments.
Subject(s)
Gelatin , Hydrogels , Biopolymers , Elastic Modulus , AlginatesABSTRACT
Objective: Mouthguards can reduce or even prevent orofacial injuries. These devices are responsible for absorbing part of the energy of an impact force, while the remaining part is dissipated. The present study aimed to evaluate how the plasticization temperature of the sports mouthguards' manufacturing process influences their mechanical properties and protective potential. Material and Methods: Specimens were made according to different plasticization temperatures (85°C, 103°C, 121°C and 128°C) and different dental brands of EVA sheets (Bio-art and FGM). Plasticization temperatures were measured using a culinary thermometer (Term; TP300). The mechanical properties evaluated were: energy absorption capacity, deformation, and modulus of elasticity. Compression testing was carried out in the Emic universal testing machine with a speed of 600 mm/min to simulate a punch. Results: EVA sheets submitted to the highest temperatures (121°C and 128°C) had their energy absorption capacity reduced. In addition, the samples that plasticized at the lowest temperature (85°C) showed higher absorption capacity, lower elastic modulus, and less variation in its dimensions. It proved to be the most effective in protection and with greater durability. Conclusion: The plasticization temperature proved to be an influential factor in the absorption capacity of mouthguards, so the increase in temperature led to a reduction in this property, especially when higher than 120°C. In addition, the plasticization temperature may vary depending on the sheet brand used. Finally, the kitchen thermometer used proved to be efficient and practical, thanks to its easy-to-read display and wide availability on the market. (AU)
Objetivo: Os protetores bucais são capazes de reduzir ou mesmo prevenir lesões orofaciais. Esses dispositivos são responsáveis por absorver parte da energia de uma força de impacto, enquanto a parte restante é dissipada. Este estudo teve como objetivo avaliar como a temperatura de plastificação de protetores bucais esportivos influencia em suas propriedades mecânicas e no seu potencial protetivo. Material e Métodos: Foram confeccionados modelos de trabalho segundo diferentes temperaturas de plastificação (85°C, 103°C, 121°C e 128°C) e distintas marcas odontológicas de placas de EVA (Bio-art e FGM). As temperaturas de plastificação foram medidas com termômetro culinário da marca Term/TP300. As propriedades mecânicas avaliadas foram capacidade de absorção de energia, deformação e módulo de elasticidade. O teste de compressão foi realizado na máquina de ensaios universal Emic com velocidade de 600 mm/min, a fim de simular um soco. Resultados: As placas de EVA submetidas às mais altas temperaturas (121°C e 128°C) tiveram sua capacidade de absorção de energia reduzida. Além disso, as amostras que plastificaram na temperatura mais baixa (85°C) apresentaram maior capacidade de absorção, menor módulo de elasticidade e menor variação em suas dimensões. Assim, mostraram-se a mais eficaz na proteção e com maior durabilidade. Conclusão: A temperatura de plastificação demonstrou ser um fator influente na capacidade de absorção dos protetores bucais, de modo que o aumento da temperatura levou a uma redução desta propriedade, principalmente quando superior a 120°C. Além disso, a temperatura de plastificação pode variar dependendo da marca comercial utilizada. Por fim, o termômetro culinário utilizado mostrou-se eficiente e prático, pela facilidade de leitura e por ser facilmente encontrado no mercado (AU)
Subject(s)
Temperature , Polyethylene , Elastic Modulus , Absorption, Physicochemical , Mouth ProtectorsABSTRACT
Abstract Objective To analyze the mechanical properties of the patellar (PT) and semitendinosus (ST) tendons from fresh-frozen human cadavers from a tissue bank using supersonic shear-wave imaging (SSI) elastography and tensile tests. Methods We tested seven PT and five ST samples on a traction machine and performed their simultaneous assessment through SSI. The measurements enabled the comparison of the mechanical behavior of the tendons using the stress x strain curve and shear modulus (μ) at rest. In addition, we analyzed the stress x μ relationship under tension and tested the relationship between these parameters. The statistical analysis of the results used unpaired t-tests with Welch correction, the Pearson correlation, and linear regression for the Young modulus (E) estimation. Results The μ values for the PT and ST at rest were of 58.86 ± 5.226 kPa and 124.3 ± 7.231 kPa respectively, and this difference was statistically significant. The correlation coefficient between stress and μ for the PT and ST was very strong. The calculated E for the PT and ST was of 19.97 kPa and 124.8 kPa respectively, with a statistically significant difference. Conclusion The ST was stiffer than the PT in the traction tests and SSI evaluations. The μ value was directly related to the stress imposed on the tendon. Clinical relevance The present is an evaluation of the mechanical properties of the tendons most used as grafts in knee ligament reconstruction surgeries.
Resumo Objetivo Analisar as propriedades mecânicas dos tendões patelar (TP) e semitendinoso (ST) obtidos de cadáveres humanos congelados enquanto ainda frescos, provenientes de banco de tecidos, utilizando elastografia por ondas de cisalhamento (supersonic shearwave imaging, SSI, em inglês) e testes de tração. Métodos Sete amostras de TP e cinco de ST foram testadas em máquina de tração e simultaneamente avaliadas por SSI. As medidas geradas possibilitaram comparar o comportamento mecânico dos tendões por curva stress x strain e módulo de cisalhamento (μ) em repouso. Também foi analisada a relação stress x μ sob tensão, e testada a relação entre esses parâmetros. Os resultados foram submetidos a análise estatística pelos testes t não-pareado com correção de Welch, correlação de Pearson e regressão linear para estimativa do módulo de Young (E). Resultados O μ dos TP e ST em repouso foi, respectivamente, de 58,86 ± 5,226 kPa e 124,3 ± 7,231 kPa, com diferença estatisticamente significativa. O coeficiente de correlação entre stress e μ dos TP e ST foi classificado como muito forte. O E calculado dos TP e ST foi, respectivamente, de 19,97 kPa e 124,8 kPa, com diferença estatisticamente significativa. Conclusão O ST foi mais rígido do que o TP nos testes de tração e nas avaliações por SSI. O μ esteve diretamente relacionado com o stress a que o tendão é submetido. Relevância clínica Avaliar as propriedades mecânicas dos tendões mais utilizados como enxerto nas cirurgias de reconstrução ligamentar do joelho.
ABSTRACT
This research aims to examine how a radial graded porosity distribution affects the elastic modulus by conducting simulations on Ti-based alloy foams with face-centered cubic and body-centered cubic crystal structures. Four types of foams were analyzed; commercially pure-Ti, Ti-13Ta-6Mn (TTM), Ti-13Ta-(TT) and Ti-13Ta-6Sn (TTS), (all in at.%). Four radial graded porosity distribution configurations were modeled and simulated using the finite element analysis (FEA). The radial graded porosity distribution configurations were generated using a Material Designer (Ansys) with a pore range of 200 to 600 µm. These radial graded porosity distributions had average porosity values of 0, 20, 30 and 40%. The consolidated samples that were obtained through a powder metallurgy technique in two step samples were synthesized using a powder metallurgy technique, with the elastic moduli values of the aforementioned Ti based alloys being measured by ultrasound using ~110, ~69, ~61 and ~65 GPa, respectively. The results showed that the modulus decreased as a function of porosity level in all simulated materials. The TTM, TT and TTS foams, with average porosities of 20, 30 and 40%, exhibited an modulus smaller than 30 GPa, which is a requirement to be used as a biomaterial in human bones. The TT foams showed the lowest modulus when compared to the other foams. Finally, certain theoretical models were used to obtain the modulus, the best being; the Gibson-Ashby model (α = 1 and n = 2.5) for the cp-Ti foams and Knudsen-Spriggs model (b = 3.06) for the TTM, TT and TTS foams.
ABSTRACT
Dielectric and thermal properties of polyvinyl butyral (PVB) were studied in this work, using dynamic electrical analysis (DEA) at frequencies from 100 Hz to 1 MHz and temperatures from 293 K to 473 K. Two electrical relaxation processes were investigated: glass transition and interfacial polarization. Above the glass transition temperature (~343 K), interfacial polarization dominates conductive behavior in polyvinyl butyral. The framework of the complex electric modulus was used to obtain information about interfacial polarization. The viscoelastic behavior was analyzed through dynamic mechanical analysis (DMA), where only the mechanical manifestation of the glass transition is observed. The experimental results from dielectric measurements were analyzed with fractional calculus, using a fractional Debye model with one cap-resistor. We were successful in applying the complex electric modulus because we had a good correlation between data and theoretical predictions. The fractional order derivative is an indicator of the energy dissipated in terms of molecular mobility, and the calculated values close to 1 suggest a conductive behavior at temperatures above the glass transition temperature of PVB.
ABSTRACT
El propósito de este estudio fue analizar el comportamiento mecánico de la estructura dental sana de un primer premolar inferior humano sometido a fuerzas funcionales y disfuncionales en diferentes direcciones. Se buscó comprender, bajo las variables contempladas, las zonas de concentración de esfuerzos que conllevan al daño estructural de sus constituyentes y tejidos adyacentes. Se realizó el modelo 3D de la reconstrucción de un archivo TAC de un primer premolar inferior, que incluyó esmalte, dentina, ligamento periodontal y hueso alveolar considerando tres variables: dirección, magnitud y área de la fuerza aplicada. La dirección fue dirigida en tres vectores (vertical, tangencial y horizontal) bajo cuatro magnitudes, una funcional de 35 N y tres disfuncionales de 170, 310 y 445 N, aplicadas sobre un área de la cara oclusal y/o vestibular del premolar que involucró tres contactos estabilizadores (A, B y C) y dos paradores de cierre. Los resultados obtenidos explican el fenómeno de combinar tres vectores, cuatro magnitudes y un área de aplicación de la fuerza, donde los valores de esfuerzo efectivo equivalente Von Mises muestran valores máximos a partir de los 60 MPa. Los valores de tensión máximos se localizan, bajo la carga horizontal a 170 N y en el proceso masticatorio en la zona cervical, cuando la fuerza pasa del 60 %. Sobre la base de los hallazgos de este estudio, se puede concluir que la reacción de los tejidos a fuerzas funcionales y disfuncionales varía de acuerdo con la magnitud, dirección y área de aplicación de la fuerza. Los valores de tensión resultan ser más altos bajo la aplicación de fuerzas disfuncionales tanto en magnitud como en dirección, produciendo esfuerzos tensiles significativos para la estructura dental y periodontal cervical, mientras que, bajo las cargas funcionales aplicadas en cualquier dirección, no se generan esfuerzos lesivos. Esto supone el reconocimiento del poder de detrimento estructural del diente y periodonto frente al bruxismo céntrico y excéntrico.
SUMMARY: The purpose of this study was to analyze the mechanical behavior of the healthy dental structure of a human mandibular first premolar subjected to functional and dysfunctional forces in different directions. It was sought to understand, under the contemplated variables, the areas of stress concentration that lead to structural damage of its constituents and adjacent tissues. The 3D model of the reconstruction of a CT file of a lower first premolar was made, which included enamel, dentin, periodontal ligament and alveolar bone considering three variables: direction, magnitude and area of the applied force. The direction was directed in three vectors (vertical, tangential and horizontal) under four magnitudes, one functional of 35 N and three dysfunctional of 170, 310 and 445 N, applied to an area of the occlusal and/or buccal face of the premolar that involved three stabilizing contacts (A, B and C) and two closing stops. The results obtained explain the phenomenon of combining three vectors, four magnitudes and an area of force application, where the values of effective equivalent Von Mises stress show maximum values from 60 MPa. The maximum tension values are located under the horizontal load at 170 N and in the masticatory process in the cervical area, when the force exceeds 60%. Based on the findings of this study, it can be concluded that the reaction of tissues to functional and dysfunctional forces varies according to the magnitude, direction, and area of application of the force. The stress values turn out to be higher under the application of dysfunctional forces both in magnitude and in direction, producing significant tensile stresses for the dental and cervical periodontal structure, while under functional loads applied in any direction, no damaging stresses are generated. This supposes the recognition of the power of structural detriment of the tooth and periodontium against centric and eccentric bruxism.
Subject(s)
Humans , Bicuspid/physiology , Biomechanical Phenomena , Finite Element Analysis , Tooth/physiology , Bite Force , Bruxism/physiopathology , Elastic Modulus , Tooth Wear , Mastication/physiologyABSTRACT
The complete characterization of wood, with the determination of the 12 elastic constants that represent its orthotropy, is greatly relevant in applications employing structural calculation software programs. Ultrasound allows for such characterization with relative simplicity when compared to other methods. The polyhedron is considered the most appropriate specimen format for allowing the 12 constants to be calculated with a single specimen, and the traditionally used one is the 26-sided polyhedron, which, to be produced manually with more precision in directing the main directions of the wood, needs larger faces. The accuracy of this technique tends to be reduced when increasing the growth rings' inclination since the waves deviate from the main directions of orthotropy. This research aimed to verify whether it is possible to reduce the polyhedra dimension without affecting the results of the elastic parameters obtained in wood characterization by ultrasound. The results indicate that the dimension of the polyhedron can be reduced without prejudice to the results of the elastic parameters obtained by the ultrasound test and that, in the manual production process of the specimen, the best way to make this reduction is to eliminate the faces unused in the test, changing the polyhedron to 18 faces instead of 26. Reducing the number of faces simplifies the manufacturing process and thus increases the possibility of producing specimens with straighter growth rings and better-directed symmetry axes.
ABSTRACT
This article introduces simulations of theoretical material with controlled properties for the evaluation of the effect of key parameters, as volumetric fractions, elastic properties of each phase and transition zone on the effective dynamic elastic modulus. The accuracy level of classical homogenization models was checked regarding the prediction of dynamic elastic modulus. Numerical simulations were performed with the finite element method for evaluations of the natural frequencies and their correlation with Ed through frequency equations. An acoustic test validated the numerical results and obtained the elastic modulus of concretes and mortars at 0.3, 0.5 and 0.7 water-cement ratios. Hirsch calibrated according to the numerical simulation (x = 0.27) exhibited a realistic behavior for concretes of w/c = 0.3 and 0.5, with a 5% error. However, when the water-to-cement ratio (w/c) was set to 0.7, Young's modulus displayed a resemblance to the Reuss model, akin to the simulated theoretical triphasic materials, considering matrix, coarse aggregate and a transition zone. Hashin-Shtrikman bounds is not perfectly applied to theoretical biphasic materials under dynamic situations.
ABSTRACT
This work aims to perform a computational analysis on the influence that microstructure and porosity have on the elastic modulus of Ti-6Al-4V foams used in biomedical applications with different α/ß-phase ratios. The work is divided into two analyses, first the influence that the α/ß-phase ratio has and second the effects that porosity and α/ß-phase ratio have on the elastic modulus. Two microstructures were analyzed: equiaxial α-phase grains + intergranular ß-phase (microstructure A) and equiaxial ß-phase grains + intergranular α-phase (microstructure B). The α/ß-phase ratio was variated from 10 to 90% and the porosity from 29 to 56%. The simulations of the elastic modulus were carried out using finite element analysis (FEA) using ANSYS software v19.3. The results were compared with experimental data reported by our group and those found in the literature. The ß-phase amount and porosity have a synergic effect on the elastic modulus, for example, when the foam has a porosity of 29 with 0% ß-phase, and it has an elastic modulus of ≈55 GPa, but when the ß-phase amount increases to 91%, the elastic modulus decreases as low as 38 GPa. The foams with 54% porosity have values smaller than 30 GPa for all the ß-phase amounts.
ABSTRACT
Melanoma is originated from the malignant transformation of the melanocytes and is characterized by a high rate of invasion, the more serious stage compromising deeper layers of the skin and eventually leading to the metastasis. A high mortality due to melanoma lesion persists because most of melanoma lesions are detected in advanced stages, which decreases the chances of survival. The identification of the principal mechanics implicated in the development and progression of melanoma is essential to devise new early diagnosis strategies. Cell mechanics is related with a lot of cellular functions and processes, for instance motility, differentiation, migration and invasion. In particular, the elastic modulus (Young's modulus) is a very explored parameter to describe the cell mechanical properties; most cancer cells reported in the literature smaller elasticity modulus. In this work, we show that the elastic modulus of melanoma cells lacking galectin-3 is significantly lower than those of melanoma cells expressing galectin-3. More interestingly, the gradient of elastic modulus in cells from the nuclear region towards the cell periphery is more pronounced in shGal3 cells. RESEARCH HIGHLIGHTS: AFM imaging and force spectroscopy were used to investigate the morphology and elasticity properties of healthy HaCaT cells and melanoma cells WM1366, with (shSCR) and without (shGal3) expression of galectin-3. It is shown the effect of galectin-3 protein on the elastic properties of cells: the cells without expression of galectin-3 presents lower elastic modulus. By the results, we suggest here that galectin-3 could be used as an effective biomarker of malignancy in both melanoma diagnostic and prognosis.